590 research outputs found

    Numerical study of viscous modes in a rotating spheroid

    Get PDF
    International audienceThe motion of an incompressible, viscous rotating fluid contained in an oblate spheroidal container is studied by a direct numerical simulation in an appropriate spheroidal coordinate system and in the linear approximation. The behaviour of a few eigenmodes is investigated as a function of the eccentricity e of the container, for a Ekman number E = 10-5. Viscous effects are evidenced through internal shear layers, the spatial structure of which strongly depends on the eccentricity. In particular, for the spin-over mode, a resonance occurs around a critical value ec ! 0.50, where the decay rate strongly deviates from the predicted theoretical variation. This resonance is discussed in relation with the accidental coincidence between the spin-over frequency and two other frequencies corresponding to the (8,1,5) and (14,1,9) inertial eigenmodes

    Numerical study of a rotating fluid in a spheroidal container.

    Get PDF
    The motion of an incompressible, viscous rotating fluid contained in a spheroidal conainer is studied by a direct numerical simulation in a oblate speroidal system. An appropriate formalism is first derived which allows us to expand any scalar field in spherical harmonics and to decompose any vector field into its sphero-poloidal and sphero-toroidal scalar parts

    Modes and instabilities in magnetized spherical Couette flow

    Get PDF
    23 pagesInternational audienceSeveral teams have reported peculiar frequency spectra for flows in a spherical shell. To address their origin, we perform numerical simulations of the spherical Couette flow in a dipolar magnetic field, in the configuration of the DTS experiment. The frequency spectra computed from time-series of the induced magnetic field display similar bumpy spectra, where each bump corresponds to a given azimuthal mode number m. The bumps show up at moderate Reynolds number (2 600) if the time-series are long enough (>300 rotations of the inner sphere). We present a new method that permits to retrieve the dominant frequencies for individual mode numbers m, and to extract the modal structure of the full non-linear flow. The maps of the energy of the fluctuations and the spatio-temporal evolution of the velocity field suggest that fluctuations originate in the outer boundary layer. The threshold of instability if found at Re_c = 1 860. The fluctuations result from two coupled instabilities: high latitude Bödewadt-type boundary layer instability, and secondary non-axisymmetric instability of a centripetal jet forming at the equator of the outer sphere. We explore the variation of the magnetic and kinetic energies with the input parameters, and show that a modified Elsasser number controls their evolution. We can thus compare with experimental determinations of these energies and find a good agreement. Because of the dipolar nature of the imposed magnetic field, the energy of magnetic fluctuations is much larger near the inner sphere, but their origin lies in velocity fluctuations that initiate in the outer boundary layer

    Magneto–Coriolis waves in a spherical Couette flow experiment

    Get PDF
    International audienceThe dynamics of fluctuations in a fast rotating spherical Couette flow experiment in the presence of a strong dipolar magnetic field is investigated in detail, through a thorough analysis of the experimental data as well as a numerical study. Fluctuations within the conducting fluid (liquid sodium) are characterized by the presence of several oscillation modes, identified as magneto-Coriolis (MC) modes, with definite symmetry and azimuthal number. A numerical simulation provides eigensolutions which exhibit oscillation frequencies and magnetic signature comparable to the observation. The main characteristics of these hydromagnetic modes is that the magnetic contribution has a fundamental influence on the dynamical properties through the Lorentz forces, although its importance remains weak in an energetical point of view. Another specificity is that the Lorentz forces are confined near the inner sphere where the dipolar magnetic field is the strongest, while the Coriolis forces are concentrated in the outer fluid volume close to the outer sphere

    Experimental evidence of Alfv\'en wave propagation in a Gallium alloy

    Get PDF
    Experiments with a liquid metal alloy, galinstan, are reported and show clear evidence of Alfv\'en wave propagation as well as resonance of Alfv\'en modes. Galinstan is liquid at room temperature, and although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still been possible to study Alfv\'en waves, thanks to the use of intense magnetic fi elds, up to 13 teslas. The maximal values of Lundquist number, around 60, are similar to that of the reference experimental study by Jameson [1]. The generation mechanism for Alfv\'en waves and their refl ection is studied carefully. Numerical simulations have been performed and have been able to reproduce the experimental results despite the fact that the simulated magnetic Prandtl number was much larger than that of galinstan. An originality of the present study is that a poloidal disturbance (magnetic and velocity fields) is generated, allowing us to track its propagation from outside the conducting domain, hence without interfering.Comment: 19 pages; Physics of Fluids (2011)

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe
    corecore