197 research outputs found

    Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar

    Get PDF
    In this study, a focused investigation of the potential for the King Salmon (KS) SuperDARN HF radar to monitor high-velocity flows near the equatorial edge of the auroral oval is undertaken. Events are presented with line-of-sight velocities as high as 2km/s, observed roughly along the L-shell. Statistically, the enhanced flows are shown to be typical for the dusk sector (16:00–23:00 MLT), and the average velocity in this sector is larger (smaller) for winter (summer) conditions. It is also demonstrated that the high-velocity flows can be very dynamical with more localized enhancements existing for just several minutes. These short-lived enhancements occur when the luminosity at the equatorial edge of the auroral oval suddenly decreases during the substorm recovery phase. The short-lived velocity enhancements can be established because of proton and ion injections into the inner magnetosphere and low conductance of the ionosphere and not because of enhanced tail reconnection. This implies that some KS velocity enhancements have the same origin as subauroral polarization streams (SAPS)

    Modification of turbulent dissipation rates by a deep Southern Ocean eddy

    Get PDF
    The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, mid-depth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy, but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray-tracing approximation is employed asa heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation.

    Get PDF
    OBJECTIVES: Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increasing disability, reduced quality of life and substantial costs (as a result of both intervention acquisition and hospitalisation). The objective was to assess the clinical effectiveness and cost-effectiveness of seven biologic disease-modifying antirheumatic drugs (bDMARDs) compared with each other and conventional disease-modifying antirheumatic drugs (cDMARDs). The decision problem was divided into those patients who were cDMARD naive and those who were cDMARD experienced; whether a patient had severe or moderate to severe disease; and whether or not an individual could tolerate methotrexate (MTX). DATA SOURCES: The following databases were searched: MEDLINE from 1948 to July 2013; EMBASE from 1980 to July 2013; Cochrane Database of Systematic Reviews from 1996 to May 2013; Cochrane Central Register of Controlled Trials from 1898 to May 2013; Health Technology Assessment Database from 1995 to May 2013; Database of Abstracts of Reviews of Effects from 1995 to May 2013; Cumulative Index to Nursing and Allied Health Literature from 1982 to April 2013; and TOXLINE from 1840 to July 2013. Studies were eligible for inclusion if they evaluated the impact of a bDMARD used within licensed indications on an outcome of interest compared against an appropriate comparator in one of the stated population subgroups within a randomised controlled trial (RCT). Outcomes of interest included American College of Rheumatology (ACR) scores and European League Against Rheumatism (EULAR) response. Interrogation of Early Rheumatoid Arthritis Study (ERAS) data was undertaken to assess the Health Assessment Questionnaire (HAQ) progression while on cDMARDs. METHODS: Network meta-analyses (NMAs) were undertaken for patients who were cDMARD naive and for those who were cDMARD experienced. These were undertaken separately for EULAR and ACR data. Sensitivity analyses were undertaken to explore the impact of including RCTs with a small proportion of bDMARD experienced patients and where MTX exposure was deemed insufficient. A mathematical model was constructed to simulate the experiences of hypothetical patients. The model was based on EULAR response as this is commonly used in clinical practice in England. Observational databases, published literature and NMA results were used to populate the model. The outcome measure was cost per quality-adjusted life-year (QALY) gained. RESULTS: Sixty RCTs met the review inclusion criteria for clinical effectiveness, 38 of these trials provided ACR and/or EULAR response data for the NMA. Fourteen additional trials contributed data to sensitivity analyses. There was uncertainty in the relative effectiveness of the interventions. It was not clear whether or not formal ranking of interventions would result in clinically meaningful differences. Results from the analysis of ERAS data indicated that historical assumptions regarding HAQ progression had been pessimistic. The typical incremental cost per QALY of bDMARDs compared with cDMARDs alone for those with severe RA is > £40,000. This increases for those who cannot tolerate MTX (£50,000) and is > £60,000 per QALY when bDMARDs were used prior to cDMARDs. Values for individuals with moderate to severe RA were higher than those with severe RA. Results produced using EULAR and ACR data were similar. The key parameter that affected the results is the assumed HAQ progression while on cDMARDs. When historic assumptions were used typical incremental cost per QALY values fell to £38,000 for those with severe disease who could tolerate MTX. CONCLUSIONS: bDMARDs appear to have cost per QALY values greater than the thresholds stated by the National Institute for Health and Care Excellence for interventions to be cost-effective. Future research priorities include: the evaluation of the long-term HAQ trajectory while on cDMARDs; the relationship between HAQ direct medical costs; and whether or not bDMARDs could be stopped once a patient has achieved a stated target (e.g. remission). STUDY REGISTRATION: This study is registered as PROSPERO CRD42012003386. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
    • 

    corecore