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Numerical study of viscous modes in a rotating spheroid

D. Schmitt

LGIT, CNRS-UJF, BP 53, 38041 Grenoble Cédex 9, France

Abstract

The motion of an incompressible, viscous rotating fluid contained in an oblate

spheroidal container is studied by a direct numerical simulation in an appropriate

spheroidal coordinate system and in the linear approximation. The behaviour of a few

eigenmodes is investigated as a function of the eccentricity e of the container, for a

Ekman number E = 10-5. Viscous effects are evidenced through internal shear layers, the

spatial structure of which strongly depends on the eccentricity. In particular, for the

spin-over mode, a resonance occurs around a critical value ec ≈ 0.50, where the decay

rate strongly deviates from the predicted theoretical variation. This resonance is

discussed in relation with the accidental coincidence between the spin-over frequency

and two other frequencies corresponding to the (8,1,5) and (14,1,9) inertial eigenmodes.
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1. Introduction

Understanding the dynamics of rotating fluids is of fundamental interest in a

geophysical and astrophysical point of view. As far as the geodynamo problem is

concerned, the behaviour of inertial modes of the liquid inner core of the Earth in the

presence of external constraints such as the ellipticity of its outer boundary and the

precession forcing appears worth being carefully investigated. The spheroidal geometry

of this outer boundary was explicitely considered by Poincaré (Poincaré, 1910), giving

rise to specific effects on the Earth's nutation compared to the case of a spherical

container, but viscosity was neglected. Viscosity was later considered as a perturbation

of the non viscous modes, with a special attention to the critical regions of the Ekman

layer (Busse, 1968; Greenspan, 1968; Stewartson & Roberts, 1963). In particular,

viscous correction of decay rate and eigenfrequency for the spin-over mode was given

analytically as a function of the ellipticity of the container. This was recently

generalized for any inertial wave mode (Liao, Zhang & Earnshaw, 2001; Zhang, Liao &

Earnshaw, 2004).

Following these fundamental analytical approaches, numerical studies have been

undertaken in a sphere or a spherical shell (Hollerbach & Kerswell, 1995; Noir, Jault &

Cardin, 2001; Rieutord & Valdaretto, 1997; Tilgner & Busse, 2001). Indeed, such

simulations are needed to go further into our knowledge of the phenomena and to

explain experimental results where fluid instabilities and turbulence are observed and

reveal non-linear effects. In particular, inertial modes are suspected to play a role in the

geodynamo, because some of them could be destabilized by the elliptic shape of the

boundaries due to the tides (Kerswell, 1994).

Most of the numerical studies of rotating fluids have been developed in a

spherical geometry, because of its relative simplicity. Using a more realistic coordinate

system appears however highly desirable, because natural bodies or cavities are often
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ellipsoidal rather than spherical. Such an approach has been used for studying kinematic

dynamo models in a spheroidal galaxy (Walker & Barenghi, 1994). More recently, a

spheroidal symmetry has been considered for some geophysical applications (Lorenzani

& Tilgner, 2001; 2003; Tilgner, 1999). In the latter approach, a coordinate

transformation was performed in order to replace the ellipsoidal volume by a spherical

one, for which a distorted equation of motion was used. As well, a solid inner core was

included, allowing to avoid singularities at the centre.

In the present work, equation of motion of a rotating viscous incompressible

fluid within a spheroidal container is directly treated in real space by using an

appropriate set of coordinates, namely the oblate spheroidal coordinate system. Within

this system, an extension of the spherical Mie representation of a vector field (Backus,

Parker & Constable, 1996) is considered: a solenoidal vector field (here the velocity

field) is decomposed into the sum of two unique vectors which are themselves derived

from two scalar fields, namely the sphero-poloidal and the sphero-toroidal ones. As for

the spherical symmetry, this Mie-like representation allows one to work with only two

scalar fields instead of the three velocity components, once the pressure has been

eliminated from the equations. In addition, an appropriate spherical harmonic expansion

is used for the angular part of these spheroidal scalar fields, while a discretisation is

performed for their sphero-radial component. The main features of this formalism have

been previously presented in detail, but only a few preliminary numerical results were

included (Schmitt & Jault, 2004). Here, numerical simulations are performed more

thoroughly. In particular, the behaviour of a few viscous eigenmodes is investigated as a

function of eccentricity and, to a lesser extent, of viscosity. As well their spatial

geometry is emphasized, exhibiting features which suggest the presence of possible

resonance between them, under certain circumstances.

In the present work, the linear approximation is made, and no inner core is

considered. In Section 2, the mathematical formalism within the oblate spheroidal
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coordinate system is briefly recalled, and two distinct procedures are described to solve

the equation of motion, namely a time-stepping and an inverse iteration method. Section

3 is devoted to the numerical results of a systematic study of a particular mode, i.e. the

spin-over mode, as a function of the excentricity and for a Ekman number E = 10-5,

showing the presence of a resonance around a critical eccentricity ec = 0.50. This

behaviour differs markedly from what was expected in previous theoretical approaches.

In the next Section, the behaviour of the other spheroidal, viscous eigenmodes is

considered and their role in the occurence of the spin-over resonance is emphasized.

The last Section is devoted to the discussion.

2. Mathematical formalism

2.1. The oblate spheroidal coordinate system

A coordinate system particularly appropriate to the present study (spheroidal container,

no inner core) is the oblate spheroidal system, related to the cartesian one by the

relations

† 

x = a cosh m sinq  cosj

y = a cosh m sinq sinj

z = a sinh m cosq

Ï 

Ì 
Ô 

Ó 
Ô 

with  
m ≥ 0
0£q £ p

0£j < 2p

Ï 

Ì 
Ô 

Ó 
Ô (2.1)

where a is the distance between the origin and the circle of foci within the equatorial

plane. Within this system, the constant-m surfaces are ellipsoids with eccentricity

† 

e =1 cosh m , while the constant-q surfaces are one-sheet hyperboloids which, for large

m values, become asymptotically cones of revolution around the z-axis with a half-

aperture q. Details of the formalism can be found in (Schmitt & Jault, 2004), and only a

summary is given here below, including some changes compared to the previous work.

2.2. Decomposition of scalar and vectorial fields in the spheroidal symmetry

As shown by (Schmitt & Jault, 2004), an appropriate transformation allows one to

expand any scalar function f(m, q, j) within the usual spherical harmonics basis
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† 

Yl
m (q ,j ) , where q is the spheroidal, not the spherical colatitude. In the same way, a

solenoidal vector field V(m, q, j) can be decomposed into the sum of a sphero-toroidal

Vst and a sphero-poloidal Vsp part, with:

† 

Vst = — ¥
a

4 sinh2 m + cos2 q
st ˆ e m

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

Vsp = — ¥
1

2 sinq sinh2 m + cos2 q
ˆ e q  ∂j sp -

1
2 coshm

ˆ e j  ∂qsp
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

(2.2)

where 

† 

∂a  is a short notation for 

† 

∂ ∂a , and st(m, q, j) and sp(m, q, j) are the sphero-

toroidal and sphero-poloidal scalar fields of V, respectively. This decomposition ensures

the vanishing of —.V, in agreement with the incompressibility of the fluid. Note that

differences exist compared to the Mie decomposition in spherical symmetry, for

example the curl of a sphero-poloidal vectorial field is not a sphero-toroidal field, nor

the opposite assertion.

2.3. Equation of motion

The present work is focused on the study of viscous correction to inviscid eigenmodes

in the linear approximation. An incompressible viscous fluid is enclosed in an oblate

spheroidal container of sphero-radial coordinate mo and eccentricity 

† 

eo =1 coshmo . The

container is spinning at frequency wo around the z axis. The linear, dimensionless

equation of motion for the fluid velocity u within the coordinate system rotating with

the container is:

† 

∂tu + 2 ˆ z ¥ u = -—f +
E
eo

2 Du (2.3)

where f is the reduced pressure and E the Ekman number. Here the focus parameter a

has been taken as unit of length, and wo
-1 as unit of time.

After eliminating the pressure by taking the curl of equation (2.3), three coupled,

differential equations can be obtained for the two unknown quantities st(m, q, j) and

sp(m, q, j) after projection on the three basis vectors 

† 

ˆ e m , ˆ e q , ˆ e j . Note that these three
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equations are not independant, and this will be used here below to reduce the order of m-

derivatives. These equations involve m-derivatives up to the fourth-order, and q- and j-

derivatives up to the fifth order. It is worth noting that the j -derivation is

straightforward when the spherical harmonic expansion is considered, while the order of

the q-derivatives can be reduced down to first order by using the angular laplacian

operator. After some manipulation, the q-dependence includes numerous terms such as

† 

cosn q  or 

† 

cosn-1q sinq ∂q , where n can be as large as 7, but no high-order q-derivative.

As far as m-derivatives are concerned, a careful examination of the boundary conditions

(see below section 2.4) induces one to keep at most fourth-order derivatives for sp(m, q,

j) and second-order derivatives for st(m, q, j), a condition which is fulfilled for the m-

equation. However, both q- and j-equations involving 

† 

∂m
3
st(m, q, j), an appropriate

combination of them has been considered in order this term to be cancelled. For sake of

conciseness, the two remaining m- and (q-j)-equations are not given here explicitely.

The next step is to use the spherical harmonic expansion for both scalar fields

st(m,q,j) and sp(m,q,j). Thus, the q-dependent operators quoted above, e.g. 

† 

cosn q ,

when applied to a function 

† 

Yl
m
, can be expanded into the sum of (n+1) spherical

harmonics with the same order m , and degrees of same parity ranging from l-n to l+n.

The system of equations can then be reduced to expressions which involve partial

derivatives in m  and t only, and are expanded in spherical harmonics. Finally,

considering separately each given l angular part provides a set of coupled equations

which include numerous contributions coming from terms with other angular parts up to

Dl = 7 (i.e. from l-7 to l+7). All the expressions have been derived by using

Mathematica software.

2.4. Boundary conditions

The no-slip condition has been used at the outer boundary of the container, i.e. u(mo) =

0. This condition leads to the following relations:
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† 

stl
m (mo ) = 0 ; spl

m (mo ) = 0 ; ∂m spl
m (mo ) = 0 (2.4)

where 

† 

spl
m (m) and 

† 

stl
m (m) are the spherical harmonic expansion coefficients of the sp

and st scalar fields. A second set of relations comes from the critical disk m = 0 enclosed

of the focal circle. The absence of inner core implies that u and its derivatives are

continuous when passing through this surface, both sides of this surface corresponding

to q and p-q. That leads to the following parity relations for the functions 

† 

stl
m (m) and

† 

spl
m (m) for small values of m: 

† 

spl
m (m) and 

† 

stl
m (m) must be odd if (l + m) is even, and

even if (l + m) is odd. In the present calculation, this is equivalent to the vanishing of

† 

st2n+1
1 (0) , 

† 

∂m sp2n
1 (0), 

† 

∂m
3 sp2n

1 (0). Note that the choice of the latter term rather than

† 

∂m
2 st2n+1

1 (0) lies on the following argument: if an inner core was used, the boundary

condition would be the same as equation (2.4), but for m  = mi, i.e. one condition on

† 

stl
m (mi ) and two on 

† 

spl
m (mi ). Note that this choice remains consistent with the order of

the derivatives of 

† 

stl
m (m) and 

† 

spl
m (m) in the equation of motion, i.e. 2 and 4,

respectively.

2.5. Numerical methods

Numerical calculation is made by using the finite difference method for the

sphero-radial variable m. The grid is linear, except near the boundaries where it follows

a geometric law: the grid is then extended near the critical disk m = 0 in order to reduce

numerical problems near the focal circle, while it is compressed close to m = mo  in order

to increase the number of points within the Ekman boundary layer. The total number of

points is generally taken as N = 251. For the angular variables, the spherical harmonic

expansion is truncated at lmax = 64. For the azimutal part, only (m  = 1) terms are

needed here for the spin-over problem (see section 2.6), the (m = -1) terms being related

to the (m = 1) one through complex conjugation.

The corresponding matrices consist in a block-pentadiagonal matrix associated

with the radial grid, each block being a band-matrix of order lmax, arising from the

coupling of scalar field components having different l values. Moreover, due to

symmetry considerations, two independent groups of these components can be
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considered separately: the first group involves 

† 

sp1
m , st2

m ,  sp3
m ,  st4

m ... , while the second

one, which is used here below, includes 

† 

st1
m , sp2

m ,  st3
m ,  sp4

m ... .

As far as the time dependence is concerned, two different method have been

considered. First, the implicit Crank-Nicolson scheme has been used for the diffusion

term (initial value problem). For each time step, the inversion of the big pentadiagonal

matrix is carried out by LU factorization and Thomas algorithm, in order to avoid

keeping in memory the inverse of this matrix. The LAPACK routines have been used

for manipulating the matrices. In the second procedure the inverse iteration method has

been applied (Stoer & Bulirsch, 1980), which provides complex eigenvalues, i.e. both

eigenfrequency and attenuation rate, as well as eigenvectors. The selection of the final

eigenmode is made by starting the iterations from an initial complex eigenvalue close to

the expected value. Any individual, viscous eigenmode can then be achieved by this

procedure, but identifying the corresponding (n,m,k) labels may not be trivial in

particular for not small values of n. Moreover, the final eigenmode is generally not very

sensitive to the imaginary part of the starting value, i.e. the initial attenuation rate,

except when eigenvalues are close to each other. That may explain the presence of some

irregularities on the calculated variations (see below). In the following, both methods

have been used to study the spin-over behaviour, while other eigenmodes have been

investigated only by the inverse iteration method.

2.6. Description of the initial inviscid spin-over mode

In the Crank-Nicolson scheme, an initial condition has to be taken as the starting

(t = 0) velocity field. For the spin-over investigation, the choice is the (2,1,1) inviscid

inertial (Poincaré) mode, for which all the components are purely linear in the spatial

coordinates (x, y, z) and which satisfies the non-penetration condition on the spheroidal

container boundary m = mo (Greenspan, 1968; Kerswell, 1993):

† 

u211 =
z

tanh(mo )
ˆ e y - tanh(mo ) y ˆ e z (2.5)
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This mode corresponds to a vortical flow around the 

† 

ˆ e x  axis, with a constant-vorticity

and no boundary layer. This inviscid inertial mode is excited when a fluid is in rapid

rotation around the z-axis and its rotation axis is suddenly tilted by a slight quantity

(Greenspan, 1968). Precession may be viewed as a sequence of such infinitesimal

changes so that it is anticipated that this mode plays a key role in that problem. Writing

equation (2.5) in the spheroidal coordinate system and expanding the corresponding

scalar fields in spherical harmonics lead to only three non-zero terms which involve

only m  = 1 (see (Schmitt & Jault, 2004)), namely 

† 

st1 , sp2 ,  st3  (here and in the

following, the index m = 1 has been omitted for sake of simplicity). It is worth noting

that the boundary conditions are verified at m = 0 but not at m = mc for these three scalar

fields. The values at mN = mc for st1 and st3, as well as the previous one at mN-1 for sp2

need to be modified in order to fulfill the outer boundary conditions and to take into

account the viscosity through equation (2.4). As it will be seen below, a consequence of

this abrupt change is to excite high-order viscous eigenmodes which will be visible in

the time dependences shown below, giving rise to rapidly decaying transient

oscillations.

2.7. The angular momentum

The expression of true vorticity in the spheroidal system being complex to

evaluate, an alternative, more simple way to follow the evolution of the rotating fluid is

to calculate its angular momentum l, defined as (the prefactor has been removed):

  

† 

l = r ¥ u
spheroid

Ú (2.6)

Within the spherical limit, this vector is nothing else than half of the true vorticity,

† 

(1 2)— ¥ u . In spheroidal symmetry, expanding the scalar fields of the velocity field u

in spherical harmonics and integrating their angular parts leads to an expression which

involve only st1 and sp2. Moreover, it turns out that this angular momentum, apart a

constant prefactor, is nothing else but the projection of the vector field u on the two
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orthogonal inviscid spin-over modes 

† 

u211  and 

† 

u21 1which correspond to the inertial

vortical flows around 

† 

ˆ e x  and 

† 

ˆ e y , respectively:

  

† 

l = -coth(2mc ) (u211
* ⋅u)

spheroid
Ú ˆ e x + (u21 1

* ⋅u)
spheroid

Ú ˆ e y
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(2.7)

The evolution of the system will then be followed by investigating the time-variation of

this vector l, which remains confined within the equatorial plane, as well as its

dependence on viscosity and eccentricity.

3. Numerical results

3.1. Time dependence of decay factor and eigenfrequency

The angular momentum l can be defined by its modulus lmod and its position. From a

theoretical point of view, lmod is expected to decay exponentially with time according to

viscous effects (negative decay factor l), while the vector l is expected to rotate in the

equatorial plane in a retrograde way (negative angular speed wd):

  

† 

lmod = l0 exp(l t )
l,ˆ e x( ) = p +wd  t

Ï 
Ì 
Ó 

(3.1)

where   

† 

l,ˆ e x( )  is the angle between vectors l and êx. At each time step, the decay factor is

then calculated as d(lmod)/lmod and the angular speed as d  

† 

l,ˆ e x( ) /dt. Two typical time

dependences of both quantities are reported in figure 1 for a Ekman number E = 10-5.

That allows one to appreciate the time-stepping procedure as well as the effects of

ellipticity. After some long period transient oscillations, a stationary state is reached for

large t values, where residual small oscillations subsist around a constant value for both

decay rate l and eigenfrequency wd.

3.2. Eccentricity dependence of decay factor and eigenfrequency
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The eccentricity dependence of the large t limit of decay rate and eigenfrequency is

reported in figure 2, together with the values calculated directly by the inverse iteration

method. Both results are in perfect agreement between each other, proving that the

former ones are not very affected by the vanishing residual modes which still subsist in

the calculation for large t. In other words, the large t limit is very close to the pure

viscous spin-over eigenmode. These variations can be compared to those expected from

a theoretical point of view according to the following relations (Greenspan, 1968;

Stewartson & Roberts, 1963; Zhang et al., 2004):

† 

l = l1(e)E1 / 2 +O(E,e4E1 / 2 )
wd = w0 (e)+w1(e)E1 / 2 + ...   
 with  l1(e) = -2.62 - 0.426 e2 ,

   w0 (e) =
-2

2 - e2  and w1(e) = -0.258 - 0.766 e2

Ï 

Ì 

Ô 
Ô Ô 

Ó 

Ô 
Ô 
Ô 

(3.2)

The renormalized decay rates as well as the eigenfrequencies are found to satisfactorily

follow the predicted variation, at least for moderate eccentricities. The w1 variation is a

little more erratic, but it is worth noting that this quantity is a high order one in the

expansion of wd, therefore it is subject to a lower degree of accuracy. However, a

spectacular change of behaviour clearly occurs around ec ≈ 0.5, emphasized by the

strong deviation of l  from the e2 dependence. Unfortunately, the appearance of

numerical instabilities for e > 0.6-0.7 prevents us to analyze the behaviour for higher

eccentricities. In order to have a deeper understanding of what happens around this

critical eccentricity, the spatial structure of the spin-over mode has to be examined

carefully in the presence of both viscosity and eccentricity.

3.3. Spatial structure of the spin-over mode

The detailed spatial structure of the flow resulting from the combined effect of the

viscosity and the non-spherical shape of the container can be appreciated by subtracting

an appropriate non-viscous spin-over contribution from the calculated viscous flow. The
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three components of the residual fluid velocity are then visualized within the meridional

plane containing the rotation axis of the removed spin-over contribution or equivalently

the l vector itself (see figure 3). Note that the spatial structures calculated by both

methods are undistinguishable from each other. They exhibit shear regions, although the

relatively high Ekman number limits the narrowness of the shear layers. The main

characteristic feature is the spatial evolution of the azimutal component uj. While for e

= 0.02, features are similar to those calculated by (Hollerbach & Kerswell, 1995) and

(Noir et al., 2001) in spherical geometry, the uj component exhibits more pronounced

cells when e increases, in a way reminiscent of some inviscid spheroidal inertial modes

(see below). Nevertheless these structures are actually characteristic of the viscous

spin-over eigenmode (2,1,1), so that explaining the presence of such features requires to

investigate in more detail the behaviour of the spheroidal inertial eigenmodes

themselves and their dependence on viscosity and eccentricity.

4. The spheroidal inertial eigenmodes

4.1. The non-viscous inertial modes

First we focus on the non-viscous spheroidal inertial modes, which are plane waves

solutions of equation 2.3 for E = 0. According to the notation of Kerswell (Kerswell,

1993), there are an infinite number of such eigenfunctions Qn,m,k (the Poincaré modes),

depending on the three labels n, m, k:

† 

Qn,m,k (m ,q ,j ,t ) = Qn,m,k (m ,q )ei( mj+wn ,m,k t )
(4.1)

where n and m refer to the associated Legendre polynomials 

† 

Pn
m

 which are involved in

the analytical expression of the eigenmodes and eigenfrequencies, while k subscript

labels the different eigenfrequencies wn,m,k corresponding to a given set of (n, m) values.

These frequencies depend on the eccentricity e, as shown in figure 4a for a selection of

eigenmodes, the frequency of which is close to that of the spin-over one, w2,1,1 (note that
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this latter is nothing else but wo of equation 3.2, except the sign), i.e. close to 1. Clearly

the (8,1,5) and (14,1,9) modes are expected to play a particular role, and it is worth

considering their spatial distribution (see figure 5 for e = 0.39 for example). Note that

their global geometry is not drastically modified between the spherical case, e = 0, and a

noticeable oblate case, e = 0.7. While the non-viscous (2,1,1) mode always exhibits a

very simple laminar structure - it looks like a stretched solid body rotation -, it

immediately appears that the geometrical features of both (8,1,5) and (14,1,9) modes are

very close to those present in the calculated viscous spin-over mode (see section 3.3).

They are even both present in a single viscous eigenmode, if the azimutal variation of

the three components is considered (see figure 6 for e = 0.39). Therefore, it can be

anticipated that a viscosity induced resonance occurs between all three inertial modes,

in the range of eccentricity where there is a crossing of their frequencies. So it is

interesting to investigate more thoroughly how the different inertial modes are affected

by the viscosity.

4.2. The viscous inertial modes

Including viscosity in equation 2.3 prevents us to solve analytically the eigenproblem.

In contrast, the inverse iteration method may allow to obtain viscous solutions for

different modes and to appreciate how their eigenfrequency, decay rate and spatial

structure are modified by the viscosity as a function of eccentricity. As seen in figure

4a, the viscous eigenfrequencies agree generally well with the corresponding inviscid

variation. Nevertheless, difficulties may sometimes occur to follow some modes over

the whole eccentricity range, as for example the (14,1,9) mode for e > 0.4 or the

(20,1,13) mode around e ≈ 0.3. In these cases, the inverse iteration procedure converges

toward an eigenmode corresponding to a much higher n value, whatever the starting

point may be, at least in our range of investigation. It is worth noting that this procedure

is indeed more efficient for well-separated eigenvalues, that is precisely not the case

here. If the viscous decay rates are considered (see figure 4b), it is obvious that they do
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not follow a simple e2 law, but exhibit anomalies in a way reminiscent of the behaviour

of the spin-over mode, or even seem to diverge, such as the (14,1,9) mode for e > 0.4.

The spatial distribution has been also obtained, as shown in figures 7-9 for the

viscous (8,1,5), (14,1,9) and (20,1,13) modes, for 3 values of eccentricity. Surprisingly,

the cell-like features seen in the corresponding non-viscous modes are less apparent in

the presence of viscosity, where they are replaced by geometrical structures more

reminiscent of shear layers. These features makes also more difficult the identification

of the modes found by the inverse iteration procedure. Resonance phenomena seem then

to be present for these modes as for the spin-over one, but because several modes are

involved in a limited eccentricity range, it may be difficult to associate precisely each

anomaly with a given frequency crossing. To conclude, the proximity of several inertial

modes lead them to enter into a resonance between each other through the viscosity, a

behaviour more complex than expected in a simple, non-viscous approach. As well, it

requires to go beyond the first-order perturbation approach followed in the literature

(Greenspan, 1968; Zhang et al., 2004) to take these inter-mode resonances into account.

4.3. Viscosity dependence of decay rates

In order to better characterize how the decay rates are influenced by the viscosity, the

(2,1,1) and (8,1,5) eigenmodes have been investigated by the inverse iteration method

for several Ekman numbers (see figure 10). It appears that the anomalies occuring at the

critical eccentricity are smoother and smoother as E  increases, a behaviour

characteristic of resonance phenomena. For a value of about 10-4, they are almost

completely damped and the theoretical variation is recovered. It is worth noting that the

proximity of eigenfrequencies means also the proximity of boundary layer eruptions

occuring at a critical latitude (see figure 5). It can be anticipated that these eruptions

will play a crucial role in the viscous coupling between the corresponding modes, and it

can be expected that the amplitude of this coupling will depend on both the separation

of the critical latitudes and the viscosity.
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5. Discussion

In the present work, a detailed study of a few viscous m = 1 eigenmodes of a rotating

fluid within a spheroidal container has been performed by direct numerical simulation.

In a linear approximation, their behaviour, namely their viscous decay rate, the viscous

correction to their eigenfrequency and their spatial structure, has been investigated as a

function of the eccentricity e of the spheroidal container, for a Ekman number E = 10-5.

A particular attention has been paid to the spin-over mode, which plays a fundamental

role in the precession problem. As a main result, a strong slowing-down of its viscous

decay rate (~10 %) has been evidenced in the range e ≈ 0.5 - 0.6, shown by a large

anomaly of its eccentricity dependence. This can be considered as the signature of a

resonance between several viscous eigenmodes, in an eccentricity range where their

frequencies become very close to each other. This resonance has not been predicted in

previous linear theory (Greenspan, 1968; Zhang et al., 2004). A higher order

perturbation analysis is needed to account for such an effect, by explicitely considering

the coupling between different eigenmodes propagating at frequencies close to each

other. However, the eigenfrequency spectrum is known to be dense, so that there exists

always many eigenmodes with a frequency close to that of a given mode. It can be

assumed that a resonance between these modes should be renormalized by a kind of

coupling constant or interaction integral, which could be large only for a reduced

number of pair of modes. The magnitude itself of the decay rates, or the proximity of

their value is probably involved also in the resonance phenomenon. A further analysis is

required to elucidate this point. As well, the consequences of such a resonance on

possible fluid instabilities remain to be investigated. Moreover, previous studies in

spherical geometry have shown how the spatial structure of the spin-over mode changes

as a function of the viscosity, i.e. how the internal shear layers scale with the Ekman

number (Hollerbach & Kerswell, 1995; Noir et al., 2001). One may wonder whether the

same E1/5 scaling apply to the present case with a large eccentricity, where the shear
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layers have been replaced by cell-like structures, at least for the E value used in the

present calculation.
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FIGURE CAPTIONS

Fig. 1: Calculated variation of renormalized decay factor l.

† 

E-1 2  (left scale) and

eigenfrequency wd (right scale) of the spin-over mode for eccentricities e = 0.02 (left)

and 0.51 (right) and for a Ekman number E = 10-5.

Fig. 2: Eccentricity dependence of the renormalized decay factor l 

† 

E-1 2  (left) and of w0

(middle) and w1 (right) contributions to the eigenfrequency wd for the spin-over mode;

continuous lines are theoretical predictions; dashed lines correspond to the present time-

stepping simulations, dotted lines to inverse iteration results; arrows indicate the

crossing between the spin-over frequency and the (8,1,5) and (14,1,9) frequencies,

respectively.

Fig. 3: The three components of the residual fluid velocity of the spin-over mode within

the meridional plane containing the l vector, for different eccentricities, after removing

the inviscid contribution (see text); velocities are normalized so that |u|max = 1; note the

spatial evolution of the azimutal component.

Fig. 4: (a): Eccentricity dependence of eigenfrequencies, for some inviscid (lines) and

viscous (symbols) spheroidal inertial modes close to the (2,1,1) spin-over mode; (b):

Eccentricity dependence of corresponding decay rates. Continuous line and full circles:

(2,1,1) mode; dashed line and open squares: (8,1,5) mode; dotted line and open circles:

(14,1,9) mode; triangles: (20,1,13) mode; lines are theoretical predictions.

Fig. 5:The three velocity components of the (8,1,5), (14,1,9) and (20,1,13) inviscid

inertial modes for e = 0.39; the critical latitude for viscous boundary layer eruptions is

indicated by a star on the spheroidal boundary.

Fig. 6:The three components of the residual fluid velocity of the viscous spin-over

mode within the meridional plane containing the l vector (top) and perpendicular to it

(bottom), for e = 0.39.
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Fig. 7:The three velocity components of the (8,1,5) (top), (14,1,9) (middle) and

(20,1,13) (bottom) viscous inertial modes for e = 0.02; velocities are normalized so that

|u|max = 1.

Fig. 8: The three velocity components of the (8,1,5) (top), (14,1,9) (middle) and

(20,1,13) (bottom) viscous inertial modes for e = 0.27; velocities are normalized so that

|u|max = 1.

Fig. 9: The three velocity components of the (8,1,5) (top), (14,1,9) (middle) and

(20,1,13) (bottom) viscous inertial modes for e = 0.39; velocities are normalized so that

|u|max = 1.

Fig. 10: Eccentricity dependence of the renormalized decay factor l 

† 

E-1 2  for (a): the

(2,1,1) and (b): the (8,1,5) modes, for various Ekman numbers ranging from 10-4 to

10-5.25; continuous lines are theoretical predictions.
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