53 research outputs found

    Thin Fisher Zeroes

    Get PDF
    Biskup et al. [Phys. Rev. Lett. 84 (2000) 4794] have recently suggested that the loci of partition function zeroes can profitably be regarded as phase boundaries in the complex temperature or field planes. We obtain the Fisher zeroes for Ising and Potts models on non-planar (``thin'') regular random graphs using this approach, and note that the locus of Fisher zeroes on a Bethe lattice is identical to the corresponding random graph. Since the number of states appears as a parameter in the Potts solution the limiting locus of chromatic zeroes is also accessible.Comment: 10 pages, 4 figure

    The Use of Variable Stiffness Joints in Adaptive Structures

    Get PDF
    Adaptive structures are defined here as structures capable of counteracting actively the effect of external loads via controlled shape changes and redirection of the internal load path. These structures are integrated with sensors (e.g. strain, vision), control intelligence and actuators. This paper investigates the use of variable stiffness joints in adaptive structures to achieve large shape changes. Large shape changes are employed as a structural adaptation strategy to counteract the effect of the external load. The structure is designed to ‘morph’ into optimal shapes as the load changes. This way the stress can be homogenized avoiding peak demands that occur rarely. Numerical results show that when large shape changes are considered, material mass (and thus embodied energy) reduction is achieved with respect to both adaptive structures limited to small shape changes and optimised passive structures. Embodied energy savings become substantive when shape changes are allowed to go beyond conventional deflection limits. However, large shape changes require significant flexibility of the joints because their fixity can affect load-path and shape control. To address this problem, a variable stiffness joint is proposed. During shape/load-path control, the joint reduces its stiffness so that required deformation patterns can be achieved with low actuation energy. After shape control the joint recovers rigidity. Experimental studies are presented to show the potential for application of joints with variable stiffness in adaptive structures

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Erratum:Towards a muon collider

    Get PDF

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Erratum: Towards a muon collider

    Get PDF
    The original online version of this article was revised: The additional reference [139] has been added. Tao Han’s ORICD ID has been incorrectly assigned to Chengcheng Han and Chengcheng Han’s ORCID ID to Tao Han. Yang Ma’s ORCID ID has been incorrectly assigned to Lianliang Ma, and Lianliang Ma’s ORCID ID to Yang Ma. The original article has been corrected

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)
    corecore