HEALTH TECHNOLOGY ASSESSMENT

VOLUME 20 ISSUE 35 APRIL 2016 ISSN 1366-5278

Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation

Matt Stevenson, Rachel Archer, Jon Tosh, Emma Simpson, Emma Everson-Hock, John Stevens, Monica Hernandez-Alava, Suzy Paisley, Kath Dickinson, David Scott, Adam Young and Allan Wailoo

Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation

Matt Stevenson,¹* Rachel Archer,¹ Jon Tosh,¹ Emma Simpson,¹ Emma Everson-Hock,¹ John Stevens,¹ Monica Hernandez-Alava,¹ Suzy Paisley,¹ Kath Dickinson,¹ David Scott,² Adam Young³ and Allan Wailoo¹

¹School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK ²Department of Rheumatology, King's College Hospital NHS Foundation Trust, London, UK ³Department of Rheumatology, West Hertfordshire Hospitals NHS Trust, Hertfordshire, UK

*Corresponding author

Declared competing interests of authors: David Scott has received honoraria within the last 3 years for providing advice to Merck Sharp & Dohme Corp., UCB Pharma and Bristol-Myers Squibb: these values were less than £1000. Additionally, David Scott has received grants from Arthritis Research UK and the National Institute for Health Research in connection with rheumatoid arthritis.

Published April 2016 DOI: 10.3310/hta20350

This report should be referenced as follows:

Stevenson M, Archer R, Tosh J, Simpson E, Everson-Hock E, Stevens J, *et al.* Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation. *Health Technol Assess* 2016;**20**(35).

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/ Clinical Medicine.

Health Technology Assessment

ISSN 1366-5278 (Print)

ISSN 2046-4924 (Online)

Impact factor: 5.027

Health Technology Assessment is indexed in MEDLINE, CINAHL, EMBASE, The Cochrane Library and the ISI Science Citation Index.

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (www.publicationethics.org/).

Editorial contact: nihredit@southampton.ac.uk

The full HTA archive is freely available to view online at www.journalslibrary.nihr.ac.uk/hta. Print-on-demand copies can be purchased from the report pages of the NIHR Journals Library website: www.journalslibrary.nihr.ac.uk

Criteria for inclusion in the Health Technology Assessment journal

Reports are published in *Health Technology Assessment* (HTA) if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

The HTA programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The journal is indexed in NHS Evidence via its abstracts included in MEDLINE and its Technology Assessment Reports inform National Institute for Health and Care Excellence (NICE) guidance. HTA research is also an important source of evidence for National Screening Committee (NSC) policy decisions.

For more information about the HTA programme please visit the website: http://www.nets.nihr.ac.uk/programmes/hta

This report

The research reported in this issue of the journal was commissioned and funded by the HTA programme on behalf of NICE as project number 11/74/01. The protocol was agreed in November 2012. The assessment report began editorial review in October 2013 and was accepted for publication in January 2015. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

This report presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health.

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Published by the NIHR Journals Library (www.journalslibrary.nihr.ac.uk), produced by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk).

Health Technology Assessment Editor-in-Chief

Professor Hywel Williams Director, HTA Programme, UK and Foundation Professor and Co-Director of the Centre of Evidence-Based Dermatology, University of Nottingham, UK

NIHR Journals Library Editor-in-Chief

Professor Tom Walley Director, NIHR Evaluation, Trials and Studies and Director of the HTA Programme, UK

NIHR Journals Library Editors

Professor Ken Stein Chair of HTA Editorial Board and Professor of Public Health, University of Exeter Medical School, UK

Professor Andree Le May Chair of NIHR Journals Library Editorial Group (EME, HS&DR, PGfAR, PHR journals)

Dr Martin Ashton-Key Consultant in Public Health Medicine/Consultant Advisor, NETSCC, UK

Professor Matthias Beck Chair in Public Sector Management and Subject Leader (Management Group), Queen's University Management School, Queen's University Belfast, UK

Professor Aileen Clarke Professor of Public Health and Health Services Research, Warwick Medical School, University of Warwick, UK

Dr Tessa Crilly Director, Crystal Blue Consulting Ltd, UK

Dr Peter Davidson Director of NETSCC, HTA, UK

Ms Tara Lamont Scientific Advisor, NETSCC, UK

Professor Elaine McColl Director, Newcastle Clinical Trials Unit, Institute of Health and Society, Newcastle University, UK

Professor William McGuire Professor of Child Health, Hull York Medical School, University of York, UK

Professor Geoffrey Meads Professor of Health Sciences Research, Health and Wellbeing Research and Development Group, University of Winchester, UK

Professor John Norrie Health Services Research Unit, University of Aberdeen, UK

Professor John Powell Consultant Clinical Adviser, National Institute for Health and Care Excellence (NICE), UK

Professor James Raftery Professor of Health Technology Assessment, Wessex Institute, Faculty of Medicine, University of Southampton, UK

Dr Rob Riemsma Reviews Manager, Kleijnen Systematic Reviews Ltd, UK

Professor Helen Roberts Professor of Child Health Research, UCL Institute of Child Health, UK

Professor Jonathan Ross Professor of Sexual Health and HIV, University Hospital Birmingham, UK

Professor Helen Snooks Professor of Health Services Research, Institute of Life Science, College of Medicine, Swansea University, UK

Professor Jim Thornton Professor of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Nottingham, UK

Please visit the website for a list of members of the NIHR Journals Library Board: www.journalslibrary.nihr.ac.uk/about/editors

Editorial contact: nihredit@southampton.ac.uk

Abstract

Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation

Matt Stevenson,¹* Rachel Archer,¹ Jon Tosh,¹ Emma Simpson,¹ Emma Everson-Hock,¹ John Stevens,¹ Monica Hernandez-Alava,¹ Suzy Paisley,¹ Kath Dickinson,¹ David Scott,² Adam Young³ and Allan Wailoo¹

¹School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK ²Department of Rheumatology, King's College Hospital NHS Foundation Trust, London, UK ³Department of Rheumatology, West Hertfordshire Hospitals NHS Trust, Hertfordshire, UK

*Corresponding author m.d.stevenson@sheffield.ac.uk

Objectives: Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increasing disability, reduced quality of life and substantial costs (as a result of both intervention acquisition and hospitalisation). The objective was to assess the clinical effectiveness and cost-effectiveness of seven biologic disease-modifying antirheumatic drugs (bDMARDs) compared with each other and conventional disease-modifying antirheumatic drugs (cDMARDs). The decision problem was divided into those patients who were cDMARD naive and those who were cDMARD experienced; whether a patient had severe or moderate to severe disease; and whether or not an individual could tolerate methotrexate (MTX).

Data sources: The following databases were searched: MEDLINE from 1948 to July 2013; EMBASE from 1980 to July 2013; Cochrane Database of Systematic Reviews from 1996 to May 2013; Cochrane Central Register of Controlled Trials from 1898 to May 2013; Health Technology Assessment Database from 1995 to May 2013; Database of Abstracts of Reviews of Effects from 1995 to May 2013; Cumulative Index to Nursing and Allied Health Literature from 1982 to April 2013; and TOXLINE from 1840 to July 2013. Studies were eligible for inclusion if they evaluated the impact of a bDMARD used within licensed indications on an outcome of interest compared against an appropriate comparator in one of the stated population subgroups within a randomised controlled trial (RCT). Outcomes of interest included American College of Rheumatology (ACR) scores and European League Against Rheumatism (EULAR) response. Interrogation of Early Rheumatoid Arthritis Study (ERAS) data was undertaken to assess the Health Assessment Questionnaire (HAQ) progression while on cDMARDs.

Methods: Network meta-analyses (NMAs) were undertaken for patients who were cDMARD naive and for those who were cDMARD experienced. These were undertaken separately for EULAR and ACR data. Sensitivity analyses were undertaken to explore the impact of including RCTs with a small proportion of bDMARD experienced patients and where MTX exposure was deemed insufficient. A mathematical model was constructed to simulate the experiences of hypothetical patients. The model was based on EULAR response as this is commonly used in clinical practice in England. Observational databases,

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

published literature and NMA results were used to populate the model. The outcome measure was cost per quality-adjusted life-year (QALY) gained.

Results: Sixty RCTs met the review inclusion criteria for clinical effectiveness, 38 of these trials provided ACR and/or EULAR response data for the NMA. Fourteen additional trials contributed data to sensitivity analyses. There was uncertainty in the relative effectiveness of the interventions. It was not clear whether or not formal ranking of interventions would result in clinically meaningful differences. Results from the analysis of ERAS data indicated that historical assumptions regarding HAQ progression had been pessimistic. The typical incremental cost per QALY of bDMARDs compared with cDMARDs alone for those with severe RA is > £40,000. This increases for those who cannot tolerate MTX (£50,000) and is > £60,000 per QALY when bDMARDs were used prior to cDMARDs. Values for individuals with moderate to severe RA were higher than those with severe RA. Results produced using EULAR and ACR data were similar. The key parameter that affected the results is the assumed HAQ progression while on cDMARDs. When historic assumptions were used typical incremental cost per QALY values fell to £38,000 for those with severe disease who could tolerate MTX.

Conclusions: bDMARDs appear to have cost per QALY values greater than the thresholds stated by the National Institute for Health and Care Excellence for interventions to be cost-effective. Future research priorities include: the evaluation of the long-term HAQ trajectory while on cDMARDs; the relationship between HAQ direct medical costs; and whether or not bDMARDs could be stopped once a patient has achieved a stated target (e.g. remission).

Study registration: This study is registered as PROSPERO CRD42012003386.

Funding: The National Institute for Health Research Health Technology Assessment programme.

Contents

Results	21
Quantity and quality of research available	21
Summary of trials and population characteristics	27
Assessment of effectiveness	31
Additional evidence (trial data not eligible for full systematic review but included to	
inform network meta-analysis sensitivity analyses for populations 2 and 3)	58
Network meta-analysis results	58
Population 1 (methotrexate naive)	58
Populations 2 and 3 (methotrexate-experienced populations)	77
Discussion of systematic reviewing results	123
Other efficacy outcomes	124
Chapter 4 Assessment of cost-effectiveness	125
Systematic review of existing cost-effectiveness evidence	125
Methods for reviewing existing cost-effectiveness evidence	125
Results	127
Critique of the manufacturers' submissions	134
Decision problem addressed	135
Strategies modelled	135
Model structure/time cycle	141
Time horizon	146
Perspective	146
Population characteristics	147
The assumed costs of the interventions	152
Administration and monitoring costs	159
Comparative treatment efficacy (network meta-analysis)	166
Responder criteria	188
Health Assessment Questionnaire/European Quality of Life-5 Dimensions changes in	
relation to response levels	189
Health Assessment Questionnaire trajectory following initial response	194
Time to discontinuation of treatment	196
Rebound post treatment	205
Assumed NHS costs per Health Assessment Questionnaire band	205
The assumed costs and digutilities associated with adverse events	208
Mortality associated with rhoumateid arthritic	215
Cost affactiveness results within the manufacturers' submission	217
Rudget impact	220
Independent economic assessment	230
Description of the Assessment Group's model	237
The decision problem addressed	237
The strategies modelled	238
Model structure/time cvcle	240
Time horizon	242
Perspective	242
Discounting	242
Population characteristics	242
Costs of the interventions	242
Costs of administration and monitoring	243
Comparative treatment efficacy (network meta-analysis)	244
Responder criteria	249
Health Assessment Questionnaire/European Quality of Life-5 Dimensions changes in	
relation to response levels	249

Health Assessment Questionnaire trajectory following initial response	251
Time to discontinuation on treatment	257
Rebound post treatment	259
Assumed NHS costs per Health Assessment Questionnaire band	259
Utility related to Health Assessment Questionnaire	259
The assumed costs and disutilities associated with adverse events	262
Mortality associated with rheumatoid arthritis	264
Calculation of the appropriate number of patients to run when generating results	265
Results	266
Interpretation of the results	342
Methotrexate-experienced rheumatoid arthritis patients	342
Methotrexate-naive rheumatoid arthritis patients	343
Discussion	343
Summary of key results	343
Comparison of the Assessment Group results and those produced by the companies	343
Generalisability of results	344
Strengths and limitations of analysis	344
Chapter 5 Assessment of factors relevant to the NHS and other parties	345
Chapter 6 Discussion	347
Statement of principal findings	347
Strengths and limitations of the assessment	347
Uncertainties	348
Chapter 7 Conclusions	349
Implications for service provision	349
Suggested research priorities	349
Acknowledgements	351
References	353
References Appendix 1 Search strategies	353 379
References Appendix 1 Search strategies Appendix 2 Quality assessment summary of findings	353 379 389
ReferencesAppendix 1 Search strategiesAppendix 2 Quality assessment summary of findingsAppendix 3 Excluded studies	353 379 389 395

List of tables

TABLE 1 Determining EULAR response based on DAS28	2
TABLE 2 The weight distribution of patients with RA using BSRBR data	6
TABLE 3 Simplified mean acquisition and administration costs for each intervention	7
TABLE 4 The relationship between the licence of the intervention and thedecision problem	9
TABLE 5 Trials included in the systematic review and NMAs	22
TABLE 6 Trials not eligible for the systematic review but providing additionalevidence for NMA sensitivity analyses	25
TABLE 7 Population characteristics: population 1 – biologic head-to-head RCTs	27
TABLE 8 Population characteristics: population 1 – RCTs of biologic vs. DMARD(s) or PBO	28
TABLE 9 Population characteristics: populations 2 and 3 – biologichead-to-head RCTs	32
TABLE 10 Population characteristics: populations 2 and 3 – cDMARD experiencedvs. cDMARD(s) or PBO	33
TABLE 11American College of Rheumatology response data: population 1 – RCTsof biologic vs. DMARD(s) or PBO	38
TABLE 12American College of Rheumatology response data: populations 2 and3 – biologic head-to-head RCTs	41
TABLE 13American College of Rheumatology response data: populations 2 and3 – RCTs of biologic vs. DMARD(s) or PBO	42
TABLE 14 European League Against Rheumatism response: population 1 – RCTsof biologic vs. DMARD(s) or PBO	47
TABLE 15 European League Against Rheumatism response: populations 2 and3 – biologic head-to-head RCTs	49
TABLE 16 European League Against Rheumatism: populations 2 and 3 – RCTs ofbiologic vs. DMARD(s) or PBO	50
TABLE 17 American College of Rheumatology response: populations 2 and3 – RCTs used in the sensitivity analyses of the NMA	59
TABLE 18 European League Against Rheumatism response: populations 2 and3 – RCTs used in the sensitivity analyses of the NMA	61

TABLE 19 The EULAR data used in the NMA for populations 2 and 3	62
TABLE 20 The ACR data used in the NMA for populations 2 and 3	64
TABLE 21 The EULAR data for population 1	67
TABLE 22 The ACR data used in the NMA for population 1	68
TABLE 23 American College of Rheumatology (population 1: main trials) –the number of RCTs in which each pair of interventions were compared	70
TABLE 24 American College of Rheumatology (population 1: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	72
TABLE 25American College of Rheumatology (population 1: main trials) –probabilities of achieving ACR responses	73
TABLE 26 American College of Rheumatology (population 1: main trials + MTX experienced) – the number of RCTs with which each pair of interventions were compared	74
TABLE 27 American College of Rheumatology (population 1: main trials + MTX experienced) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	76
TABLE 28 American College of Rheumatology (population 1: main trials + MTXexperienced) – probabilities of achieving ACR responses	77
TABLE 29 European League Against Rheumatism (populations 2 and 3: main trials) – the number of RCTs with which each pair of interventions were compared	79
TABLE 30 European League Against Rheumatism (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	83
TABLE 31 European League Against Rheumatism (populations 2 and 3: maintrials) – probability of achieving EULAR responses	84
TABLE 32 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – the number of RCTs with which each pair of interventions were compared	85
TABLE 33 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	89
TABLE 34 European League Against Rheumatism (populations 2 and 3: maintrials) – probability of achieving EULAR responses	91
TABLE 35 American College of Rheumatology (populations 2 and 3: main trials) – frequency with which each pair of interventions were compared	92

TABLE 36 American College of Rheumatology (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	96
TABLE 37 American College of Rheumatology (populations 2 and 3: main trials) –probability of achieving ACR responses	97
TABLE 38 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION) – frequency with which each pair of interventions were compared	99
TABLE 39 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	105
TABLE 40 American College of Rheumatology (populations 2 and 3: maintrials + prior biologics with AMBITION) – probability of achieving ACR responses	106
TABLE 41 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION) – frequency with which each pair of interventions were compared	108
TABLE 42 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	114
TABLE 43 American College of Rheumatology (populations 2 and 3: maintrials + prior biologics without AMBITION) – probability of achieving ACR responses	115
TABLE 44 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – frequency with which each pair of interventions were compared	117
TABLE 45 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	121
TABLE 46 American College of Rheumatology (populations 2 and 3: maintrials + RCTs that have potentially low prior MTX exposure) – probability ofachieving ACR responses	122
TABLE 47 Keywords for systematic review	125
TABLE 48 Systematic review databases	126
TABLE 49Health economic studies assessing bDMARDs in bDMARD-naivepatients with RA	128
TABLE 50 Cost-effectiveness results for studies in DMARD-naive patients with RA	130
TABLE 51 Cost-effectiveness results for studies in bDMARD-naive patients with RA	131
TABLE 52 The decision problem addressed within the manufacturers' submission	136

TABLE 53 Strategies modelled by AbbVie for analyses 1 and 2	137
TABLE 54 Strategies modelled by AbbVie for analysis 3	137
TABLE 55 Strategies modelled by AbbVie for analyses 4 and 5	137
TABLE 56 Strategies modelled by AbbVie for analysis 6	138
TABLE 57 Strategies modelled by Bristol-Myers Squibb for analyses 1 and 7	138
TABLE 58 Strategies modelled by MSD for analyses 1 and 7	139
TABLE 59 Strategies modelled by Pfizer for analyses 1–3	139
TABLE 60 Strategies modelled by Pfizer for analysis 4	140
TABLE 61 Strategies modelled by UCB Pharma for analyses 1 and 4	141
TABLE 62 Strategies modelled by UCB Pharma for analyses 2 and 5	142
TABLE 63 The discount rates used per annum within the submissions	147
TABLE 64 The baseline patient characteristics for MTX-experienced patients withmoderate disease activity assumed by AbbVie	148
TABLE 65 The baseline patient characteristics for MTX-experienced patients with severe disease activity assumed by AbbVie	148
TABLE 66 The baseline patient characteristics for MTX-naive patients with severedisease activity assumed by AbbVie	148
TABLE 67 Age and sex distributions of patients in the Bristol-Myers Squibb model	149
TABLE 68 Health Assessment Questionnaire score distribution of patients in theBristol-Myers Squibb model	150
TABLE 69 The baseline characteristics of patients sampled in the Pfizer models	150
TABLE 70 The patient characteristic data assumed by Roche	151
TABLE 71 The baseline characteristics of the modelled population assumed byUCB Pharma	152
TABLE 72 The costs of bDMARDs assumed by AbbVie	153
TABLE 73 The calculation undertaken by AbbVie to establish the averageexpected cost per TCZ treatment	153
TABLE 74 The calculation undertaken by AbbVie to establish the averageexpected cost per ABT treatment	153
TABLE 75 The calculation undertaken by AbbVie to establish the average expected cost per IFX treatment	154

TABLE 76 The calculation undertaken by AbbVie to establish the averageexpected cost per GOL treatment	154
TABLE 77 The intervention costs assumed by Bristol-Myers Squibb	155
TABLE 78 The intervention costs assumed by MSD	155
TABLE 79 The number of vials assumed by MSD for weight based interventions	156
TABLE 80 The intervention costs assumed by Pfizer	158
TABLE 81 The intervention costs assumed by Roche	158
TABLE 82 The intervention costs assumed by UCB Pharma	159
TABLE 83 Monitoring costs assumed by AbbVie in the first 6 months	160
TABLE 84 Annual monitoring costs assumed by AbbVie after the first 6 months	161
TABLE 85 The administration costs and monitoring costs assumed byBristol-Myers Squibb	162
TABLE 86 Summarised total and annual costs assumed by Bristol-Myers Squibb	163
TABLE 87 The unit costs of monitoring assumed by MSD	164
TABLE 88 The assumed administration, monitoring and drug acquisition costsassumed by MSD	164
TABLE 89 Unit costs of pre-treatment tests assumed by Pfizer	165
TABLE 90 Pre-treatment costs per intervention assumed by Pfizer	165
TABLE 91 The assumed acquisition and administration costs assumed by Pfizer	167
TABLE 92 The administration costs assumed by Roche	168
TABLE 93 The monitoring costs assumed by Roche for ADA, CTZ and ETN	168
TABLE 94 The total costs of treatment assumed by Roche	169
TABLE 95 Drug monitoring schedule: visits during first 6 monthsand every 6 months thereafter assumed by UCB Pharma	169
TABLE 96 Summary of drug acquisition, administration and monitoring costs foreach treatment comparator in the UCB Pharma model	171
TABLE 97 The base-case NMA results for combination therapy, ACR responses insevere DMARD-experienced patients as produced by Pfizer	184
TABLE 98 The base-case NMA results for combination therapy, HAQ changes in	

severe DMARD-experienced patients, ETN vs. other bDMARDs as produced by Pfizer 185

TABLE 99 The base-case NMA results for monotherapy, ACR responses in severeDMARD-experienced patients as produced by Pfizer	185
TABLE 100 American College of Rheumatology response by treatment:unadjusted and adjusted	186
TABLE 101 The relative change reported by AbbVie in HAQ score by ACRresponse by treatment: moderate and severe RA, MTX experiencedfor bDMARD + MTX	190
TABLE 102The relative change reported by AbbVie in HAQ score by ACRresponse by treatment: severe RA, MTX naive for bDMARD + MTX	190
TABLE 103 The relative change reported by AbbVie in HAQ score by ACR response by treatment: moderate and severe RA, MTX experienced or naive for bDMARD monotherapy	191
TABLE 104 The assumed reduction in HAQ detailed by Bristol-Myers Squibb	192
TABLE 105 Utility assumed by health state by MSD in the GOL submission	192
TABLE 106 Utility assumed by health state by MSD in the IFX submission	193
TABLE 107 The HAQ improvement by ACR response category reported by Pfizer	193
TABLE 108 Improvement in HAQ score associated with ACR response assumed by Roche	194
TABLE 109 The EQ-5D data reported by UCB Pharma associated with response level	194
TABLE 110 Absolute annual HAQ-DI progression assumed by AbbVie	195
TABLE 111 Health Assessment Questionnaire progression while on treatmentafter the initial 24-week period assumed by Roche	196
TABLE 112 The estimated log-normal curve for cDMARD withdrawal ratecalculated by AbbVie	197
TABLE 113 Parameter estimates for biologic treatment withdrawal due to AEs(Gompertz function) calculated by AbbVie	198
TABLE 114 Parameter estimates for biologics treatment withdrawal due to lossof efficacy (log-normal function) provided by AbbVie	199
TABLE 115 The probability of AE for first-line biologics assumed byBristol-Myers Squibb	199
TABLE 116 The probability of early discontinuation on second-line biologics asestimated by Bristol-Myers Squibb	200
TABLE 117 The long-term time on second-line biologics as estimated byBristol-Myers Squibb	200

TABLE 118 The probability of early discontinuation cDMARDs as assumed byBristol-Myers Squibb	201
TABLE 119 Long-term time on cDMARDs as assumed by Bristol-Myers Squibb	201
TABLE 120 Time-to-treatment withdrawal assumed by MSD	201
TABLE 121 Log-logistic survival models for all-cause treatment cessation as estimated by Pfizer	204
TABLE 122 The hospital costs by HAQ band assumed by AbbVie	206
TABLE 123 Multivariate regression used by MSD to estimate the number of daysof hospital stay	206
TABLE 124 The assumed annual costs of RA associated with HAQ score assumedby Pfizer	207
TABLE 125 The inpatients visit by HAQ score assumed by Roche	207
TABLE 126 The inpatient costs assumed by HAQ score by Roche	208
TABLE 127 Costs by HAQ-DI category	208
TABLE 128 The quality-of-life equations used in the MSD submission	210
TABLE 129 The risk of serious infections assumed in the AbbVie model	213
TABLE 130 The assumed probability of AEs used in the Bristol-Myers Squibb models	214
TABLE 131 Hazard ratio of serious infection vs. cDMARDs presented by Pfizer	216
TABLE 132 Costs of serious infection (using in scenario analysis only)	217
TABLE 133 The assumed Gompertz fit to standard mortality data within theAbbVie model	218
TABLE 134 The assumed standardised mortality ratios assumed by Pfizer	219
TABLE 135 A summary of each manufacturer's interpretation of thecost-effectiveness analyses for their product assuming a cost per QALYthreshold of £30,000	222
TABLE 136 Incremental cost-effectiveness ratios for analysis 1 as reportedby AbbVie	223
TABLE 137 Incremental cost-effectiveness ratios for analysis 2 as reportedby AbbVie	223
TABLE 138 Incremental cost-effectiveness ratios for analysis 3 as reportedby AbbVie	224

TABLE 139 Incremental cost-effectiveness ratios for analysis 4 as reportedby AbbVie	225
TABLE 140 Incremental cost-effectiveness ratios for analysis 5 as reportedby AbbVie	226
TABLE 141 Incremental cost-effectiveness ratios for analysis 6 as reportedby AbbVie	226
TABLE 142 The probabilistic ICERs for analysis 7 provided by Bristol-Myers Squibb	228
TABLE 143Incremental cost-effectiveness results (DMARD-experienced severe RApatient population subgroup)provided by MSD in the GOL submission	229
TABLE 144 Incremental cost-effectiveness results (DMARD-experienced RApatient population) provided by MSD in the GOL submission	229
TABLE 145Incremental cost-effectiveness results (DMARD-experienced severe RApatient population subgroup)provided by MSD in the IFX submission	230
TABLE 146 Incremental cost-effectiveness results (DMARD-experienced RApatient population) provided by MSD in the IFX submission	230
TABLE 147Severe DMARD-inadequate responder combination therapyincremental analysis presented by Pfizer	231
TABLE 148 Moderate to severe population combination therapy incrementalanalysis presented by Pfizer	232
TABLE 149 Severe naive population combination therapy incremental analysispresented by Pfizer	232
TABLE 150 Severe DMARD-inadequate responder monotherapy incrementalanalysis presented by Pfizer	232
TABLE 151 The probabilistic sensitivity results supplied by Roche for analysis 8	233
TABLE 152 Base-case results for combination treatments (severe disease activitypopulation) provided by UCB Pharma	235
TABLE 153 Base-case results for combination treatments (moderate diseaseactivity population) provided by UCB Pharma	235
TABLE 154 Base-case results for monotherapy treatments (severe disease activitypopulation) provided by UCB Pharma	236
TABLE 155 The incremental budget impact for ADA when used for eligible RA patients with moderate and severe disease activity over the next 5 years in England and Wales as estimated by AbbVie	236
TABLE 156 The number of patients requiring treatment each year as estimated by Pfizer	237

TABLE 157 Broad strategies considered possible for patients who couldreceive MTX	239
TABLE 158 Broad strategies considered possible for patients who could notreceive MTX	239
TABLE 159 The strategies evaluated for populations 2 and 3 for those who canreceive MTX	239
TABLE 160 The strategies evaluated for populations 2 and 3 for those whocannot receive MTX	240
TABLE 161 The strategies evaluated for population 1 for those who can receive MTX	240
TABLE 162 The strategies evaluated for population 1 for those who cannotreceive MTX	240
TABLE 163 The costs of cDMARDs and RTX	243
TABLE 164 The monitoring costs assumed in the Assessment Group model	244
TABLE 165 The relationship between EULAR responses and ACR responses in the VARA database	248
TABLE 166 Mean HAQ change by EULAR response category used in the model	249
TABLE 167 Mean HAQ change by EULAR response category for those on cDMARDs	250
TABLE 168 Sample means of baseline covariates	252
TABLE 169 Estimated parameters and SEs in brackets	253
TABLE 170 Identified evidence on HAQ progressions while on cDMARDs	257
TABLE 171 Hazard ratio for mortality associated with HAQ category	264
TABLE 172 Combinations of factors analysed in the cost-effectiveness analyses	267
TABLE 173 Summarised results: median ICERs for all bDMARD strategies compared with the MTX-alone strategy. Populations 2 and 3 who can receive MTX	268
TABLE 174 Summary of median ICERs for all bDMARDs compared with anSSZ-alone strategy. Populations 2 and 3 who are treated with monotherapy	269
TABLE 175 Summarised results: median ICERs for all bDMARD strategiescompared with the MTX-alone strategy. Population 1 who can receive MTX	269
TABLE 176 Summary of median ICERs for all bDMARDs compared with aSSZ-alone strategy. Population 1 who are treated with monotherapy	270
TABLE 177 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	271

TABLE 178 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAO progression and a severe. MTX-experienced.	
RA population	271
TABLE 179 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	272
TABLE 180 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	272
TABLE 181 Deterministic results assuming 100-fold increased impact of AEs andusing EULAR data directly: ERAS cDMARD HAQ progression and a severe,MTX-experienced, RA population	273
TABLE 182 Deterministic results having used the relationship between HAQ andpain derived from ERAS: ERAS cDMARD HAQ progression and a severe,MTX-experienced, RA population	273
TABLE 183 Probabilistic base-case results using EULAR data directly: ERAScDMARD HAQ progression and a severe, MTX-experienced, RA population	274
TABLE 184 Deterministic base-case results using EULAR data directly: linearcDMARD HAQ progression and a severe, MTX-experienced, RA population	275
TABLE 185 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	275
TABLE 186 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	276
TABLE 187 Deterministic results having used discount rates of 6% per annum forcosts and 1.5% per annum for QALYs and using EULAR data directly: linearcDMARD HAQ progression and a severe, MTX-experienced, RA population	276
TABLE 188 Deterministic results assuming 100-fold increased impact of AEs andusing EULAR data directly: linear cDMARD HAQ progression and a severe,MTX-experienced, RA population	277
TABLE 189 Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a severe,MTX-experienced, RA population	277
TABLE 190 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	278

TABLE 191 Deterministic base-case results using ACR data mapped to EULARdata: ERAS cDMARD HAQ progression and a severe, MTX-experienced,RA population	279
TABLE 192 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	279
TABLE 193 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	280
TABLE 194 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	280
TABLE 195 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	281
TABLE 196 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	281
TABLE 197 Deterministic results assuming 100-fold increased impact of AEs andusing ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and asevere, MTX-experienced, RA population	282
TABLE 198 Deterministic results having used the relationship between HAQ andpain derived from ERAS: ERAS cDMARD HAQ progression and a severe,MTX-experienced, RA population	282
TABLE 199 Probabilistic base-case results using ACR data mapped to EULAR data:ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	283
TABLE 200 Deterministic base-case results using ACR data mapped to EULARdata: linear cDMARD HAQ progression and a severe, MTX-experienced,RA population	284
TABLE 201 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	284
TABLE 202 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	285

TABLE 203 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	285
TABLE 204 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	286
TABLE 205 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	286
TABLE 206 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	287
TABLE 207 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	287
TABLE 208 Probabilistic base-case results using ACR data mapped to EULAR data:linear cDMARD HAQ progression and a severe, MTX-experienced, RA population	288
TABLE 209 Deterministic base-case results using EULAR data directly: ERAScDMARD HAQ progression and a moderate, MTX-experienced, RA population	289
TABLE 210 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	289
TABLE 211 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	290
TABLE 212 Deterministic results having used discount rates of 6% per annum forcosts and 1.5% per annum for QALYs and using EULAR data directly: ERAScDMARD HAQ progression and a moderate, MTX-experienced, RA population	290
TABLE 213 Deterministic results assuming 100-fold increased impact of AEs andusing EULAR data directly: ERAS cDMARD HAQ progression and a moderate,MTX-experienced, RA population	291
TABLE 214 Deterministic results having used the relationship between HAQ andpain derived from ERAS: ERAS cDMARD HAQ progression and a moderate,MTX-experienced, RA population	291
TABLE 215 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	292

TABLE 216 Deterministic base-case results using EULAR data directly: linearcDMARD HAQ progression and a moderate, MTX-experienced, RA population	293
TABLE 217 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	293
TABLE 218 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	294
TABLE 219 Deterministic results having used discount rates of 6% per annum forcosts and 1.5% per annum for QALYs and using EULAR data directly: linearcDMARD HAQ progression and a moderate, MTX-experienced, RA population	294
TABLE 220 Deterministic results assuming 100-fold increased impact of AEs andusing EULAR data directly: linear cDMARD HAQ progression and a moderate,MTX-experienced, RA population	295
TABLE 221 Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a moderate,MTX-experienced, RA population	295
TABLE 222 Probabilistic base-case results using EULAR data directly: linearcDMARD HAQ progression and a moderate, MTX-experienced, RA population	296
TABLE 223 Deterministic base-case results using EULAR data directly: ERAScDMARD HAQ progression and a moderate, MTX-experienced, RA population	297
TABLE 224 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	297
TABLE 225 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	298
TABLE 226 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	298
TABLE 227 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	299
TABLE 228 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced,	

RA population

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

299

TABLE 229 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	300
TABLE 230 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	300
TABLE 231 Probabilistic base-case results using ACR data mapped to EULAR data:ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	301
TABLE 232 Deterministic base-case results using ACR data mapped to EULARdata: linear cDMARD HAQ progression and a moderate, MTX-experienced,RA population	302
TABLE 233 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	303
TABLE 234 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	303
TABLE 235 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	304
TABLE 236 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	304
TABLE 237 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	305
TABLE 238 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	305
TABLE 239 Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a moderate,MTX-experienced, RA population	306
TABLE 240 Probabilistic base-case results using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population	306
TABLE 241 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	307

TABLE 242 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	308
TABLE 243 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	308
TABLE 244 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	308
TABLE 245 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	309
TABLE 246 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	309
TABLE 247 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	309
TABLE 248 Deterministic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	310
TABLE 249 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	311
TABLE 250 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	311
TABLE 251 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	311
TABLE 252 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	312
TABLE 253 Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a severe,MTX-experienced, RA population treated with monotherapy	312

TABLE 254 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	312
TABLE 255 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	313
TABLE 256 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	314
TABLE 257 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	314
TABLE 258 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	314
TABLE 259 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	315
TABLE 260 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	315
TABLE 261 Deterministic results assuming 100-fold increased impact of AEs andmapping EULAR data from ACR data: ERAS cDMARD HAQ progression and asevere, MTX-experienced, RA population treated with monotherapy	315
TABLE 262 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	316
TABLE 263 Probabilistic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	316
TABLE 264 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	317
TABLE 265 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	317

TABLE 266 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	318
TABLE 267 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	318
TABLE 268 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	318
TABLE 269 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	319
TABLE 270 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	319
TABLE 271 Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a severe,MTX-experienced, RA population treated with monotherapy	319
TABLE 272 Probabilistic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	320
TABLE 273 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	321
TABLE 274 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	321
TABLE 275 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA	224
TABLE 276 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	321
treated with monotherapy	522

TABLE 277 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	322
TABLE 278 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	322
TABLE 279 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	323
TABLE 280 Deterministic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	324
TABLE 281 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	324
TABLE 282 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	324
TABLE 283 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	325
TABLE 284 Deterministic results assuming 100-fold increased impact of AEs andusing EULAR data directly: LINEAR cDMARD HAQ progression and a severe,MTX-experienced, RA population treated with monotherapy	325
TABLE 285Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a severe,MTX-experienced, RA population treated with monotherapy	325
TABLE 286 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	326
TABLE 287Deterministic base-case results mapping EULAR data from ACRdata: ERAS cDMARD HAQ progression and a moderate, MTX-experienced,RA population treated with monotherapy	327
TABLE 288 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate,	
MTX-experienced, RA population treated with monotherapy	327

TABLE 289 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	327
TABLE 290 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	328
TABLE 291 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	328
TABLE 292 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	328
TABLE 293 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	329
TABLE 294 Deterministic results having used the relationship between HAQ andpain derived from ERAS: ERAS cDMARD HAQ progression and a moderate,MTX-experienced, RA population treated with monotherapy	329
TABLE 295 Probabilistic base-case results mapping EULAR data from ACR data:ERAS cDMARD HAQ progression and a moderate, MTX-experienced,RA population treated with monotherapy	329
TABLE 296 Deterministic base-case results mapping EULAR data from ACR data:linear cDMARD HAQ progression and a moderate, MTX-experienced,RA population treated with monotherapy	330
TABLE 297 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	331
TABLE 298 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate,	
TABLE 299 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated	331
with monotherapy	331

TABLE 300 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	332
TABLE 301 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	332
TABLE 302 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	332
TABLE 303 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	333
TABLE 304 Probabilistic base-case results mapping EULAR data from ACR data:linear cDMARD HAQ progression and a moderate, MTX-experienced,RA population treated with monotherapy	333
TABLE 305 Deterministic base-case results mapping EULAR data from ACR data:ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population	334
TABLE 306 Deterministic base-case results mapping EULAR data from ACR data:ERAS cDMARD HAQ progression including RCTs with some patients with priorcDMARD experience and a severe, MTX-naive, RA population	334
TABLE 307 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated	334
TABLE 308 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated	334
TABLE 309 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA	335
TABLE 310 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population	335
TABLE 311 Probabilistic base-case results mapping EULAR data from ACR data:ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population	335
TABLE 312 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population	336

TABLE 313 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression including RCTs with some patients with prior cDMARD experience and a severe, MTX-naive, RA population treated with monotherapy	336
with monotherapy	550
TABLE 314 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population	336
TABLE 315 Deterministic results having used discount rates of 6% per annum forcosts and 1.5% per annum for QALYs and mapping EULAR data from ACR data:linear cDMARD HAQ progression and a severe, MTX-naive, RA population	337
TABLE 316 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population	337
TABLE 317 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-naive, RA population	337
TABLE 318 Probabilistic base-case results mapping EULAR data from ACR data:linear cDMARD HAQ progression and a severe, MTX-naive, RA population	337
TABLE 319 Deterministic base-case results mapping EULAR data from ACR data:ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treatedwith monotherapy	338
TABLE 320 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy including RCTs with a small percentage of prior cDMARD experience	338
TABLE 321 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	339
TABLE 322 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	339
TABLE 323 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	339
TABLE 324Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe,MTX-naive, RA population treated with monotherapy	339

TABLE 325 Probabilistic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	340
TABLE 326 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	340
TABLE 327 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy including RCTs with a small percentage of prior cDMARD experience	341
TABLE 328 Deterministic results having used the mapping of HAQ to utility from Malottki <i>et al.</i> rather than Hernandez-Alava <i>et al.</i> mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	341
TABLE 329 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	341
TABLE 330 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	341
TABLE 331 Deterministic results having used the relationship between HAQ andpain derived from ERAS: linear cDMARD HAQ progression and a severe,MTX-naive, RA population treated with monotherapy	342
TABLE 332 Probabilistic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	342
TABLE 333 Quality assessment: summary of findings	390
TABLE 334 Table of excluded studies with rationale for exclusion	395
TABLE 335 Trial characteristics: population 1 head-to-head RCT	404
TABLE 336 Trial characteristics: population 1 biologics vs. DMARD(s) or PBO	405
TABLE 337 Trial characteristics: populations 2 and 3 head-to-head RCTs	416
TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO	420
TABLE 339 Trial characteristics: RCTs (ineligible for systematic review) used as additional evidence in NMA sensitivity analyses	440
TABLE 340 Population characteristics additional information: population 1 head-to-head trial	447
TABLE 341 Population characteristics additional information: population 1biologic vs. DMARD(s) or PBO	448
---	-----
TABLE 342 Population characteristics additional information Population 2 Headto head trials	453
TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO	456
TABLE 344Population characteristics: trials providing additional evidence forthe NMA	471
TABLE 345 Population characteristics additional information: NMA sensitivity analyses trials	474
TABLE 346 Disease Activity Score: population 1 head-to-head trial	480
TABLE 347 Disease Activity Score: population 1 biologics vs. DMARD(s) or PBO	481
TABLE 348 Disease Activity Score: populations 2 and 3 head to head	485
TABLE 349 Disease Activity Score: populations 2 and 3 biologic vs. DMARD(s) or PBO	486
TABLE 350 Health Assessment Questionnaire Disability Index: population 1 trials	493
TABLE 351 Health Assessment Questionnaire Disability Index: populations 2 and3 head-to-head trials	496
TABLE 352 Health Assessment Questionnaire Disability Index: populations 2 and3 vs. DMARD(s) or PBO	498
TABLE 353 Joint counts and assessment of inflammation markers: population 1RCTs of biologic vs. DMARD(s) or PBO	505
TABLE 354 Joint counts and assessment of inflammation markers: populations 2and 3 biologic head-to-head RCTs	508
TABLE 355 Joint counts and assessment of inflammation markers: populations 2and 3 RCTs of biologic vs. DMARD(s) or PBO	509
TABLE 356 Global assessments of disease activity: population 1 RCTs of biologic vs. DMARD(s) or PBO	516
TABLE 357 Global assessments of disease activity: populations 2 and 3 biologichead-to-head RCTs	518
TABLE 358 Global assessments of disease activity: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	519
TABLE 359 Radiographic score data: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO	524

TABLE 360 Assessments of synovitis, erosion and osteitis: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO	527
TABLE 361 Radiographic score data: populations 2 and 3 head-to-head biologic RCTs	529
TABLE 362 Radiographic score data: populations 2 and 3 RCTs of biologicinterventions vs. DMARD(s) or PBO	530
TABLE 363 Assessments of synovitis, erosion and osteitis: populations 2 and 3RCTs of biologic interventions vs. DMARD(s) or PBO	534
TABLE 364 Pain VAS: population 1 biologic vs. DMARD(s) or PBO	536
TABLE 365 Pain VAS: populations 2 and 3 biologic head to head	538
TABLE 366 Pain VAS: populations 2 and 3 biologic vs. DMARD(s) or PBO	539
TABLE 367 0–100 VAS of fatigue: population 1 RCTs of biologic vs. DMARD(s) or PBO	543
TABLE 368 Functional Assessment of Chronic Illness Therapy – Fatigue score (0–52, higher scores indicate less fatigue): population 1 RCTs of biologic vs. DMARD(s) or PBO	543
TABLE 369The 0–100 VAS of fatigue: populations 2 and 3 biologichead-to-head RCTs	544
TABLE 370 Functional Assessment of Chronic Illness Therapy – Fatigue score (0–52, higher scores indicate less fatigue): populations 2 and 3 biologic head-to-head RCTs	544
TABLE 371The 0–100 VAS of fatigue: populations 2 and 3 RCTs of biologic vs.DMARD(s) or PBO	544
TABLE 372 Functional Assessment of Chronic Illness Therapy – Fatigue score (0–52, higher scores indicate less fatigue): populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	545
TABLE 373 The 0–100 SF-36 components scores: population 1 RCTs of biologic vs.DMARD(s) or PBO	546
TABLE 374 The 0–100 SF-36 domains scores: baseline and follow-up – population 1RCTs of biologic vs. DMARD(s) or PBO	548
TABLE 375 The 0–100 SF-36 domains scores: mean change from baseline – population 1 RCTs of biologic vs. DMARD(s) or PBO	550
TABLE 376 The 0–100 Short Form questionnaire-12 items components scores:population 1 RCTs of biologic vs. DMARD(s) or PBO	551
TABLE 377 The 0–100 SF-6D and RAQoL: population 1 RCTs of biologic vs. DMARD(s) or PBO	552

TABLE 378 The 0–100 EQ-5D: population 1 RCTs of biologic vs. DMARD(s) or PBO	553
TABLE 379 The 0–100 SF-36 components scores: populations 2 and 3 biologic head-to-head RCTs	554
TABLE 380 The 0–100 SF-36 domains scores: mean change from baseline – populations 2 and 3 biologic head-to-head RCTs	555
TABLE 381 The 0–100 EQ-5D utility score: populations 2 and 3 biologic head-to-head RCTs	555
TABLE 382 The 0–100 SF-36 components scores: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	556
TABLE 383 The 0–100 SF-36 domains scores: baseline and follow-up – populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	558
TABLE 384 The 0–100 SF-36 domains scores: mean change from baseline – populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	560
TABLE 385 The 0–100 EQ-5D: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	561
TABLE 386 The 0–100 EQ-5D domains scores: mean change form baseline – populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	562
TABLE 387 The 0–100 EuroQol VAS scores: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO	562
TABLE 388 Adverse events and discontinuations due to AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO	563
TABLE 389 Adverse events and discontinuations due to AEs: populations 2 and 3head-to-head biologic RCTs	571
TABLE 390 Adverse events and discontinuations due to AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO	574
TABLE 391 Specific categories of AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO	587
TABLE 392 Specific categories of AEs: populations 2 and 3 head-to-head biologic RCTs	590
TABLE 393 Specific categories of AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO	592
TABLE 394 Number of deaths: population 1 RCTs biologic vs. cDMARD(s) or PBO	602
TABLE 395 Number of deaths: populations 2 and 3 head-to-head biologic RCTs	604
TABLE 396 Number of deaths: populations 2 and 3 RCTs biologic vs. cDMARD(s) or PBO	605

List of figures

FIGURE 1 Summary of the position of bDMARDs within NICE TA recommendations for sequence of treatments for patients with RA and a DAS28 > 5.1	4
FIGURE 2 Flow diagram of study inclusion (adapted from PRISMA)	21
FIGURE 3 Risk-of-bias graph	26
FIGURE 4 American College of Rheumatology (population 1: main trials) – network of evidence	70
FIGURE 5 American College of Rheumatology (population 1: main trials) – effects of interventions relative to cDMARDs on the probit scale	71
FIGURE 6 American College of Rheumatology (population 1: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	72
FIGURE 7 American College of Rheumatology (population 1: main trials + MTX experienced) – network of evidence	74
FIGURE 8 American College of Rheumatology (population 1: main trials + MTX experienced) – effects of interventions relative to cDMARDs on the probit scale	75
FIGURE 9 American College of Rheumatology (population 1: main trials + MTX experienced) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	76
FIGURE 10 European League Against Rheumatism (populations 2 and 3: main trials) – network of evidence	78
FIGURE 11 European League Against Rheumatism (populations 2 and 3: main trials) – effects of interventions relative to cDMARDs on the probit scale	80
FIGURE 12 European League Against Rheumatism (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	82
FIGURE 13 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – network of evidence	84
FIGURE 14 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – effects of interventions relative to cDMARDs on the probit scale	86
FIGURE 15 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	88
FIGURE 16 American College of Rheumatology (populations 2 and 3: main trials) – network of evidence	91

FIGURE 17 American College of Rheumatology (populations 2 and 3: main trials) – effects of interventions relative to cDMARDs on the probit scale	93
FIGURE 18 American College of Rheumatology (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	95
FIGURE 19 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION) – network of evidence	98
FIGURE 20 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION) – effects of interventions relative to cDMARDs on the probit scale	100
FIGURE 21 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	104
FIGURE 22 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION) – network of evidence	107
FIGURE 23 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION) – effects of interventions relative to cDMARDs on the probit scale	109
FIGURE 24 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	112
FIGURE 25 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – network of evidence	116
FIGURE 26 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – effects of interventions relative to cDMARDs on the probit scale	118
FIGURE 27 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – probability of treatment rankings in terms of efficacy (most efficacious = 1)	120
FIGURE 28 Quality of reporting of meta-analyses flow diagram	127
FIGURE 29 The number of pages in each submission (including appendices)	134
FIGURE 30 Strategies modelled by Roche for analysis 8	140
FIGURE 31 The AbbVie model structure	142
FIGURE 32 The Bristol-Myers Squibb model structure	144
FIGURE 33 The MSD model structure	145
FIGURE 34 The Pfizer model structure	145

FIGURE 35 Markov structure: severe disease activity population; model structure based on ACR response presented by UCB Pharma	146
FIGURE 36 Markov structure: moderate disease activity population; model structure based on EULAR response presented by UCB Pharma	146
FIGURE 37 The evidence network in AbbVie's base case	173
FIGURE 38 Posterior simulated ACR response for combination therapy in a MTX-experienced population presented by AbbVie	174
FIGURE 39 Posterior simulated ACR response for monotherapy in a MTX-experienced population presented by AbbVie	174
FIGURE 40 Posterior simulated ACR response for combination therapy in a MTX-naive population presented by AbbVie	175
FIGURE 41 Posterior simulated ACR response for monotherapy in a MTX-naive population presented by AbbVie	175
FIGURE 42 The network of evidence for HAQ scores as supplied by Bristol-Myers Squibb	176
FIGURE 43 The mean change in HAQ scores relative to PBO as estimated by Bristol-Myers Squibb	177
FIGURE 44 The mean absolute change in HAQ scores as estimated by Bristol-Myers Squibb	177
FIGURE 45 The probability of being the most efficacious treatment (on HAQ score) as estimated by Bristol-Myers Squibb	178
FIGURE 46 The relationship assumed by Bristol-Myers Squibb between HAQ scores and DASs	178
FIGURE 47 The mean change in DAS relative to PBO as estimated by Bristol-Myers Squibb	179
FIGURE 48 The mean absolute change in DAS as estimated by Bristol-Myers Squibb	179
FIGURE 49 The probability of being the most efficacious treatment (on DAS) as estimated by Bristol-Myers Squibb	180
FIGURE 50 The network for DMARD-experienced patients as supplied by MSD	180
FIGURE 51 American College of Rheumatology 20: DMARD-experienced patients at 24 weeks estimated by MSD in the GOL submission	181
FIGURE 52 American College of Rheumatology 50: DMARD-experienced patients at 24 weeks estimated by MSD in the GOL submission	181
FIGURE 53 American College of Rheumatology 70: DMARD-experienced patients at 24 weeks estimated by MSD in the GOL submission	181

FIGURE 54 American College of Rheumatology 20: DMARD-experienced patients at 24 weeks estimated by MSD in the IFX submission	182
FIGURE 55 American College of Rheumatology 50: DMARD-experienced patients at 24 weeks estimated by MSD in the IFX submission	182
FIGURE 56 American College of Rheumatology 70: DMARD-experienced patients at 24 weeks estimated by MSD in the IFX submission	182
FIGURE 57 Comparison of MTX usage (average mg/week) in East Asian vs. non-East Asian studies supplied by MSD	183
FIGURE 58 The network diagram for combination therapy, ACR responses in severe DMARD-experienced patients as produced by Pfizer	184
FIGURE 59 The network diagram for combination therapy, HAQ changes in severe DMARD-experienced patients as produced by Pfizer	184
FIGURE 60 The network diagram for monotherapy, ACR responses in severe DMARD-experienced patients as produced by Pfizer	184
FIGURE 61 The network of studies included in the meta-analysis undertaken by Roche	186
FIGURE 62 Biologic monotherapy ACR responses used in the model submitted by Roche	187
FIGURE 63 Academic-in-confidence information has been removed	187
FIGURE 64 Academic-in-confidence information has been removed	187
FIGURE 65 Academic-in-confidence information has been removed	187
FIGURE 66 Academic-in-confidence information has been removed	187
FIGURE 67 Academic-in-confidence information has been removed	187
FIGURE 68 Academic-in-confidence information has been removed	187
FIGURE 69 Academic-in-confidence information has been removed	188
FIGURE 70 Academic-in-confidence information has been removed	188
FIGURE 71 Kaplan–Meier estimates of the observed persistence with all antiTNFs and with the combination therapy of antiTNFs and MTX in BSRBR	198
FIGURE 72 Commercial-in-confidence information has been removed	202
FIGURE 73 The fitted log-logistic survival distributions estimated by Pfizer	202
FIGURE 74 Commercial-in-confidence information has been removed	202

FIGURE 75 Conditional inference tree of first-line treatment cessation, showing patterns of treatment cessation within the economic model, (left to right) shortest to longest times presented by Pfizer	203
FIGURE 76 Treatment cessation in second and subsequent lines estimated by Pfizer	203
FIGURE 77 The Weibull and exponential model fitted by Roche to data from Soliman <i>et al.</i>	205
FIGURE 78 A summation of the hospital costs (annual) assumed associated with each HAQ band	206
FIGURE 79 The relationship between HAQ and utility assumed in the manufacturers' models	209
FIGURE 80 Odds ratio of discontinuations due to AEs in cDMARD-experienced patients assumed by MSD	215
FIGURE 81 An illustrative mortality survival curve presented by AbbVie for males	218
FIGURE 82 An illustrative mortality survival curve presented by AbbVie for females	218
FIGURE 83 The general mortality rate for females assumed by UCB Pharma, with an exponential fit to these data points	220
FIGURE 84 The general mortality rate for males assumed by UCB Pharma, with an exponential fit to these data points	221
FIGURE 85 Cost-effectiveness acceptability curve for analysis 1 provided by AbbVie	224
FIGURE 86 Cost-effectiveness acceptability curve for analysis 2 provided by AbbVie	224
FIGURE 87 Cost-effectiveness acceptability curve for analysis 3 provided by AbbVie	225
FIGURE 88 Cost-effectiveness acceptability curve for analysis 4 provided by AbbVie	225
FIGURE 89 Cost-effectiveness acceptability curve for analysis 5 provided by AbbVie	226
FIGURE 90 Cost-effectiveness acceptability curve for analysis 6 provided by AbbVie	227
FIGURE 91 Commercial-in-confidence information has been removed	228
FIGURE 92 Cost-effectiveness acceptability curve for all bDMARDs for analysis 7 within the MSD GOL submission	229
FIGURE 93 Cost-effectiveness acceptability curve for all bDMARDs for analysis 7 within the MSD IFX submission	231
FIGURE 94 Cost-effectiveness acceptability curve for analysis 1 within the Pfizer submission	232
FIGURE 95 Cost-effectiveness acceptability curve for analysis 2 within the Pfizer submission	232

FIGURE 96 Cost-effectiveness acceptability curve for analysis 3 within the Pfizer submission	232
FIGURE 97 Cost-effectiveness acceptability curve for analysis 4 within the Pfizer submission	232
FIGURE 98 The CEAC produced by Roche for analysis 8	234
FIGURE 99 Base-case CEAC for analysis 1 produced by UCB Pharma	235
FIGURE 100 Base-case CEAC for analysis 4 produced by UCB Pharma	236
FIGURE 101 Conceptual simplified schematic of the modelling process	241
FIGURE 102 Estimated mean EULAR responses in cDMARD-experienced patients (main analyses)	244
FIGURE 103 Estimated mean EULAR responses in cDMARD-experienced patients (main analyses + RCTs with a small level of bDMARD use)	245
FIGURE 104 Estimated mean EULAR response in cDMARD-experienced mapped patients from ACR trials (main analyses)	245
FIGURE 105 Estimated mean EULAR response in cDMARD-experienced mapped patients from ACR trials (main analyses + RCTs with a small level of bDMARD use)	246
FIGURE 106 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials (main analyses + RCTs with a small level of bDMARD use and also allowing a trial with low MTX background use)	246
FIGURE 107 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials (main analyses + RCTs with low MTX background use)	247
FIGURE 108 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials in cDMARD-naive patients	247
FIGURE 109 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials in cDMARD-naive patients including RCTs with a proportion of cDMARD-experienced patients	248
FIGURE 110 Mean HAQ by EULAR response category for those receiving bDMARDs	251
FIGURE 111 Academic-in-confidence information has been removed	255
FIGURE 112 Plots of the estimated data from the statistical models compared with the observed data	258
FIGURE 113 The assumed relationship between annual hospitalisation costs and HAQ score in the Assessment Group model	260
FIGURE 114 The relationship between HAQ score and pain value	261
FIGURE 115 A comparison of published relationships between utility and HAQ	263

FIGURE 116 Evaluating the number of patients required in analyses involving patients with severe RA who could receive MTX	265
FIGURE 117 Evaluating the number of patients required in analyses involving patients with moderate RA who could receive MTX	265
FIGURE 118 Discounted cost per QALY of a bDMARD strategy compared with a non-bDMARD strategy in a cDMARD-naive population	266
FIGURE 119 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	274
FIGURE 120 The CEAC using EULAR data directly and assuming linear CDMARD HAQ progression	278
FIGURE 121 The CEAC when using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population	283
FIGURE 122 The CEAC using ACR data mapped to EULAR data and assuming linear CDMARD HAQ progression	288
FIGURE 123 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	292
FIGURE 124 The CEAC using EULAR data directly and assuming linear CDMARD HAQ progression and a moderate, MTX-experienced, RA population	296
FIGURE 125 The CEAC when using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population	301
FIGURE 126 The CEAC using ACR data mapped to EULAR data and assuming linear CDMARD HAQ progression and a moderate, MTX-experienced, RA population	307
FIGURE 127 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	310
FIGURE 128 The CEAC when using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	313
FIGURE 129 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	316
FIGURE 130 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	320
FIGURE 131 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	323

FIGURE 132 The CEAC when using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy	326
FIGURE 133 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	330
FIGURE 134 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy	333
FIGURE 135 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated	335
FIGURE 136 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population	338
FIGURE 137 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy	340
FIGURE 138 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population	342

List of boxes

BOX 1 Eligibility criteria	126
BOX 2 The individual simulation process reported by Roche	145

List of abbreviations

ABT	abatacept	cDMARD	conventional disease-modifying
ACR	American College of Rheumatology		antirneumatic drug
ACT-RAY	ACTemra (tocilizumab) RAdiographic studY	CEAC	cost-effectiveness acceptability curve
ADA	adalimumab	CERTAIN	efficacy and safety of
ADACTA	ADalimumab ACTemrA (tocilizumab) head-to-head study		INcomplete response to DMARDS in RA patients with low to
ADORE	ADjuvant Oxaliplatin in REctal Cancer	CG	clinical guideline
AE	adverse event	CI	confidence interval
AiC	academic-in-confidence	CiC	commercial-in-confidence
AMBITION	Actemra versus Methotrexate double Blind Investigative Trial	CINAHL	Cumulative Index to Nursing and Allied Health Literature
AMPLE	In mONotherapy abatacept vs. adalimumab in biologic naive RA patients with	COMET	Combination Of METhotrexate and etabercept in early rheumatoid arthritis
	background MTX	Crl	credible interval
APPEAL	Asia-Pacific Study in Patients to be Treated With Etanercept or an	CRP	C-reactive protein
	Alternative Listed	CTZ	certolizumab pegol
ARMADA	Anti-TNF factor Research study	CYC	ciclosporin
	program of the Monoclonal antibody ADalimumab (D2E7) in	DAS	Disease Activity Score
	rheumatoid Arthritis	DAS28	Disease Activity Score 28 joints
ATTEST	A Trial for Tolerability, Efficacy, and Safety in Treating rheumatoid	DAS28-CRP	Disease Activity Score 28 C-reactive protein
	arthritis (infliximab)	DAS28-ESR	Disease Activity Score 28
ATTRACT	Anti-TNF trial in Rheumatoid Arthritis with Concomitant Therapy		erythrocyte sedimentation rate
AUGUST II	A Phase II Dose-finding Study of Atacicept in Rheumatoid Arthritis (RA)	DEUT9	in Patients With Active Rheumatoid Arthritis Treated Concomitantly
AZA	azathioprine		With Methotrexate
bDMARD	biologic disease-modifying	DES	discrete event simulation
	antirheumatic drug	DMARD	disease-modifying antirheumatic drug
BeST	BEhandelings STrategie	EO-5D	European Quality of Life-5
BMJ	British Medical Journal		Dimensions
BSRBR	British Society for Rheumatology Biologics Register	ERAS	Early Rheumatoid Arthritis Study

ESR	erythrocyte sedimentation rate	LTE	long-term extension
ETN	etanercept	MP	methylprednisolone
EULAR	European League Against	MSD	Merck Sharp & Dohme Corp.
	Rheumatism	MTX	methotrexate
FACIT-F	Functional Assessment of Chronic	NBT	non-biologic therapy
FDA	Food and Drug Administration	NDB	National Data Bank for Rheumatic Diseases
GLD	gold injection	NICE	National Institute for Health and
GO-BEFORE	GOlimumab in active rheumatoid		Care Excellence
	therapy	NMA	network meta-analysis
GO-FORTH	golimumab in combination with	NOAR	Norfolk Arthritis Register
	methotrexate in Japanese patients with active rheumatoid arthritis	NSAID	non-steroidal anti-inflammatory drug
go- Forward	golimumab in active rheumatoid arthritis despite methotrexate	OMERACT	Outcome Measures in Rheumatoid Arthritis Clinical Trials
	therapy	OPERA	OPtimized treatment algorithm for
GOL	golimumab		patients with Early Rheumatoid
GP	general practitioner		tOcilimumah Pivotal Trial In
GUEPARD	GUÉrir la PolyARthrite rheumotoide Débutante (adalimumab)	OFTION	methotrexate inadequate respONders
HAQ	Health Assessment Questionnaire	PAS	Patient Access Scheme
HAQ-DI	Health Assessment Questionnaire	PBO	placebo
		PREMIER	Patients REceiving Methotrexate
HCQ	nyaroxycnioroquine		and Infliximab for the treatment of
нк	hazard ratio		Early Rheumatoid arthritis
HIA	Health Technology Assessment	PRISMA	Preferred Reporting Items for Systematic Reviews and
ICER	incremental cost-effectiveness ratio		Meta-Analyses
IFX	infliximab	PSA	probabilistic sensitivity analysis
i.v.	intravenous	QALY	quality-adjusted life-year
JESMR	Japanese Efficacy and Safety of	RA	rheumatoid arthritis
	Arthritis Despite Methotrexate Therapy	RACAT	Rheumatoid Arthritis Comparison of Active Therapies in Methotrexate
LARA	Latin American Rheumatoid		Suboptimal Responders study
	Arthritis study	KAPID	kneumatoid Arthritis Prevention of structural Damage
		RAQoL	Rheumatoid Arthritis Quality of Life
LIIHE	tocilizumab safety and the prevention of structural joint damage methotrexate and sulfasalazine combination trial	RCT	randomised controlled trial

RED-SEA	a Randomised Efficacy and	ТА	technology appraisal	
	Discontinuation Study of Etanercept versus Adalimumab		tumour necrosis factor inhibitors against combination	
RTX	rituximab		intensive therapy	
SAMURAI Study of Active controlled		TCZ	tocilizumab	
	Monotherapy Used for Rheumatoid Arthritis, an IL-6 Inhibitor	TEAR	Treatment of Early Aggressive Rheumatoid arthritis	
S.C.	subcutaneous	TEMPO	Trial of Etanercept and Methotrexate	
ScHARR	School of Health and Related		with Radiographic Patient Outcomes	
Research		TNF	tumour necrosis factor	
SD	standard deviation	TNF-α	tumour necrosis factor alpha	
SE	standard error	TOF	tofacitinib	
SF-36	Short Form questionnaire-36 items	TOWARD	TOcilizumab in combination With	
SF-6D	Short Form questionnaire-6 Dimensions VARA		traditional DMARD therapy	
			Veterans Affairs Rheumatoid	
SSZ	sulfasalazine		Arthritis	
START	Safety Trial for rheumatoid Arthritis with Remicade Therapy	VAS	visual analogue scale	
Swefot	Swedish pharmacotherapy			

Note

This monograph is based on the Technology Assessment Report produced for NICE. The full report contained a considerable number of data that were deemed commercial-in-confidence and/or academic-in-confidence. The full report was used by the Appraisal Committee at NICE in their deliberations. The full report with each piece of commercial-in-confidence and/or academic-in-confidence data removed and replaced by the statement 'commercial-in-confidence on the NICE website: www.nice.org.uk.

The present monograph presents as full a version of the report as is possible while retaining readability, but some sections, sentences, tables and figures have been removed. Readers should bear in mind that the discussion, conclusions and implications for practice and research are based on all the data considered in the original full NICE report.

Plain English summary

Review question

The clinical effectiveness and cost-effectiveness of biologic disease-modifying antirheumatic drugs (bDMARDs) compared with conventional disease-modifying antirheumatic drugs (cDMARDs) in individuals with rheumatoid arthritis was assessed.

Background

Rheumatoid arthritis is associated with significant morbidity. bDMARDs are more efficacious than cDMARDs, but are considerably more expensive.

Work undertaken

A systematic review of randomised controlled trials of efficacy was undertaken. Network meta-analyses were undertaken to ensure coherent results regarding efficacy. Interrogation of an observational database was performed to provide data on disease progression when treated with cDMARDs. A mathematical model was constructed to estimate the incremental cost per quality-adjusted life-year (QALY).

Key results

Fifty-two clinical trials provided data on American College of Rheumatology and/or European League Against Rheumatism responses for bDMARDs (38 in the main analyses and 14 for sensitivity analyses). These data were synthesised to produce coherent results. bDMARDs were shown to be more effective than cDMARDs. The interrogation of the database indicated that historical assumptions regarding disease progression while on cDMARDs were far too pessimistic. Results from the cost-effectiveness analyses indicated typical cost per QALY of \geq £40,000. These are higher than values reported by the National Institute for Health and Care Excellence as thresholds for an intervention to be considered cost-effective.

Scientific summary

Background

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive, irreversible, joint damage, impaired joint function, and pain and tenderness caused by swelling of the synovial lining of joints and results in increasing disability and reduced quality of life. The primary symptoms are pain, morning stiffness, swelling, tenderness, loss of movement, fatigue and redness of the peripheral joints. RA is associated with substantial costs, both direct (associated with drug acquisition and hospitalisation) and indirect (owing to reduced productivity).

In 2010 the American College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR) jointly published Rheumatoid Arthritis Classification Criteria, which focused on features at earlier stages of disease that are associated with persistent and/or erosive disease rather than defining the disease by its late-stage features. The classification criteria allocate scores to characteristics of joint involvement, serology, acute-phase reactants and duration of symptoms, to produce a score between 0 and 10, inclusive, with those scoring ≥ 6 and with obvious clinical synovitis being defined as having 'definite RA' in the absence of an alternative diagnosis that better explains the synovitis.

There are an estimated 400,000 people in England and Wales with RA, and approximately 10,000 incident cases per year. The disease is more common in females (1.16%) than in males (0.44%), with the majority of cases being diagnosed when patients are aged between 40 and 80 years and with peak incidence in patients in their seventies.

Objectives

The key objectives of this report are twofold: to estimate the clinical effectiveness of seven biologic disease-modifying antirheumatic drugs (bDMARDs) – adalimumab (ADA; Humira[®], AbbVie), etanercept (ETN; Enbrel[®], Pfizer), infliximab [IFX; Remicade[®], Merck Sharp & Dohme Corp. (MSD)], certolizumab pegol (CTZ; Cimzia[®], UCB Pharma), golimumab (GOL; Simponi[®], MSD), tocilizumab (TCZ; RoActemra[®], Roche) and abatacept (ABT; Orencia[®], Bristol-Myers Squibb) – in defined populations; and to estimate the cost-effectiveness of these interventions compared with conventional disease-modifying antirheumatic drugs (cDMARDs). These analyses incorporated the use of bDMARDs with and without methotrexate (MTX) where this was within licence.

Three populations were defined: population 1, adults with severe active RA not previously treated with cDMARDs; population 2, adults with severe active RA that has been previously treated with cDMARDs but not bDMARDs; and population 3, adults with moderate to severe active RA that has been previously treated with cDMARDs only, including MTX (unless contraindicated or inappropriate).

Methods

A systematic review of clinical effectiveness and safety evidence for interventions of interest was conducted. Where trials narrowly missed criteria (because of a small proportion of patients with prior bDMARD exposure or low prior MTX exposure), they were considered to inform sensitivity analyses. Separate network meta-analyses (NMAs) were undertaken for randomised controlled trials (RCTs) reporting EULAR and ACR data.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

A mathematical model was constructed to simulate the experiences of hypothetical patients. The model was based on EULAR response data as these are most commonly used in clinical practice in England and Wales. Large observational databases, published literature and the results of the NMAs were used to provide data for the model. The primary outcome measure was incremental cost per quality-adjusted life-year (QALY) gained.

Results

Sixty RCTs met the inclusion criteria for the systematic review of clinical effectiveness and safety evidence. Of these, 38 trials provided relevant ACR and EULAR response data for the NMA. In addition, 14 additional trials not meeting review criteria contributed data to NMA sensitivity analyses. Other relevant efficacy and safety outcomes were tabulated and discussed in a narrative synthesis. Generally, risk of bias was low overall, and low for baseline comparability, blinding, analysis by allocated treatment group and inclusion of \geq 80% of participants randomised in the final analysis. There was greater risk of bias and a lack of clarity in many included trials for allocation sequence generation and concealment, and selective reporting of outcomes.

Although there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in population 1, IFX plus MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups: (1) intensive cDMARDs and ADA plus MTX; (2) ETN, GOL plus MTX and step-up combination cDMARDs; and (3) ADA and cDMARDs.

Although there was uncertainty in, and overlap between, the effects of treatment on EULAR for interventions in populations 2 and 3 in the main trials, ETN plus MTX and TCZ plus MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: (1) TCZ, GOL plus MTX, ADA plus MTX, ABT intravenous (i.v.) plus MTX and grouped biologics; and (2) ETN, IFX plus MTX, ADA and intensive cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although CTZ plus MTX was associated with an even bigger response than ETN plus MTX and TCZ plus MTX.

Although there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions in populations 2 and 3 in the main trials, ETN plus MTX, TCZ and TCZ plus MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: (1) ETN, GOL plus MTX, ABT subcutaneous plus MTX, ADA plus MTX, IFX plus MTX and ABT i.v. plus MTX; and (2) CTZ plus MTX, intensive cDMARDs and ADA. The inclusion of the additional studies in which patients received prior biologics suggested that CTZ plus MTX and ETN plus MTX resulted in the highest response rates. Other interventions appeared to give rise to broadly similar and slightly smaller response rates except for intensive cDMARDs and ADA which are associated with even smaller response rates.

The incremental cost per QALY of bDMARDs compared with a cDMARD-alone strategy is typically £40,000 when used in populations 2 and 3 and is greater in individuals with moderate to severe disease. The incremental cost per QALY increases (£50,000) for those who receive a bDMARD without MTX and is approximately £60,000 in population 1. A key parameter that affected the results is the assumed Health Assessment Questionnaire (HAQ) while on cDMARDs; if the values used in previous National Institute for Health and Care Excellence (NICE) appraisals were instead used, the incremental cost per QALY fell to approximately £38,000 for bDMARDs compared with cDMARDs alone. Fully incremental analyses were undertaken, but these could be misleading owing to the similarity in incremental costs per QALY for each bDMARD compared with cDMARDs alone, and the uncertainty in efficacy parameters. The data source used for establishing the relationship between HAQ and pain was also seen to influence the results markedly; the Assessment Group base case uses the estimate most favourable to the bDMARDs.

Discussion

There is no reason to believe that the results detailed in this report are not generalisable to the English and Welsh populations.

A strength of this report is that a systematic review of RCTs for bDMARDs in bDMARD-naive patients has been conducted. The primary outcome measures are EULAR or ACR response at 6 months and a formal NMA has been conducted to assess relative efficacy. Different analyses have been undertaken to assess the impact of including RCTs with a small proportion on patients with prior bDMARD use, and/or including RCTs when patients may have not had adequate prior MTX treatment.

A major strength of the cost-effectiveness analyses presented is that the Assessment Group has constructed a EULAR-based model that is much more appropriate to practice in England and Wales than previous ACR-based models. Estimates of incremental cost-effectiveness ratios (ICERs) for both EULAR data only, and when mapping ACR data to EULAR data indicate that the conclusions were not altered by restricting the selection of RCTs to only those that reported EULAR data.

An additional strength is that large observational databases were used to generate data on parameters such as HAQ change conditional on EULAR response and HAQ progression while on cDMARDs. This is preferable to data taken from relatively small RCTs of limited follow-up.

The model has known limitations. The plausible reduced efficacy of treatments when used subsequent to other treatments has not been formally incorporated. It is expected that this omission will favour bDMARDs. Lost productivity has not been included in the model, which may favour bDMARDs if it were included.

The analyses have assumed that the discontinuation rule specified by NICE has been strictly adhered to; data from the British Society for Rheumatology Biologics Register show that this is not the case. If such non-adherence continues, the ICERs will be considerably higher than those presented. Analysis of the impact has not been undertaken due to the possibility of back-calculation of commercial-in-confidence discounts offered through Patient Access Schemes.

Conclusions

The implications for the NHS are not known and it will be heavily dependent on the guidance produced by NICE.

Key research priorities include establishing, more precisely, HAQ progression while on cDMARDs; the relationship between HAQ score and utility; and the relationship between HAQ score and pain. Better evidence on the relative efficacies of bDMARDs and the reduction in efficacy when used after a different bDMARD would be beneficial, but it is acknowledged that large RCTs would be required to provide definitive answers.

Study registration

This study is registered as PROSPERO CRD42012003386.

Funding

Funding for this study was provided by the Health Technology Assessment programme of the National Institute for Health Research.

Chapter 1 Background

Description of health problem

Aetiology

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive, irreversible, joint damage, impaired joint function, and pain and tenderness caused by swelling of the synovial lining of joints and is manifested with increasing disability and reduced quality of life.¹ The primary symptoms are pain, morning stiffness, swelling, tenderness, loss of movement, fatigue and redness of the peripheral joints.^{2,3} RA is associated with substantial costs, both direct (associated with drug acquisition and hospitalisation) and indirect (owing to reduced productivity).⁴ RA has long been reported as being associated with increased mortality,^{5,6} particularly due to cardiovascular events.⁷

Epidemiology

The initial classification criteria for RA were produced in 1987 by the American College of Rheumatology (ACR).⁸ The National Institute for Health and Care Excellence (NICE) Clinical Guideline (CG) 79⁹ provides a summary of the ACR criteria, namely that patients must have at least four of the seven criteria (morning stiffness lasting at least 1 hour; swelling in three or more joints; swelling in hand joints; symmetrical joint swelling; erosions or decalcification on radiograph of hand; rheumatoid nodules; and abnormal serum rheumatoid factor). The first four criteria must have been present for at least a period of 6 weeks. However, in the CG the guideline development group preferred a clinical diagnosis of RA rather than the ACR criteria because 'an early persistent synovitis where other pathologies have been ruled out needs to treated as if it is RA to try to prevent damage to joints. Identification of persistent synovitis and appropriate early management is more important than whether the disease satisfies classification criteria', referencing the European League Against Rheumatism (EULAR) recommendations.¹⁰

In 2010 the ACR and EULAR jointly published Rheumatoid Arthritis Classification Criteria, which focused on features at earlier stages of disease that are associated with persistent and/or erosive disease rather than defining the disease by its late-stage features.¹¹ The classification criteria allocate scores to characteristics of joint involvement, serology, acute-phase reactants and duration of symptoms, to produce a score between 0 and 10, inclusive, with those scoring ≥ 6 and with obvious clinical synovitis being defined as having 'definite RA' in the absence of an alternative diagnosis that better explains the synovitis.

Two classifications have dominated the measurement of improvement in RA symptoms: (1) ACR responses;¹² and (2) EULAR responses.¹³

The initial ACR response was denoted as an ACR20, which required a 20% improvement in tender joint counts; a 20% improvement in swollen joint counts; and a 20% improvement in at least three of the following five 'core set items': physician global assessment; patient global assessment; patient pain; self-reported disability (using a validated instrument); and erythrocyte sedimentation rate (ESR)/C-reactive protein (CRP).

The ACR response has been widely adopted in randomised controlled trials (RCTs), although studies have shown that the value can vary between trials owing to the timing of the response.¹⁴ Since the inception of the ACR20 two other response criteria (ACR50 and ACR70) have become more widely used, which are similar to ACR20 and differing only in the level of improvements required to be denoted a responder.

In the UK, monitoring the progression of RA is often undertaken using the Disease Activity Score 28 joints (DAS28). This assesses 28 joints in terms of swelling (SW28) and of tenderness to the touch (TEN28) and also incorporates measures of the ESR and a subjective assessment (SA) on a scale of 0–100 made by the patient regarding disease activity in the previous week.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

The equation for calculating DAS28 is as follows:15

$$DAS28 = 0.56 \times TEN28^{0.5} + 28 \times SW28^{0.5} + 0.70 \times \ln(ESR) + 0.014 \times SA.$$
 (1)

The DAS28 can be used to classify both the disease activity of the patient and the level of improvement estimated within the patient.

The EULAR response criteria use the individual change in DAS28 and the level of DAS28 reached to classify trial participants as good, moderate or non-responders.¹³ The EULAR response criteria and the ACR20 improvement criteria were found to have reasonable agreement in the same set of clinical trials,¹⁶ although van Gestel *et al.*¹⁶ state that the EULAR response criteria showed better construct and discriminant validity than did ACR20. EULAR response has been reported less frequently in RCTs than ACR responses, although EULAR is much more closely aligned to the treatment continuation rules stipulated by NICE, which require a DAS28 improvement of more than 1.2 to continue treatment. The relationship between change in DAS28 and the level of DAS28 reached with EULAR response is shown in *Table 1*. Dependent on the initial Disease Activity Score (DAS) score of the patient, this would equate to either a good or moderate EULAR response, as shown in the second column of *Table 1*.

Patients with a DAS28 of \leq 3.2 are stated as having inactive disease, those with a DAS28 of > 3.2 and \leq 5.1 are stated as having moderate disease and those with a DAS28 of > 5.1 are stated as having very active disease.¹⁵

A widely used measure of patient disability is the Health Assessment Questionnaire (HAQ). The HAQ is a patient-completed disability assessment¹⁷ which has established reliability and validity and has been used in many published RCTs in RA. HAQ scores range from 0 to 3, with higher scores indicating greater disability. The HAQ is a discrete scale with step values of 0.125, resulting in 25 points on the HAQ scale.

Incidence and prevalence

There are an estimated 400,000 people in England and Wales with RA,¹⁸ with approximately 10,000 incident cases per year.¹⁹ The disease is more common in females (1.16%) than in males (0.44%),¹⁹ with the majority of cases being diagnosed when patients are aged between 40 and 80 years²⁰ and with peak incidence in patients in their seventies.¹⁹ Traditionally, patients have been treated with conventional disease-modifying antirheumatic drugs (cDMARDs), which include methotrexate (MTX), sulfasalazine (SSZ), hydroxychloroquine (HCQ), leflunomide (LEF), and gold injections (GLDs) as well as corticosteroids, analgesics and non-steroidal anti-inflammatory drugs (NSAIDs). However, more recently, a group of drugs have been developed consisting of monoclonal antibodies and soluble receptors that specifically modify the disease process by blocking key protein messenger molecules (such as cytokines) or cells (such as B-lymphocytes).⁹ Such drugs have been labelled as biologic disease-modifying antirheumatic drugs (bDMARDs) and form the focus of this report.

TABLE 1 Determining EULAR response based on DAS28¹⁶

	Improvement in DAS28			
DAS28 at end point	> 1.2	> 0.6 and ≤ 1.2	≤0.6	
≤3.2	Good	Moderate	Non	
$>$ 3.2 and \leq 5.1	Moderate	Moderate	Non	
> 5.1	Moderate	Non	Non	
The shaded cells indicate where natients continue treatment based on current NICE technology appraisals guidance				

Significance for the NHS

Owing to previous NICE technology appraisals (TAs) recommending a number of bDMARDs (see *Current service provision*), with a potential sequence of three bDMARDs, there has been a considerable increase in expenditure on RA interventions. Given the remit of this research to establish the clinical effectiveness and cost-effectiveness of bDMARDs in advance of cDMARDs for patients with less severe disease (assumed to be those with a DAS28 of between > 3.2 and ≤ 5.1), there is potential for the expenditure to increase further should NICE guidance on these populations be positive. The majority of interventions are provided subcutaneously and would therefore require little additional staff time should there be positive guidance, although this would increase for those drugs which are given intravenously.

Further detailed information on the background of RA can be found within the relatively recent NICE CG.⁹ Additional information can also be located in the British Society for Rheumatology guidelines.²¹

Current service provision

Clinical guidelines

For people with newly diagnosed RA, NICE CG79⁹ recommends a combination of cDMARDs [including MTX and at least one other disease-modifying anti-rheumatic drug (DMARD) plus short-term glucocorticoids] as first-line treatment, ideally beginning within 3 months of the onset of persistent symptoms. Where combination therapies are not appropriate (e.g. where there are comorbidities or pregnancy), DMARD monotherapy is recommended. Where DMARD monotherapy is used emphasis should be on increasing the dose quickly to obtain best disease control. For the purposes of this assessment the term intensive DMARDs has been used to denote that this is treatment with multiple cDMARDs simultaneously.

Current National Institute for Health and Care Excellence technology appraisal guidance

National Institute for Health and Care Excellence guidance (TA130,²² TA186²³ and TA225²⁴) recommends the use of the tumour necrosis factor (TNF) inhibitors etanercept (ETN; Enbrel®, Pfizer), infliximab [IFX; Remicade®, Merck Sharp & Dohme Corp. (MSD)], adalimumab (ADA; Humira®, AbbVie), certolizumab pegol (CTZ; Cimzia®, UCB Pharma) and golimumab (GOL; Simponi®, MSD) in people with RA after the failure of two cDMARDs, including MTX, and who have a DAS28 > 5.1. Terminated NICE guidance (TA224) was unable to issue recommendations for the use of GOL in people with RA that have not been treated with MTX.²⁵

Technology Appraisal 247²⁶ recommends tocilizumab (TCZ; RoActemra®, Roche) as an alternative to TNF inhibitors in the same circumstances as in TA130,²² that is in patients with a DAS28 > 5.1 after trying two cDMARDs. NICE guidance TA280²⁷ recommends the use of intravenous (i.v.) abatacept (ABT; Orencia®, Bristol-Myers Squibb) in people with RA after the failure of cDMARDs in the same circumstances as TA130; the subcutaneous (s.c.) formulation has not been appraised.

A simplified summary of NICE-recommend bDMARDs is shown in *Figure 1*. This defines the sequence of treatments that have received positive guidance for patients with a DAS28 of > 5.1. In summary, the typical route would be intensive cDMARDs followed by a bDMARD, followed by rituximab (RTX) plus MTX, then TCZ before returning to cDMARDs.

It is noted that NICE CG79 recommends the use of intensive cDMARDs which have been assumed to be used rather than two cDMARDs used in monotherapy, although this latter option is acceptable.

The National Institute for Health and Care Excellence has also issued guidance (TA195,²⁸ TA225²⁴ and TA247²⁶) on the treatment of RA after the failure of a TNF inhibitor, but such guidance falls outside the scope of this appraisal.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

FIGURE 1 Summary of the position of bDMARDs within NICE TA recommendations for sequence of treatments for patients with RA and a DAS28 > 5.1. a, If RTX and MTX is contraindicated or withdrawn owing to adverse events then the following can be used: ADA or ETN or IFX or ABT in combination with MTX; ADA or ETN monotherapy TA195,²⁸ TCZ in combination with MTX TA247,²⁶ assuming these have not been used previously in the sequence; b, would not be used if TCZ has been used previously in the sequence.

National Institute for Health and Care Excellence criteria for continuing treatment

Each of the NICE TAs states that for patients to continue treatment with a bDMARD there must have been an improvement in DAS28 of at least 1.2 points at 6 months. If this criterion has not been met then treatment should be stopped and the next intervention in the sequence initiated.

Data were provided by the British Society for Rheumatology Biologics Register (BSRBR) to the Assessment Group and were used to assess the time on first biologic conditional on EULAR response. These indicate that over 25% of patients who had no EULAR response at 6 months were still on treatment at 4.5 years, with the median treatment time being 319 days. This shows that there is not strict adherence to the NICE criteria for continuation of treatment. The majority of patients (94%) had a DAS28 of > 5.1, indicating that the severity criteria stated by NICE were reasonably well adhered to.

Description of the technologies under assessment

Interventions considered in the scope of this report

The scope of the work is to ascertain the clinical effectiveness and cost-effectiveness of seven interventions within three populations that will be detailed subsequently. These interventions are ABT, ADA, CTZ, ETN, GOL, IFX and TCZ. It is noted that ABT can be delivered in two formulations, intravenously and subcutaneously, and that both have been modelled separately. Owing to the large number of interventions these have been initially summarised by mode of action. There then follows a summary of the UK marketing authorisation for each intervention along with a description of administration method. This text is similar to that within the protocol.²⁹

Mode of action

Adalimumab, ETN, IFX, CTZ and GOL all inhibit the activity of tumour necrosis factor alpha (TNF- α), a pro-inflammatory mediator that is partly responsible for damage to the joints in RA.

Abatacept is a selective modulator of the T-lymphocyte activation pathway. It binds to molecules on the surface of antigen-presenting cells, preventing full activation of the T lymphocytes and interrupting the inflammatory process.

Tocilizumab inhibits the activity of the cytokine interleukin 6, a pro-inflammatory molecule that is also partly responsible for damage to the joints in RA.

Marketing licence and administration method

Abatacept, in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adult patients who responded inadequately to previous therapy with one or more cDMARDs, including MTX or a TNF- α inhibitor. It can be administered by i.v. infusion or by s.c. injection.

Adalimumab, in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adults when the response to cDMARDs, including MTX, has been inadequate and for the treatment of severe, active and progressive RA in adults not previously treated with MTX. ADA can be given as monotherapy in case of intolerance to MTX or when continued treatment with MTX is inappropriate. It is administered subcutaneously.

Certolizumab pegol, in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adult patients when the response to cDMARDs, including MTX, has been inadequate. CTZ can be given as monotherapy in case of intolerance to MTX or when continued treatment with MTX is inappropriate. It is administered subcutaneously.

Etanercept, in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adults when the response to cDMARDs, including MTX (unless contraindicated), has been inadequate, and for the treatment of severe, active and progressive RA in adults not previously treated with MTX. ETN can be given as monotherapy in case of intolerance to MTX or when continued treatment with MTX is inappropriate. It is administered subcutaneously.

Golimumab, in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adult patients when the response to cDMARD therapy, including MTX, has been inadequate, and for the treatment of severe, active and progressive RA in adults not previously treated with MTX. It is administered subcutaneously.

Infliximab, in combination with MTX, has a UK marketing authorisation for the reduction of signs and symptoms as well as the improvement in physical function in adults with active disease when the response to DMARDs, including MTX, has been inadequate. It is also licensed for the treatment of severe, active and progressive RA in adults not previously treated with MTX or other cDMARDs. It is administered by i.v. infusion.

Tocilizumab, in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adult patients who have either responded inadequately, or who were intolerant, to previous therapy with one or more DMARDs or TNF antagonists. In these patients, TCZ can be given as monotherapy in case of intolerance to MTX or where continued treatment with MTX is inappropriate. TCZ is administered by i.v. infusion.

Current usage in the NHS

There is widespread use of the interventions within the NHS. Robust values of the exact breakdown by intervention are not known.

Identification of important subgroups

The current NICE guidance has already identified a subgroup by stating that to receive a bDMARD the patient must have received two cDMARDs and have active RA with a DAS28 in excess of 5.1. The research questions within this report include estimating the cost-effectiveness if the severity criteria were lessened to include patients with a DAS28 of > 3.2; and estimating the cost-effectiveness of using bDMARDs in advance of cDMARDs.

An important clinical subgroup encompasses those patients in whom bDMARDs cannot be given in combination with MTX. The clinical effectiveness and cost-effectiveness of licensed bDMARDs in this population will be estimated in this assessment.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

The anticipated costs associated with the interventions

The costs associated with each intervention need to take into account factors, including the acquisition cost of the drug [incorporating any Patient Access Scheme (PAS)]; the average weight of patients with RA for those interventions that are weight based; the administration costs associated with infusions and of district nurses performing s.c. injections; and any loading doses required in the first year.

The acquisition costs and dosing regimens were taken from the *British National Formulary* (www.bnf.org; accessed June 2013³⁰) with details of PASs taken from the manufacturers' submissions.

The average weights of patients with RA were estimated using data (n = 12,176) from the BSRBR. To be able to be used with all of the weight-based dosing regimens, a large number of categories were required, as detailed in *Table 2*. From these categories the average cost per dose for those with a weight-based dose can be calculated.

Additional loading doses in the first year were calculated based on the relevant regimen and the administration cost. *Table 3* provides a simplified summary of the assumed mean acquisition costs per intervention and can be used to provide indicative rather than exact values. Within the mathematical model described later, timings of costs are explicitly incorporated and also the fact that in some subgroups the distribution of weights may differ from that of the full BSRBR database, a factor also considered within the Assessment Group model.

Additional treatments in a sequenced strategy

The nature of RA treatment being sequenced meant that it was necessary for the Assessment Group and the manufacturers to incorporate the costs and effectiveness of RTX into the model as this has positive NICE guidance following the withdrawal of a bDMARD. These will be discussed as applicable.

Weight category (kg)	Number of patients	Percentage of total patients
0–30	3	0.0
31–33	7	0.1
34–35	9	0.1
36–45	240	2.0
46–50	484	4.0
51–60	2333	19.2
61–67	2115	17.4
68–70	949	7.8
71–75	1310	10.8
76–85	2148	17.6
86–95	1351	11.1
96–100	412	3.4
101–133	734	6.0
134–167	67	0.6
168–200	14	0.1
Total	12,176	100

TABLE 2 The weight distribution of patients with RA using BSRBR data

TABLE 3 Sim	plified mean acquisition and administra	ition costs for each in	tervention				
Treatment	Dose regimen	Details of PAS if applicable	Cost per cheapest available dose, £ (dose)	Cost per weight-adjusted dose ^a /standard regimen, £	Administration costs per treatment, £	Cost per year (excluding administration costs ^b), £	Additional costs in year 1, £
ABT (i.v.)	500 mg below 60 kg, 750 mg between 60 kg and 100 kg, 1000 mg above 100 kg; 0, 2 and 4 weeks then every 4 weeks thereafter	CiC information has been removed	CiC information has been removed (250 mg)	CiC information has been removed	154	CiC information has been removed	CiC information has been removed
ABT (s.c.)	125 mg weekly following loading dose 500 mg below 60kg, 750 mg between 60 kg and 100kg, 1000 mg above 100kg	CiC information has been removed	CiC information has been removed (125 mg)	CiC information has been removed	3.05	CiC information has been removed	CiC information has been removed
ADA	40 mg; every other week	N/A	352.14 (40 mg)	352.14	3.05	9234.94	0
CTZ	400 mg per week initially, repeated at weeks 2 and 4 followed by a maintenance dose of 200 mg every 2 weeks	Initial 10 doses free	357.50 (200 mg)	357.50	3.05	9374.30	–2523.85 ^c
ETN	50 mg; every week	N/A	178.75 (50 mg)	178.75	3.05	9453.60	0
GOL	50 mg below 100 kg, 100 mg above 100 kg; per month	100 mg dose provided at the same price as the 50 mg dose	762.97 (50 mg)	762.97 ^d	3.05	9192.24	O
IFX ^e	3 mg/kg: 0, 2, 6 then every 8 weeks	N/A	419.62 (100 mg)	1110.98	154	8222.37 ^f	1820.47
TCZ	8 mg/kg every 4 weeks	CiC information has been removed	CiC information has been removed (80 mg)	CiC information has been removed	154	CiC information has been removed	0
CiC, commer a Assuming within the b Assuming c This value d Assuming	cial-in-confidence; N/A, not applicable. the weight distribution of patients from th model. no vial sharing. has been simplified for clarity and is negati that the cost of 100-mg svringes are set to	e BSRBR and choosing t ive due to assuming 10 o the price of 50-mg svri	the least expensive met free doses in year 1 as	thod of meeting the rec detailed in the PAS. Th usly agreed PAS.	quirement. The correc	ct dose for a specific pa	atient is calculated of doses correctly.
e These valu f Assuming	ues have been simplified for clarity, assumin no increase in dose requiring additional via	ig 8 doses in year 1 and als, if the response is ina	16.5 in each subsequer Idequate after 12 week	nt year. The model calc <s, be="" dose="" inc<="" may="" td="" the=""><td>ulates the timing and reased in steps of 1.5</td><td>I number of doses corred mg/kg every 8 weeks,</td><td>actly. . up to a maximum</td></s,>	ulates the timing and reased in steps of 1.5	I number of doses corred mg/kg every 8 weeks,	actly. . up to a maximum

of 7.5 mg/kg every 8 weeks; alternatively, 3 mg/kg may be given every 4 weeks.

Chapter 2 Definition of the decision problem

Decision problem

The aim of this assessment was to investigate the clinical effectiveness and cost-effectiveness of ADA, ETN, IFX, CTZ, GOL, TCZ and ABT for the treatment of RA not previously treated with bDMARDs compared with each other and compared with cDMARDs.

Interventions

A detailed description of each of the interventions is provided in *Chapter 1*, *Description of the technologies under assessment*. *Table 4* summarises the relationship between the market authorisation and the decision problem detailed in *Overall aims and objectives of assessment*: that is, whether or not the intervention is licensed to be used prior to the initiation of MTX intervention; as a monotherapy (i.e. without needing to be given in combination with MTX); for patients with severe RA; and for patients with moderate to severe RA.

Populations (including subgroups)

The scope issued by NICE defines three distinct populations with RA and includes (1) adults with severe active RA not previously treated with cDMARDs; (2) adults with severe active RA who have been previously treated with cDMARDs; and (3) adults with moderate to severe active RA who have been previously treated with cDMARDs only, including MTX (unless contraindicated or inappropriate). Henceforth, these will be referred to as population 1, population 2 and population 3, respectively.

Although the NICE scope did not specify the definition of severe active RA and moderate to severe active RA, the following definition (based on expert clinical advice to the Assessment Group) has been adopted: severe active RA will be defined by a DAS28 of \geq 5.1 and moderate to severe active RA will be defined as a DAS28 of between 3.2 and 5.1.

As the scope issued by NICE explicitly defined subgroups, no further subgroups will be assessed, with the exception of those patients in whom bDMARD treatment needs to be given as monotherapy. Separate analyses will be conducted for those in whom MTX can be tolerated and in those who can only receive bDMARD monotherapy.

	Is the intervention licensed:				
Intervention	prior to the use of MTX?	as a monotherapy?	for patients with severe RA?	for patients with moderate to severe RA?	
ABT ^a			1	1	
ADA	1	1	1	1	
CTZ		1	✓	1	
ETN	1	1	1	1	
GOL	✓		✓	1	
IFX	1		1	1	
TCZ		1	1	1	

TABLE 4 The relationship between the licence of the intervention and the decision problem

a i.v. and s.c. formulations of ABT have been combined as the market authorisations are identical.

The Assessment Group has chosen to deviate from the scope for population 1 as the definition in the scope stated that MTX needed to have been used previously. Given this definition, the populations were mutually exclusive but not exhaustive, as patients without prior bDMARD treatment who had not received MTX but had instead received an alternative cDMARD would not be allocated to any of the populations. In consultation with NICE and our clinical experts the Assessment Group broadened its interpretation of population 1 to allow previous treatment with any cDMARD.

It is noted that the number of interventions considered in population 1 is fewer than for populations 2 or 3, as only four interventions (ADA, ETN, GOL and IFX) are licensed in this population.

Populations outside the scope of the research

The following groups were explicitly excluded from the research by the scope issued by NICE:

- the initiation of treatment in patients without active RA
- patients with a DAS of < 3.2 who had received previous treatment with cDMARDs
- patients with a DAS of < 5.1 who had not been previously treated with cDMARDs
- patients who had been previously treated with one or more bDMARDs.

Relevant comparators

The relevant comparators within the final scope differ according to the population considered. The scope stated that tofacitinib (TOF; Xeljanz[®], Pfizer; Jakvinus[®], Pfizer) would be included if NICE had issued positive guidance prior to the report's completion, but this did not occur and therefore TOF was not evaluated.

- 1. For severe active RA not previously treated with MTX or other DMARDs:
 - i. combination therapy with cDMARDs (including MTX and at least one other DMARD, such as SSZ and LEF as recommended in NICE CG79⁹)
 - ii. the interventions will be compared with each other.
- 2. For severe active RA that has been previously treated with cDMARDs only:
 - i. management strategies involving further cDMARDs (e.g. SSZ, LEF), NSAIDs and corticosteroids
 - ii. the interventions will be compared with each other.
- 3. For moderate to severe active arthritis that has been previously treated with cDMARDs only:
 - i. management strategies involving further cDMARDs (e.g. SSZ, LEF), NSAIDs and corticosteroids
 - ii. the interventions will be compared with each other.

Outcomes

The outcome measures to be considered include:

- disease activity
- physical function
- joint damage
- pain
- mortality
- fatigue
- radiological progression
- extra-articular manifestations of disease
- adverse effects of treatment
- health-related quality of life.

Data were also collected on other outcome measures, including disease duration, number of previous cDMARDs and percentage of patients who had received bDMARDs, in case there was sufficient variation in baseline measurements that these could be investigated as treatment effect modifiers within data synthesis.

Overall aims and objectives of assessment

The review aims to:

- evaluate the clinical effectiveness of each intervention in affecting key outcomes in patients within each of the defined subgroups
- evaluate the adverse effect profile of each intervention (and comparator)
- estimate the incremental cost-effectiveness within each of the defined subgroups of each intervention compared with all comparators
- estimate the overall cost of amending the current provision of interventions in the light of the cost-effectiveness results
- identify key areas for primary research.
Chapter 3 Assessment of clinical effectiveness

A systematic review of the literature and network meta-analyses (NMAs) were conducted in order to evaluate the clinical effectiveness of ABT, ADA, CTZ, ETN, GOL, IFX and TCZ in the first-line bDMARD treatment of adults with RA.

The systematic review of the evidence was undertaken in accordance with the general principles recommended in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (www.prisma-statement.org/).

This report contains reference to confidential information provided as part of the NICE appraisal process. This information has been removed from the report and the results, discussions and conclusions of the report do not include the confidential information. These sections are clearly marked in the report.

Methods for reviewing effectiveness

Identification of studies

The aims of the search were to provide as comprehensive a retrieval as possible of clinical effectiveness evidence relating to ABT, ADA, CTZ, ETN, GOL, IFX and TCZ and to identify additional relevant treatments for potential inclusion in the NMA.

Electronic databases

Studies were identified by searching the following electronic databases and research registers:

- MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (via Ovid) 1948 to July 2013
- EMBASE (via Ovid) 1980 to July 2013
- Cochrane Database of Systematic Reviews (via Wiley Online Library) 1996 to May 2013
- Cochrane Central Register of Controlled Trials (via Wiley Online Library) 1898 to May 2013
- Health Technology Assessment (HTA) database (via Wiley Online Library) 1995 to May 2013
- Database of Abstracts of Review of Effects (via Wiley Online Library) 1995 to May 2013
- Cumulative Index to Nursing and Allied Health Literature (CINAHL) (via EBSCOhost) 1982 to April 2013
- Toxicology Literature Online to July 2013.

Given the broad scope of interventions to be included in the review and the high volume of potentially relevant studies to be sifted, the keyword searches of electronic resources were undertaken in three stages. No language or date restrictions were applied to any database. Details of keywords strategies are reported in *Appendix 1*.

Stage 1 was undertaken using keywords relating to the population only (i.e. RA) and did not include keywords relating to the interventions specified in the decision problem. The purpose was to keep the scope of the search broad in order to identify potentially relevant evidence for inclusion in the NMA, in addition to identifying RCTs and systematic reviews of the interventions of interest. For the searches of MEDLINE, EMBASE and CINAHL, methodological filters were added to restrict search results to RCTs and systematic reviews. To maximise the efficiency of the search process at this stage, filters aimed at maximising the precision of search results were applied.^{31–35}

Stage 2 was undertaken using keywords relating to the population (RA) combined with keywords relating to the interventions of interest (ABT, ADA, CTZ, ETN, GOL, IFX and TCZ) and any interventions identified as potentially allowing indirect comparisons to be made within the NMA. Keyword synonyms relating to the interventions included generic drug names, product names and drug registry numbers. The purpose of stage 2 was to identify RCTs that might not have been retrieved by the 'high precision' stage 1 searches.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Therefore, RCT search filters aimed at maximising the sensitivity of search results were applied.^{33,36} In the first instance, MEDLINE and EMBASE were searched. Given the high volume of references retrieved and the low yield in terms of relevant references identified, it was decided that searches would not be extended to other databases or to other treatments to be potentially included in the NMA.

Stage 3 involved the undertaking of searches for potential supplementary adverse events (AEs) evidence through the combination of keywords relating to the population (RA) with keywords relating to the interventions of interest (ABT, ADA, atacicept, CTZ, ETN, GOL, IFX, RTX, TCZ, TOF). For the searches of MEDLINE and EMBASE, AE filters were applied,³⁷ whereas no filter was required for the Toxicology Literature Online database.

Where possible, and to minimise duplication between search results, the results retrieved by earlier search strategies were excluded from the results retrieved by later search strategies using the 'not' Boolean operator. The results retrieved by the MEDLINE and EMBASE high-precision searches (stage 1) were excluded from MEDLINE and EMBASE high-sensitivity searches (stage 2). The results retrieved by the MEDLINE and high-sensitivity searches (stages 1 and 2) were excluded from the AE searches (stage 3).

Other resources

To identify additional studies, the reference lists of relevant studies (including existing systematic reviews) were checked and a citation search of relevant articles (using the Web of Science Citation Index Expanded and Conference Proceedings Citation Index – Science) was undertaken to identify articles that cite the relevant articles. It was originally intended in the protocol²⁹ that searches be performed to identify ongoing research and unpublished studies using the *meta*Register of Current Controlled Trials, the World Health Organization International Clinical Trials Registry Platform, the European Union Clinical Trials Register, the Food and Drug Administration (FDA) and European Medicines Agency websites and the Web of Science Conference Proceedings Citation Index – Science. However, this was not possible within the time scales dictated by the NICE appraisal process. Hand-searching of relevant documents included sponsor submissions to the NICE TA update process, recent systematic reviews and documentation associated with previous relevant NICE TA guidance (TAs 130,²² 186,²³ 224,²⁵ 234,³⁸ 225,²⁴ 247²⁶). Grey literature was also sought using the sources listed in the international grey literature search toolkit produced by the Canadian Agency for Drugs and Technologies in Health.³⁹

All identified citations from the electronic searches and other resources were imported into and managed using the Reference Manager bibliographic software (version 12.0; Thomson Reuters, Philadelphia, PA, USA).

Inclusion and exclusion criteria

Inclusion and exclusion criteria for the selection of clinical effectiveness and safety evidence were defined according to the decision problem outlined in the NICE scope.⁴⁰

The inclusion of potentially relevant articles was undertaken using a two-step process. First, all titles and abstracts were examined for inclusion by one reviewer. Any citations that clearly did not meet the inclusion criteria (e.g. animal studies, studies unrelated to RA) were excluded. Second, full-text articles were initially examined by one reviewer. It was intended in the original protocol that a second reviewer would check approximately 10% of citations. However, because of the very large number of citations identified in the clinical effectiveness searches, this was not possible in the time scales available for this appraisal process. Any uncertainty in the inclusion and exclusion of potential full-text articles was resolved through discussion with the review team. Where agreement could not be reached, expert clinical advice was sought for a final decision.

The relevance of each article for the systematic review was assessed according to the following criteria.

Population

As detailed in *Chapter 2*, the three populations under consideration in this assessment were:

- i. Adults with severe active RA not previously treated with MTX (defined by a DAS of \geq 5.1). In the original protocol²⁹ this population was defined as 'adults with severe active RA not previously treated with MTX or other DMARDs (defined by a DAS of \geq 5.1)'. However, this definition was subsequently modified and broadened by the Assessment Group (in consultation with clinical experts) to include 'adults with severe active RA not previously treated with MTX' to permit the inclusion of trial populations relevant to the decision problem which were MTX naive, but may have had some prior experience of other cDMARDs.
- ii. Adults with severe active RA who had been previously treated with conventional DMARDs only, including MTX (unless contraindicated or inappropriate) (defined by a DAS of \geq 5.1).
- iii. Adults with moderate to severe active RA who had been previously treated with conventional DMARDs only, including MTX (unless contraindicated or inappropriate) (defined as a DAS between 3.2 and 5.1).

The following populations were considered outside the appraisal scope and were therefore excluded:

- patients with a DAS of < 3.2
- patients with a DAS of < 5.2 who had not been previously treated with MTX
- patients who had been previously treated with one or more biologic DMARDs.

Interventions

The following interventions were included:

- 1. For RA not previously treated with MTX:
 - i. ADA
 - ii. ETN
 - iii. IFX
 - iv. GOL.

2. For RA that has been previously treated with conventional DMARDs only:

- i. ADA
- ii. ETN
- iii. IFX
- iv. CTZ
- v. GOL
- vi. ABT (i.v. and s.c. preparations)
- vii. TCZ.

The above interventions were assessed in accordance with licensed indications and could be delivered in conjunction with cDMARDs or as monotherapy (as defined in licensed indications).

Comparators

The relevant comparators differed according to the population considered and included the following:

- 1. For severe active RA not previously treated with MTX:
 - i. combination therapy with conventional DMARDs (including MTX and at least one other DMARD, such as SSZ and LEF) or DMARD monotherapy with dose escalation
 - ii. biologic interventions compared with each other.
- 2. For severe active RA that has been previously treated with conventional DMARDs only:
 - i. management strategies involving further conventional DMARDs (e.g. SSZ, LEF), NSAIDs and corticosteroids
 - ii. biologic interventions compared with each other.
- 3. For moderate to severe active RA that has been previously treated with conventional DMARDs only:
 - i. management strategies involving further conventional DMARDs (e.g. SSZ, LEF), NSAIDs and corticosteroids
 - ii. biologic interventions compared with each other.

Outcomes

The outcome measures under consideration included:

- disease activity (DAS28, ACR and EULAR responses, swollen and tender joint counts and patient and physician global assessments of disease activity)
- physical function [Health Assessment Questionnaire Disability Index (HAQ-DI), but not modified versions of HAQ]
- joint damage/radiological progression
- pain
- mortality
- fatigue
- extra-articular manifestations of disease
- health-related quality of life
- adverse effects of treatment.

Study design

The systematic review of clinical effectiveness was based on RCT evidence. It was stated in the protocol²⁹ that, if insufficient data were available from RCTs, observational studies or non-randomised trials may be considered (e.g. for safety evidence). The Assessment Group supplemented the AEs data identified in the included RCTs with safety data from long-term extension (LTE) studies reporting on individual included RCTs. Studies published as abstracts or conference presentations were only included if sufficient details were presented to allow both an appraisal of the methodology and an assessment of the results to be undertaken. Systematic reviews could be used as potential sources of additional references of efficacy evidence.

The following study types were also excluded:

- animal models
- preclinical and biological studies
- narrative reviews, editorials, opinions
- studies presenting secondary analyses of RCT data or pooled RCT data
- non-English-language papers.

Data abstraction and critical appraisal strategy

Data relevant to the decision problem were extracted by one reviewer. Data were extracted without blinding to authors or journal. Study arms where intervention treatments were administered in line with licensed indications were extracted; where there was a slight divergence between the regimen used in the RCT and the licensed regimen, this was explicitly highlighted. It was proposed in the original protocol²⁹ that at least 10% of data extraction forms be checked by a reviewer. However, the Assessment Group ensured that all data included in the NMA were double checked by a second reviewer. For data not contributing to the NMA, data were extracted for the following time points: primary end point (for selected efficacy data); latest available controlled RCT end point (for efficacy and safety data); and latest available LTE study end point (for safety data only). The safety data extracted were informed by the Summary of Product Characteristics [available at www.medicines.org.uk/emc/ (accessed 1 April 2014)] and FDA prescribing information for each intervention.⁴¹⁻⁴⁷ Graphical data contributing to the NMA were estimated using Engauge software [version 4.1; Mark Mitchell, Los Angeles, CA, USA (2011)] and graphical data not contributing to the NMA were estimated manually by a reviewer. Where multiple publications of the same study were identified, data extraction was undertaken on all relevant associated publications and findings were presented as a single study. Discrepancies were resolved by discussion, with involvement of a third reviewer when necessary.

The methodological quality of each included study was assessed by one reviewer. It was originally intended in the protocol²⁹ that quality assessment would be checked by a second reviewer, but this was not feasible within the time scales available for the appraisal process. The quality assessment of included studies was informed by selected items listed in the NHS Centre for Reviews and Dissemination report⁴⁸ and Cochrane Risk of Bias tool.⁴⁹ Additional quality issues specific to the assessment of RA RCTs (as described by Karsh *et al.*⁵⁰) were also considered during the evaluation of studies.

Methods of data synthesis

The extracted data and quality assessment variables were presented for each study, both in structured tables and as a narrative description.

As the identified evidence base permitted the undertaking of NMAs for the estimation of treatment effects, supplementary meta-analyses were not undertaken. NMAs were conducted to determine efficacy using two different disease activity measures (ACR and EULAR responses).

Methods for the estimation of efficacy using network meta-analysis

Selection of evidence contributing to the network meta-analysis

Evidence considered relevant to the decision problem was selected according to the additional inclusion criteria detailed below.

- Randomised controlled trials presenting ACR response or EULAR response data at any assessment time point between 22 and 30 weeks. The selection of this time frame and assumption that treatment effects would be broadly comparable across these assessment points was made in conjunction with the clinical advisors to the assessment. This criterion is broadly in line with previous data syntheses summarised by Thorlund *et al.*:⁵¹
 9 of the 13 RCTs in the NMA of biologic interventions for RA also employed an assessment time point in the region of 24 weeks/6 months; of the remaining four RCTs, three used 12-week data while one used data obtained between 50 and 55 weeks.
- Trials with early escape were included only if an appropriate imputation of data as determined by the Assessment Group was employed for dealing with censoring.
- Randomised controlled trials were not excluded from the base case on the basis of geographical location (a decision made in consultation with clinical advisors).
- Randomised controlled trials were permitted in the base case where it was not indicated if bDMARDs had been given (and no proportion of bDMARD use was provided), even if trial eligibility did not exclude prior bDMARDs.
- Trials reporting a small proportion of patients with prior bDMARD experience (≤20%) were not included in the base-case analyses but were explored via sensitivity analyses.

Sensitivity analyses were also undertaken to include trials relevant to populations 2 and 3 where the population may not have adequately failed cDMARDs (either there was a sufficient response, MTX treatment duration was too short or a proportion of the population were MTX naive).

Evidence was sought in which bDMARDs not considered as interventions or comparators within the NICE scope were evaluated in head-to-head trials with an included intervention in the first-line treatment of RA. To establish whether or not any such identified data could be used to inform indirect comparisons within the NMA, a review of these interventions against cDMARDs was undertaken. If such trials were found and met the inclusion criteria for the review, then the bDMARD was considered part of the evidence base for the NMA.

A number of assumptions relating to the evidence base were made in conjunction with clinical advisors: (1) It was assumed that all cDMARDs had the same efficacy; (2) it was also assumed that having failed a cDMARD was equivalent to having failed MTX; (3) trials that included the use of immunosuppressants or single intra-articular glucocorticoid were also permitted, assuming that this would not change the efficacy of cDMARDs; and (4) it was assumed that Disease Activity Score 28 C-reactive protein (DAS28-CRP) and Disease Activity Score 28 erythrocyte sedimentation rate (DAS28-ESR) are interchangeable where only one is reported. If both were reported, DAS28-ESR was used as this was reported most regularly (a decision made in consultation with clinical advisors). A systematic review to support assumptions (1) to (3) could not be undertaken within the time scales of the project. This may represent a limitation within the analyses although these assumptions were deemed reasonable by the clinical experts and there was no reason to believe these could cause a systematic bias.

Statistical model for the network meta-analysis

European League Against Rheumatism and ACR outcomes are ordered categorical data. EULAR has three categories (no response, moderate response and good response) and ACR has four categories (no response, ACR20, ACR50 and ACR70). ACRXX represents an improvement of at least XX%; in the analysis, the categories are treated as mutually exclusive so that patients cannot be in more than one category.

The model for the data assumes that the treatment effect is the same irrespective of the category. The likelihood function for the data is described as follows:

Let r_{ikj} represent the number of patients in arm k of trial i in the mutually exclusive category j = 1,2,...J.

The responses r_{ikj} will follow a multinomial distribution such that

$$r_{ikj=1,...,j}$$
 ~ Multinomial ($p_{ikj=1,...,j}, n_{ik}$), $\sum_{j=1}^{j} p_{ikj=1,...,j} = 1.$ (2)

The parameters in the model are the probabilities, p_{ikj} , that a patient in arm k of trial i has a response equivalent to category j.

We use a probit link function to map the probabilities, p_{iki} , onto the real line such that:

$$\theta_{ikj} = \Phi^{-1}(p_{ikj}) = \mu_{ij} + \delta_{i,bk} I_{k\neq 1}$$
(3)

so that

$$p_{iki} = \Phi(\mu_{ii} + \delta_{i,bk} I_{k \neq 1}). \tag{4}$$

In this model, the effect of treatment is to change the probit score of the control arm by $\delta_{i, bk}$ standard deviations (SDs).

The study-specific treatment effects, $\delta_{i,bk}I_{k\neq 1}$, are assume to arise from a common population distribution with mean treatment effect relative to the reference treatment, which in this analysis is cDMARDs, such that:

$$\delta_{i,1k} \sim \mathcal{N}(d_{t_{i_1},t_{k_\ell}},\tau^2). \tag{5}$$

We further assume that there is an underlying continuous latent variable which has been categorised by specifying cut-offs, z_{ij} , which correspond to the point at which an individual moves from one category to the next in trial *i*. The model is rewritten as:

$$\rho_{iki} = \Phi(\mu_i + z_{ij} + \delta_{i,bk} I_{k \neq 1}).$$
(6)

The z_{ij} can be treated as fixed, which would assume that these points are the same in each trial and each treatment. Alternatively, they can be treated as random in which they are assumed to vary according to the trial but that within a trial they are the same such that:

$$Z_{ic} \sim \mathcal{N}(V_c, \sigma_z^2). \tag{7}$$

We used a model in which the z_{ij} were treated as being random because this resulted in a much better fit of the model to the data.

In some trials, the reported categories are a subset of the full set of categories so that there is overlap between categories. The multinomial likelihood is rewritten as a series of conditional binomial distributions such that for trial *i* reporting the number of patients, r_{ikj} , in category j = 1, ..., J - 1, we write:

$$r_{ikj}$$
~Binomial $(q_{ikj}, N_{ikj}), j = 1, ..., j-1$ (8)

where

$$q_{ik1} = \text{Prob}(\text{Outcome in category 1 of trial } i)$$
(9)

$$q_{ik2}$$
 = Prob(Outcome in category 2 of trial *i*|not in category 1) (10)

. . .

$$q_{ikj} = \text{Prob}(\text{Outcome in category } j \text{ of trial } i|\text{not in categories } 1, 2, ..., j-1)$$
 (11)

and

$$N_{ikj} = n_{ik} - \sum_{u=1}^{j=1} r_{iku}.$$
(12)

Further details of the model are presented in Dias et al.⁵²

All analyses were conducted in the freely available software package WinBUGS (MRC Biostatistics Unit, Cambridge, UK).

The model is completed by giving the parameters prior distributions.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

When there are sufficient sample data, we can use conventional reference prior distributions and these will have little influence on the posterior results. The reference prior distributions used in the analyses were:

- trial-specific baselines, $\mu_i \sim N(0, 1000)$
- treatment effects relative to reference treatment, $d_{1t} \sim N(0, 1000)$
- between-study SD of treatment effects, $\tau \sim U(0,2)$
- population cut-offs, $v_{c_j} = v_{c_{j-1}} + v_c', v_c' \sim U(0, 5)$
- between-study SD of cut-offs, $\sigma_z^2 \sim U(0,2)$.

In the case of the analysis of the EULAR data there were relatively few studies and too few to update the between-study SD. Without Bayesian updating, a reference prior distribution that does not represent genuine prior belief will have a significant impact on the results and give posterior distributions that are unlikely to represent genuine posterior beliefs. To allow for this, we used a weakly informative prior distribution for the between-study SD such that $\tau \sim HN(0, 0.32^2)$.

To estimate the absolute probabilities of being in each category for each treatment, we used a binomial likelihood function for the numbers of patients, r_{ik1} in each study that were classified as 'no response' when treated with cDMARDs such that:

$$r_{ik1}$$
 ~Binomial(n_{ik} , p_{ik1}). (13)

We used a probit link function such that:

$$\Phi^{-1}(p_{ik1}) = \mu_i'. \tag{14}$$

We assume that the study-specific baselines arise from population of effects such that:

$$\mu_i' \sim \mathcal{N}(\mu_b, \tau_b^2). \tag{15}$$

The model was completed by giving the parameters prior distributions such that:

$$\mu_b \sim N(0, 1000)$$

 $\tau_b \sim U(0, 2).$

Again, there were relatively few studies providing data on the EULAR outcome so a weakly informative prior distribution was used for the between-study SD such that: $\tau \sim HN(0, 0.32^2)$.

For the baseline meta-analyses and NMAs, we used a standard burn-in of 100,000 iterations of the Markov chain and retained 25,000 iterations to estimate parameters. In addition, the NMAs exhibited moderately high correlation between successive iterations of the Markov chains so the chains were thinned by retaining every 10th sample.

For EULAR and ACR, analyses were performed according to whether the patient was MTX naive (population 1) or whether patients were MTX experienced (populations 2 and 3). Patients who were MTX naive were also analysed including the Treatment of Early Aggressive Rheumatoid arthritis (TEAR) trial⁵³ and the Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes (TEMPO)⁵⁴ that included a small proportion of patients who were MTX experienced. In addition, for patients who were MTX experienced, EULAR was analysed according to the main trials and trials that included patients who received prior biologics [with and without the Actemra versus Methotrexate double Blind Investigative Trial In mONotherapy (AMBITION) study⁵⁵] and ACR was analysed according to the main trials, trials that included patients who received prior biologics (with and without AMBITION⁵⁵) and trials that included patients who were MTX naive.

We also explored the possibility that duration of disease was a treatment effect modifier. This was done for the main studies that provided ACR data. We did not attempt to adjust EULAR data for duration of disease because of the limited number of studies available. Duration of disease was centred in the model by subtracting the mean duration of disease across studies. Various models could be explored, including having an identical treatment effect modifier for each treatment, a separate treatment effect modifier for each treatment or allowing the treatment effect modifiers to be exchangeable across treatments. Again, because of the limited number of studies available we restricted attention to an exchangeable treatment effect modifier model. The model was completed by giving the common regression parameter a N(0, 1000) prior distribution and the between-treatment SD a U(0, 10) prior distribution. Results are not presented adjusted for duration of disease because the evidence suggested that it was not a treatment effect modifier (deviance information criterion adjusted = 1027.94, deviance information criterion unadjusted 1026.74).

Results

Quantity and quality of research available

Quantity of research available

As a result of the searches described in *Methods for reviewing effectiveness*, a total of 43,764 citations were identified for the review of clinical effectiveness and safety. This was reduced to 27,464 following deletion of duplicate citations. The study selection process is represented as a PRISMA diagram (*Figure 2*). A total of 27,334 citations were excluded at title and abstract levels (1606 being non-English-language records). Of the remaining records, a total of 60 studies were included in the review. Studies excluded at the full-text stage are presented (with rationale for exclusion) in *Appendix 3*.

FIGURE 2 Flow diagram of study inclusion (adapted from PRISMA).

Randomised controlled trials included in the systematic review of clinical effectiveness and NMAs of ACR and EULAR responses are presented in *Table 5* (with MTX-naive and cDMARD-experienced labels denoting trials included in population 1 and populations 2 and 3 respectively).

Sixty RCTs were included in the systematic review of clinical effectiveness. These comprised six trials with head-to-head comparisons of included biologic interventions, [academic-in-confidence (AiC) information has been removed], and 53 trials of biologic interventions compared with placebo (PBO) or cDMARDs.

Methotrexate-naive trial populations are considered separately in the following results section as population 1. For population 1 there were a total of 15 RCTs included in the systematic review (ABT n = 0, ADA n = 6, CTZ n = 0, ETN n = 2, GOL n = 1, IFX n = 5, TCZ n = 0 and head-to-head biologics n = 1). Eight of the MTX-naive trials had data available for the NMA. All these seven trials provided ACR data; however, only one⁹⁰ contributed EULAR data for analysis. A head-to-head trial of ADA versus ETN was identified but this trial was not eligible for the NMA (due to early escape at 12 weeks with no imputation for missing data).¹⁰⁰

There were 45 trials with cDMARD-experienced populations (considered as populations 2 and 3) (ABT n = 3, ADA n = 7, CTZ n = 2, ETN n = 11, GOL n = 3, IFX n = 7, TCZ n = 6, head-to-head biologics n = 5 and grouped antiTNFs n = 1). Of these, 30 trials had data available for the NMA.

Trial name/study	Intervention	Population	Included in NMA?
Abe <i>et al.</i> , 2006 ⁵⁶	IFX	cDMARD experienced	Not in NMA (14-week RCT)
ACT-RAY ⁵⁷	TCZ	cDMARD experienced	Yes
ADACTA ⁵⁸	ADA, TCZ	cDMARD experienced	Yes
ADORE ^{59,60}	ETN	cDMARD experienced	Not in NMA (16-week study)
AIM ^{61–65}	ABT	cDMARD experienced	Yes
AMPLE ⁶⁶	ADA, ABT	cDMARD experienced	Yes
APPEAL ^{67,68}	ETN	cDMARD experienced	Not in NMA (16-week study)
ARMADA ^{69,70}	ADA	cDMARD experienced	Yes
ASPIRE ⁷¹	IFX	MTX naive	Not in NMA (no ACR/EULAR data at 22–30 weeks)
ASSET ⁷²	ABT	cDMARD experienced	Not in NMA (4-month RCT)
ASSURE ⁷³	ABT	cDMARD experienced	Not in NMA (no ACR/EULAR data at 22–30 weeks)
ATTEST ⁷⁴	IFX, ABT	cDMARD experienced	Yes
ATTRACT ⁷⁵	IFX	cDMARD experienced	Yes
AUGUST II ⁷⁶	ADA	cDMARD experienced	Yes
Bejarano <i>et al.</i> , 2008 ⁷⁷	ADA	MTX naive	Not in NMA (no ACR/EULAR data at 22–30 weeks)
BeST ⁷⁸	IFX	MTX naive	Yes
CERTAIN ⁷⁹	CTZ	cDMARD experienced	Yes
CHANGE ⁸⁰	ADA	cDMARD experienced	Yes
COMET ^{81–83}	ETN	MTX naive	Yes
DE019 ⁸⁴	ADA	cDMARD experienced	Yes

TABLE 5 Trials included in the systematic review and NMAs

TABLE 5	Trials included	in the systema	itic review a	and NMAs	(continued)
---------	-----------------	----------------	---------------	----------	-------------

Trial name/study	Intervention	Population	Included in NMA?
deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN, IFX	cDMARD experienced	Yes
Durez <i>et al.</i> , 2004 ⁸⁶	IFX	cDMARD experienced	Not in NMA (14-week study, no valid comparator arm)
Durez et al., 2007 ¹²⁰	IFX	MTX naive	Yes
ERA ⁸⁷	ETN	MTX naive	Yes
ETN Study 309 ^{88,89}	ETN	cDMARD experienced	Yes
GO-BEFORE ⁹⁰	GOL	MTX naive	Yes
GO-FORTH ⁹¹	GOL	cDMARD experienced	Yes
GO-FORWARD ⁹²	GOL	cDMARD experienced	Yes
GUEPARD ⁹³	ADA	MTX naive	Not in NMA (no ACR/EULAR data at 22–30 weeks)
HIT HARD ⁹⁴	ADA	MTX naive	Yes
IDEA ⁹⁵	IFX	MTX naive	Not in NMA (no ACR/EULAR data at 22–30 weeks)
CREATE IIb ⁹⁶	ETN	cDMARD experienced	Yes
JESMR ⁹⁷	ETN	cDMARD experienced	Yes
Kay e <i>t al.</i> , 2008 ⁹⁸	GOL	cDMARD experienced	Not in NMA [no eligible ACR/EULAR data at 22–30 weeks (owing to PBO group crossover)]
Kim <i>et al.</i> , 2007 ⁹⁹	ADA	cDMARD experienced	Yes
Kume <i>et al.</i> , 2011 ¹⁰⁰	ADA, ETN	MTX naive	Not in NMA (early escape at 12 weeks with no imputation for missing data)
Lan <i>et al.</i> , 2004 ¹⁰¹	ETN	cDMARD experienced	Not in NMA (12-week study)
LARA ¹⁰²	ETN	cDMARD experienced	Yes
MEASURE ¹⁰³	TCZ	cDMARD experienced	Not in NMA (no ACR/EULAR data at 22–30 weeks)
Moreland <i>et al.</i> , 1999 ¹⁰⁴ / Mathias <i>et al.</i> , 2000 ¹⁰⁵	ETN	cDMARD experienced	Yes
Nishimoto et al., 2004 ¹⁰⁶	TCZ	cDMARD experienced	Not in NMA (no ACR/EULAR data at 22–30 weeks)
OPERA ¹⁰⁷	ADA	MTX naive	Not in NMA (no ACR/EULAR data at 22–30 weeks)
OPTIMA ¹⁰⁸	ADA	MTX naive	Yes
PREMIER ¹⁰⁹	ADA	MTX naive	Yes
Quinn <i>et al.</i> , 2005 ¹¹⁰	IFX	MTX naive	Not in NMA (no ACR/EULAR data at 22–30 weeks)
RACAT ¹¹¹ /O'Dell <i>et al.</i> , 2013 ¹¹²	ETN	cDMARD experienced	Yes
REALISTIC ¹¹³	CTZ	cDMARD experienced	Not in NMA (no biologic-naive ACR/EULAR data at 22–30 weeks)

continued

TABLE 5 Tria	als included	in the s	systematic review	and NMAs	(continued)
--------------	--------------	----------	-------------------	----------	-------------

Trial name/study	Intervention	Population	Included in NMA?
RED-SEA ¹¹⁴	ADA, ETN	cDMARD experienced	Not in NMA (no ACR/EULAR data at 22–30 weeks)
SAMURAI ¹¹⁵	TCZ	cDMARD experienced	Yes
SATORI ¹¹⁶	TCZ	cDMARD experienced	Yes
STAR ¹¹⁷	ADA	cDMARD experienced	Yes
START ¹¹⁸	IFX	cDMARD experienced	Yes
Swefot ¹¹⁹	IFX	cDMARD experienced	Yes
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
TOWARD ¹²¹	TCZ	cDMARD experienced	Yes
Van De Putte et al., 2004 ¹²²	ADA	cDMARD experienced	Yes
Wajdula 2000 (reported in Chen <i>et al.</i> , 2006 ¹²³)	ETN	cDMARD experienced	Not in NMA (12-week study)
Weinblatt et al., 1999 ¹²⁴	ETN	cDMARD experienced	Yes
Wong et al., 2009 ¹²⁵	IFX	cDMARD experienced	Not in NMA (no ACR/EULAR data at 22–30 weeks)
Zhang <i>et al.</i> , 2006 ¹²⁶	IFX	cDMARD experienced	Not in NMA (18-week study)

ACT-RAY, ACTemra (tocilizumab) RAdiographic studY; ADACTA, ADalimumab ACTemrA (tocilizumab) head-to-head-study; ADORE, ADjuvant Oxaliplatin in REctal Cancer; AiC, academic-in-confidence; AIM, Abatacept in Inadequate responders to Methotrexate; AMPLE, abatacept vs. adalimumab in biologic naive RA patients with background MTX; APPEAL, Asia-Pacific Study in Patients to be Treated With Etanercept or an Alternative Listed; ARMADA, Anti-TNF factor Research study program of the Monoclonal antibody ADalimumab (D2E7) in rheumatoid Arthritis; ASPIRE, Active controlled Study of Patients receiving Infliximab for the treatment of Rheumatoid arthritis of Early onset; ASSET, Abatacept Systemic SclErosis Trial; ASSURE, Abatacept Study of Safety in Use with other RA ThErapies; ATTEST, A Trial for Tolerability, Efficacy, and Safety in Treating rheumatoid arthritis (infliximab); ATTRACT, Anti-TNF trial in Rheumatoid Arthritis with Concomitant Therapy; AUGUST II, A Phase II Dose-finding Study of Atacicept in Rheumatoid Arthritis (RA); BeST, BEhandelings STrategie; CERTAIN, efficacy and safety of CERTolizumab pegol After INcomplete response to DMARDS in RA patients with low to moderate disease activity; CHANGE, Clinical investigation in Highly disease-affected rheumatoid Arthritis patients in Japan with Adalimumab applying staNdard and General Evaluation study; COMET, Combination Of METhotrexate and etabercept in early rheumatoid arthritis; CREATE IIb, A 6-month Randomised, Double-blind, Open Arm Comparator, Phase IIb, With AZD9056, in Patients With Rheumatoid Arthritis (RA); DE019, Efficacy and Safety of Adalimumab in Patients With Active Rheumatoid Arthritis Treated Concomitantly With Methotrexate; ERA, Early Rheumatoid Arthritis (etanercept); GO-BEFORE, GOlimumab in active rheumatoid arthritis BEFORE methotrexate therapy; GO-FORTH, golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis; GO-FORWARD, golimumab in active rheumatoid arthritis despite methotrexate therapy; GUEPARD, GUÉrir la PolyARthrite rheumotoide Débutante (adalimumab); HIT HARD, High Induction THerapy with Anti-Rheumatic Drugs (adalimumab and methotrexate); IDEA, Remission induction comparing infliximab and high-dose intravenous steroid, followed by treat-to-target: a double-blind, randomised, controlled trial in new-onset, treatment-naive, rheumatoid arthritis; JESMR, Japanese Efficacy and Safety of Etanercept on Active Rheumatoid Arthritis Despite Methotrexate Therapy; LARA, Latin American Rheumatoid Arthritis study; MEASURE, secukinumab in ankylosing spondylitis; OPERA, OPtimized treatment algorithm for patients with Early Rheumatoid Arthritis; OPTIMA, OPTimal protocol for treatment Initiation with Methotrexate and Adalimumab; PBO, placebo; PREMIER, Patients REceiving Methotrexate and Infliximab for the treatment of Early Rheumatoid arthritis; RACAT, Rheumatoid Arthritis Comparison of Active Therapies in Methotrexate Suboptimal Responders study; REALISTIC, RA EvALuation In Subjects receiving TNF Inhibitor Certolizumab pegol; RED-SEA, a Randomised Efficacy and Discontinuation Study of Etanercept versus Adalimumab; SAMURAI, Study of Active controlled Monotherapy Used for Rheumatoid Arthritis, an IL-6 Inhibitor; SATORI, Study of Active controlled TOcilizumab for Rheumatoid arthritis patients with an Inadequate response to methotrexate; STAR, Safety Trial of Adalimumab in Rheumatoid arthritis; START, Safety Trial for rheumatoid Arthritis with Remicade Therapy; Swefot, Swedish pharmacotherapy; TOWARD, TOcilizumab in combination With traditional DMARD therapy.

Twelve trials that did not satisfy the inclusion criteria for the systematic review (as outlined in *Methods for reviewing effectiveness*) were excluded from the systematic review but were used as additional evidence and explored in sensitivity analyses in the NMA (*Table 6*). These trials contributed ACR and/or EULAR data to sensitivity analyses only. Of these, 10 trials had populations with a small proportion that had received prior biologics (\leq 20%). The other remaining trials were not in the base case because they had populations in which some patients were MTX naive or cDMARD and others were not, or patients were responding to MTX.

In addition, two trials providing supplementary network linkages were included in the NMA. These RCTs did not include any of the included interventions as specified in the decision problem, but evaluated TOF versus PBO.^{137,138} Both of these trial populations had some prior biologic use (and therefore these trials were considered within the NMA sensitivity analyses).

Quality of research available

The quality of the included RCTs is presented in *Table 345* (see *Appendix 4*) and summarised in *Figure 3*. There is a reasonably low risk of bias overall among studies included in this review. Items where risk of bias was greatest were those that assessed comparability of groups, blinding and selective reporting. Items generating a large proportion of 'unclear' responses (indicating a lack of clarity in reporting) were those relating to generation of allocation sequence, allocation concealment and selective reporting of outcomes. Items with a low risk of bias in a large proportion of trials were comparability at baseline, blinding, analysis

Trial name/study	Intervention	Allocated population	Rationale for ineligibility in systematic review
ACQUIRE ¹²⁷	ABT	cDMARD experienced	3.4–6% prior biologics
AMBITION ^{55,128}	TCZ	cDMARD experienced	5–9% prior biologics, mix of MTX naive and prior MTX
Yamamoto <i>et al.</i> , 2011 ¹²⁹	CTZ	cDMARD experienced	16% prior biologics
LITHE ¹³⁰	TCZ	cDMARD experienced	11% prior biologics
NCT00254293131	ABT	cDMARD experienced	2.6% prior biologics
OPTION ¹³²	TCZ	cDMARD experienced	5–9% prior biologics
ORAL Standard ¹³³	ADA, TOF	cDMARD experienced	10% prior biologics
RA0025 ¹³⁴	CTZ	cDMARD experienced	15% prior biologics
RAPID1 ¹³⁵	CTZ	cDMARD experienced	4% prior biologics
RAPID2 ¹³⁶	CTZ	cDMARD experienced	1.6% prior biologics
TEAR ⁵³	ETN	cDMARD experienced and MTX naive	Mix of MTX-naive and prior MTX, some patients (less than 30%) had any prior cDMARD use
TEMPO ⁵⁴	ETN	cDMARD experienced and MTX naive	Mix of MTX-naive, and prior MTX but not inadequate response
Kremer <i>et al.</i> , 2012 ¹³⁷	TOF	cDMARD experienced	Did not include any bDMARD within the NICE scope
van der Heijde <i>et al.</i> , 2013 ¹³⁸	TOF	cDMARD experienced	Did not include any bDMARD within the NICE scope

TABLE 6 Trials not eligible for the systematic review but providing additional evidence for NMA sensitivity analyses

ACQUIRE, subcutaneous abatacept versus intravenous abatacept; LITHE, tocilizumab safety and the prevention of structural joint damage methotrexate and sulfasalazine combination trial; OPTION, tOcilimumab Pivotal Trial In methotrexate inadequate respONders; ORAL Standard, Tofacitinib or Adalimumab versus Placebo in Rheumatoid Arthritis; RAPID, Rheumatoid Arthritis Prevention of structural Damage.

FIGURE 3 Risk-of-bias graph. mITT, modified intention to treat.

by allocated treatment group and most (\geq 80%) participants randomised included in the final analysis. A modified intention-to-treat population was used in around half of trials for efficacy and safety analyses (which was typically based on all randomised patients who received at least one dose of study drug being included in analyses).

Summary of trials and population characteristics

There were some differences between trials in population characteristics, treatment and trial duration. For some trials, intervention and control arms differed in terms of numbers/combinations of concomitant cDMARDs. Some trials allowed physician discretion in other therapies. There was some variation between trials in prior treatment history and disease duration. There was some variation in how early withdrawals were decided, with variation in length of time on allocated treatment.

Trial characteristics

Adults with severe active rheumatoid arthritis not previously treated with methotrexate (population 1)

As discussed in *Methods for reviewing effectiveness*, trials in which populations were MTX naive but had received some prior treatment with other cDMARDs were considered appropriate for inclusion in population 1. Study characteristics for trials included in population 1 are presented in *Tables 345* and *346* (see *Appendix 4*).

Adults with moderate to severe and severe active rheumatoid arthritis that have been previously treated with cDMARDs (but not bDMARDs) (cDMARD experienced) (populations 2 and 3)

Study characteristics for trials included in populations 2 and 3 are presented in *Tables 347–349* (see *Appendix 4*).

Population characteristics

Adults with severe active rheumatoid arthritis not previously treated with methotrexate (population 1)

Population characteristics for population 1 are presented in Tables 7 and 8.

TABLE 7 Population characteristics: population 1 – biologic head-to-head RCTs

Study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
Kume <i>et al.</i> , 2011 ¹⁰⁰	ADA monotherapy (n = 22)	63 (17)	85.7	Yes	0.75 (0.42)	ESR 5.34 (1.4)
	ETN monotherapy (<i>n</i> = 21)	51 (15)	85.7		0.92 (0.42)	ESR 5.17 (1.5)

Trial name/ study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
Bejarano <i>et al.</i> ,	PBO + MTX ($n = 73$)	47 (9)	53.4	Yes	6.6	6.0 (1.5)
2008	ADA + MTX (n = 75)	47 (9)	58.4		7.9	5.9 (1.4)
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy ^a based on DAS28 ($n = 32$)	49.3 (15.2)	81.25	Yes	4.4 (3.3–5.1) ^b months	ESR 6.15 (0.88); CRP 5.85 (0.91)
	Initial ADA + MTX 12 weeks, then step-up ^a therapy based on DAS28 ($n = 33$)	46.3 (16.3)	78.79		4.4 (3.3–5.1) ^b months	ESR 6.31 (0.78); CRP 5.80 (0.83)
HIT HARD ⁹⁴	MTX + PBO ($n = 85$)	52.5 (14.3)	67.1	NR	0.13 (NR)	6.3 (0.9)
	ADA + PBO (n = 87)	47.2 (12.1)	70.1		0.15 (NR)	6.2 (0.8)
OPERA ¹⁰⁷	MTX + PBO + steroid (n = 91)	5.42 (28.3, 76.7) ^c	69	Yes	0.22 (0.12, 0.41) ^c	CRP 5.6 (3.8, 7.3) ^c
	ADA + MTX + steroid (n = 89)	56.2 (25.8, 77.6) ^c	63		0.24 (0.12, 0.44) ^c	CRP 5.5 (3.8, 7.8) ^c
OPTIMA ¹⁰⁸	MTX + PBO ($n = 517$)	50.7 (NR)	74	NR	0.38 (NR)	6
	ADA + MTX (n = 515)	50.4 (NR)	74		0.30 (NR)	9
PREMIER ¹⁰⁹	MTX + PBO ($n = 257$)	52.0 (13.1)	73.9	Yes	0.8 (0.9)	6.3 (0.9)
	ADA monotherapy + PBO step-up week 16 ($n = 274$)	52.1 (13.5)	77.4		0.7 (0.8)	6.4 (0.9)
	ADA + MTX step-up week 16 (<i>n</i> = 268)	51.9 (14.0)	72.0		0.7 (0.8)	6.3 (0.9)
COMET ^{81,82}	MTX + PBO ($n = 268$)	52.3 (0.8)	73	NR	Months 9.3 (0.4)	6.5 (1.0)
	ETN + MTX (n = 274)	50.5 (0.9)	74		Months 8.8 (0.4)	6.5 (1.0)

TABLE 8 Population characteristics: population 1 – RCTs of biologic vs. DMARD(s) or PBO

Trial name/ study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
Bathon and	MTX + PBO (n = 217)	49 (13)	75	NR	1 (0.92)	NR
Genovese, 2000 ¹³⁹	ETN + PBO (<i>n</i> = 207)	50 (13)	74		1 (0.92)	NR
GO-BEFORE ⁹⁰	PBO+MTX (<i>n</i> = 160)	48.6 (12.91)	83.8	NR	≤3 years=72.5%; ≤2 years=61.9%; ≤1 year=45.6%	ESR 6.2 (1.17); CRP 5.6 (1.06)
	GOL + MTX (<i>n</i> = 159)	50.9 (11.32)	84.9		≤3 years=73.0%; ≤2 years=64.2%; ≤1 year=50.9%	ESR 6.3 (1.11); CRP 5.7 (1.05)
ASPIRE ⁷¹	PBO i.v. + MTX (<i>n</i> =298)	50 (13)	75	NR	0.9 (0.7)	NR
	IFX + MTX ($n = 373$)	51 (12)	71		0.8 (0.7)	NR
BeST ⁷⁸	Sequential monotherapy (DAS steered) $(n = 126)$	54 (13)	68	Yes	23 weeks ^d	DAS44 4.5 (0.9)
	Step-up combination therapy (DAS steered) $(n = 121)$	54 (13)	71		26 weeks ^d	DAS44 4.5 (0.8)
	Initial combination therapy with prednisone (DAS steered) (<i>n</i> = 133)	55 (14)	65		23 weeks ^d	DAS44 4.4 (0.9)
	Initial combination therapy with IFX (DAS steered) (<i>n</i> = 128)	54 (14)	66		23 weeks ^d	DA544 4.3 (0.9)
Durez <i>et al.</i> ,	MTX ($n = 14$)	53.8 (15.2)	71	NR	0.45 (0.29)	CRP 5.2 (0.8)
7007	MTX + MP ($n = 15$)	50.3 (14.2)	60		0.25 (0.33)	5.3 (1.3)
	IFX + MTX ($n = 15$)	50.0 (9.9)	67		0.36 (0.31)	5.3 (1.1)
						continued

	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP	arly NR	NR	7.0 (0.9)	6.2 (0.8)	Combination Of RE methotrexate therapy; RE methotrexate therapy; iotrexate); IDEA, Remission ent-naive, theumatoid ocol for treatment Initiation
	Disease duration (years) (SD)	NR (described as e RA, 3–12 months	symptom duration	0.5 (0.31)	0.62 (0.38)	lelings STrategie; COMET, (e rheumatoid arthritis BEFO ugs (adalimumab and meth d trial in new-onset, treatm itis; OPTIMA, OPTimal prot d arthritis.
(<i>p</i> ;	Early withdrawal plan reported?	Yes		NR		Early onset; BeST, BEhanc FORE, GOlimumab in activ by with Anti-Rheumatic Dr nd, randomised, controllec th Early Rheumatoid Arthr tment of Early Rheumatoic
ARD(s) or PBO(continue	Sex (% female)	NR	N	70	60	of Rheumatoid arthritis of ty Score 44 joints; GO-BE RD, High Induction THeral eat-to-target: a double-bli eat-torthm for patients wi and Infliximab for the trea
CTs of biologic vs. DM/	Mean age (years) (5D)	NR	R	53.1 (13.7)	51.3 (9.5)	iximab for the treatment tis, DAS44, Disease Activi the (adalimumab), HIT HAI uus steroid, followed by th ERA, OPtimized treatment REceiving Methotrexate a source material.
ition characteristics: population 1 – R	Treatment arms	MP + MTX ($n = 112$ across both groups)	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX (IFX dose modifications permitted according to DAS44 from week 26)	MTX + PBO (<i>n</i> = 10)	IFX + MTX (<i>n</i> = 10)	controlled Study of Patients receiving Infi nd etabercept in early rheumatoid arthri rir la PolyARthrite rheumotoide Débutan aring infliximab and high-dose intravenc thylprednisolone; NR, not reported; OPI ate and Adalimumab; PREMIER, Patients in Appendix 4, Table 336. 95th centile range). 95th centile range).
TABLE 8 Popula	Trial name/ study	IDEA ⁹⁵		Quinn <i>et al.</i> ,	2007	ASPIRE, Active c METhotrexate ar GUEPARD, GUÉr induction compa arthritis; MP, me with Methotrexa a More details i b Median (interr c Median (5th, d Median.

-3 2 . f hio ť ć ~ -1 ÷ _ ċ C 1

Adults with moderate to severe and severe active rheumatoid arthritis who have been previously treated with cDMARDs (but not bDMARDs) (cDMARD experienced) (populations 2 and 3)

Population characteristics for populations 2 and 3 are presented in Tables 9 and 10.

Additional population characteristics are outlined in Tables 350–355 (see Appendix 4).

Assessment of effectiveness

Disease activity and physical function

American College of Rheumatology response

Population 1 One head-to-head RCT in MTX-naive patients was identified in the systematic review.¹⁰⁰ However, no ACR response data were available in this trial. A total of 13 RCTs of biologic versus DMARD(s) or PBO reported ACR response data in MTX-naive patients (six for ADA,^{77,93,94,107,109,142} two for ETN,^{81,139} one for GOL⁹⁰ and four for IFX^{71,78,110,120}) (*Table 11*). Statistically significant differences in ACR response favouring biologic treatment over comparator were reported for ADA (four studies^{94,107,109,142}), ETN (two studies^{81,139}), GOL (one study⁹⁰) and IFX (two studies^{71,120}). Seven of the 12 RCTs contributed data to a NMA of ACR response for population 1 (three for ADA,^{94,109,142} one for ETN,^{81,139} one for GOL⁹⁰ and two for IFX^{78,120}).

(NB: in the outcome tables that follow throughout *Results*, citations are provided where data were extracted from sources additional to the primary publication.)

Populations 2 and 3 Four head-to-head RCTs reporting ACR response data in cDMARD-experienced patients were identified (*Table 12*). Statistically significantly greater proportions of patients achieved ACR20, ACR50 and ACR70 responses in the IFX plus MTX and abatacept i.v. plus MTX treatment groups of the A Trial for Tolerability, Efficacy, and Safety in Treating rheumatoid arthritis (infliximab) (ATTEST) trial,⁷⁴ when compared against PBO plus MTX. Statistically significant findings were also identified in the ADalimumab ACTemrA (tocilizumab) head-to-head study (ADACTA), whereby greater proportions of patients receiving TCZ monotherapy achieved ACR responses than among patients receiving ADA monotherapy.⁵⁸ Thirty-six RCTS evaluating biologic versus DMARD(s) or PBO in cDMARD-experienced patients reported ACR response data (*Table 13*). Statistically significant findings were reported (four ADA trials,^{76,84,117,122} one CTZ trial,⁷⁹ eight ETN trials,^{89,101,102,104,105,111,124,140} three GOL trials,^{91,92,98} five IFX trials^{75,86,118,119,126} and three TCZ trials^{106,115,121}) for ACR response across a range of time points favouring biologic over comparator treatment.

European League Against Rheumatism response

Population 1 The only head-to-head trial for MTX-naive patients¹⁰⁰ did not report EULAR data. Three MTX-naive trials reported EULAR data, of which two were ADA trials^{93,107} and one was a GOL trial⁹⁰ (*Table 14*). GUÉrir la PolyARthrite rheumotoide Débutante (adalimumab) (GUEPARD)⁹³ reported a significantly better EULAR response for ADA plus MTX than for MTX alone at 12 weeks' follow-up, but at 1-year follow-up, when both groups had undergone step-up therapy, the groups were responding similarly well. OPtimized treatment algorithm for patients with Early Rheumatoid Arthritis (OPERA)¹⁰⁷ reported similar EULAR responses for ADA plus MTX plus steroid and for MTX plus PBO plus steroid at the 1-year follow-up. GOlimumab in active rheumatoid arthritis BEFORE methotrexate therapy (GO-BEFORE),⁹⁰ at 24 weeks, reported a significantly better EULAR response for GOL plus MTX and for PBO plus MTX, but at the 1-year follow-up the groups were doing similarly well. GO-BEFORE⁹⁰ contributed EULAR data to the NMA, whereas the others did not report data within 22–30 weeks' follow-up.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton So16 7NS, UK.

Trial name/study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
ATTEST ⁷⁴	PBO + MTX (<i>n</i> = 110)	49.4 (11.5)	87.3	NR	8.4 (8.6)	ESR 6.8 (1.0)
	$IFX + MTX (n = 165)^{a}$	49.1 (12.0)	82.4		7.3 (6.2)	6.8 (0.9)
	$ABT + MTX (n = 156)^{b}$	49.0 (12.5)	83.3		7.9 (8.5)	6.9 (1.0)
AMPLE ⁶⁶	ABT s.c. (<i>n</i> = 318)	51.4	81.4	NR	1.9	CRP 5.5
	ADA (<i>n</i> = 328)	51.0	82.3		1.7	CRP 5.5
RED-SEA ¹¹⁴	ADA + cDMARDs ($n = 60$)	55.0	75	NR	7.0 (range 3.3–13.0)	5.6
	ETN50 + cDMARDs $(n = 60)$	53.2	70		5.5 (range 2.0–14.5)	5.8
ADACTA ⁵⁸	TCZ + PBO (<i>n</i> = 163)	54.4 (13.0)	79	Yes	7.3 (8.1)	6.7 (0.9)
	ADA + PBO (<i>n</i> = 163)	53.3 (12.4)	82		6.3 (6.9)	6.8 (0.9)
deFilippis <i>et al.</i> ,	ETN + MTX (n = 16)	44.7 (14.17)	NR	NR	NR	NR
2006°3	IFX + MTX (n = 16)	46.79 (10.9)	NR		NR	NR
ADACTA, ADalimumab AC Efficacy, and Safety in Treat Discontinuation Study of Eta a IFX 3 mg/kg i.v. administe weeks 0, 2, 6 and every 8 b ABT dosed according to v and every 28 days therea Data are shown to the level	FirmrA (tocilizumab) head-to-head-study ing rheumatoid arthritis (infliximab); FTh anercept versus Adalimumab. Fired on days 1 (i.e. week 0), 15 (i.e. we a weeks thereafter, adjustments in dose weight: patients weighing < 60 kg, 60- fter, up to and including day 337 + MT of accuracy available in the source mat	y; AMPLE, abatacept vs. N50, etanercept 50 mg (sek 2), 43 (i.e. week 6) a age and frequency of ad 100 kg, or > 100 kg rece X. terial.	adalimumab in biologic once a week subcutanec nd 85 (i.e. week 12) an Iministration permitted a eived 500 mg, 750 mg o	naive RA patients with back busly; NR, not reported; RED d every 56 days (i.e. 8 week: after week 12 in license) + M r 1000 mg of ABT respective	ground MTX; ATTEST, A Trial f -SEA, a Randomised Efficacy ar b thereafter (NB: licensed dose TX. ily. ABT i.v. administered on da	or Tolerability, d 3 mg/kg i.v. at /s 1, 15 and 29

TABLE 9 Population characteristics: populations 2 and 3 – biologic head-to-head RCTs

Trial name/study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DA528 at baseline (SD) – ESR unless stated to be CRP
AIM ^{61,62}	MTX + PBO (<i>n</i> = 219)	50.4	81.7	NR	8.9 (7.1)	CRP 6.4 (0.1)
	ABT i.v. + MTX (<i>n</i> =433)	51.5	77.8		8.5 (7.3)	CRP 6.4 (0.08)
ASSET ⁷²	PBO + MTX ($n = 23$)	52.5 (11.5)	69.6	NR	2.4 (1.4)	CRP 5.3 (0.9)
	ABT i.v. (\approx 10 mg/kg) + MTX ($n = 27$)	51.7 (11.2)	59.3		2.1 (1.5)	CRP 5.3 (1.1)
ASSURE ⁷³	PBO + cDMARDs (<i>n</i> = 482)	52.0 (12.1)	83.7	NR	9.5 (9.1)	NR
	ABT + cDMARDs ($n = 959$)	52.2 (11.8)	83.1		9.5 (8.7)	NR
AUGUST II ⁷⁶	MTX + PBO (n = 76)	54	84	NR	8.4	5.8
	ADA + MTX (n = 79)	53	81		8.8	5.8
CHANGE ⁸⁰	PBO (<i>n</i> = 87)	53.4	77	Yes	8.4	NR
	ADA (<i>n</i> =91)	56.9	79.1		9.9	NR
DE019 ⁸⁴	MTX + PBO (<i>n</i> = 200)	56.1	73	Yes	10.9	NR
	ADA + MTX (n = 207)	56.1	76.3		11	NR
STAR ¹¹⁷	PBO + cDMARDs (<i>n</i> = 318)	55.8	79.2	NR	11.5	NR
	ADA + cDMARDs (n = 318)	55	79.6		9.3	NR
Van De Putte <i>et al.</i> ,	PBO s.c. (<i>n</i> = 110)	53.5 (13.2)	77.3	Yes	11.6 (9.3)	7.09 (0.87)
2004 '22	ADA monotherapy ($n = 113$)	52.7 (13.3)	79.6		10.6 (6.9)	7.07 (0.86)
ARMADA ⁶⁹	MTX + PBO ($n = 62$)	56	82.3	Yes	11.1	NR
	ADA + MTX (n = 67)	57.2	74.6		12.2	NR
Kim <i>et al.</i> , 2007 ⁹⁹	MTX + PBO rescue week 18 $(n = 65)$	49.8	85.7	Yes	6.9	NR
	ADA + MTX (n = 63)	48.5	95.4		6.8	NR
						continued

TABLE 10 Population characteristics: populations 2 and 3 – cDMARD experienced vs. cDMARD(s) or PBO

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

33

		· · · · · · · · · · · · · · · · · · ·		(
Trial name/study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
CERTAIN ⁷⁹	PBO + cDMARDs ($n = 98$)	54.0 (12.4)	76.5	Yes	4.7 (3.3)	ESR 4.47 (0.34)
	CTZ + DMARDs (n = 96)	53.6 (11.9)	84.4		4.5 (3.5)	ESR 4.53 (0.43)
REALISTIC ¹¹³	PBO + existing cDMARDs (biologic-naive subgroup)	NR	79.7 (overall trial population.	ЛR	8.9 (9.1) (overall trial population,	DAS28-ESR 6.4 (0.9); DAS28-CRP 5.7 (0.9)
	(n = 29)	53.9 (12.7) (overall trial population, <i>n</i> =212)	n=212)	No (N/A as trial only 12 weeks)	n=212)	(Overall trial population, $n = 212$)
	CTZ existing cDMARDs (biologic-naive subgroup) (n - 134)	55.4 (12.4) (overall trial population,	77.6 (overall trial population, n – 851)		8.6 (8.8) (overall trial population, n – 851)	DAS28-ESR 6.4 (0.9); DAS28-CRP 5.7 (0.9)
						(Overall trial population, $n = 851$)
ADORE ^{59,60}	ETN (<i>n</i> = 159)	53	79.2	NR	10.0	6.2
	ETN + MTX (n = 155)	54	76.8		9.8	6.3
CREATE IIb ⁹⁶	DMARD + PBO (n = 65)	51.5	83.1	NR	8.2 (7.59)	6.3 (0.76)
	ETN50 + DMARD (<i>n</i> = 64)	51.2	85.9		7.9 (7.15)	6.4 (0.85)
Combe <i>et al.</i> ,	SSZ + PBO (n = 50)	53.3	82	NR	5.6	DAS44-ESR 5.0
2006,°° Combe et al 2009 ⁸⁹	ETN + PBO (<i>n</i> = 103)	51.3	78.6		7.1	DAS44-ESR 5.1
	ETN + SSZ (n = 101)	50.6	80.2		6.5	DAS44-ESR 5.2
JESMR ¹⁴⁰	ETN ($n = 74$)	58.1 (12.6)	87.3	NR	10.6 (10.5)	6.1
	ETN + MTX 6–8 mg/week (<i>n</i> = 77)	56.5 (11.1)	80.0		8.1 (7.7)	6.0
Lan <i>et al.</i> , 2004 ¹⁰¹	PBO + MTX (<i>n</i> = 29)	50.79	06	NR	NR (eligibility more than one year)	NR
	ETN + MTX (<i>n</i> = 29)	47.55	83			NR

TABLE 10 Population characteristics: populations 2 and 3 – cDMARD experienced vs. cDMARD(s) or PBO (continued)

Trial name/study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
LARA ¹⁰²	MTX + DMARD (n = 142)	48.6	90.1	NR	9.0 (7.5)	5.9
	ETN50 + MTX (n = 281)	48.4	88.3		7.9 (7.0)	5.9
Moreland <i>et al.</i> ,	PBO (<i>n</i> = 800)	51	76	NR	12	NR
1999	ETN + PBO (n = 78)	53	74		11	NR
O'Dell et al.,	MTX + SSZ + HCQ ($n = 178$)	57.8 (13)	43.4	Yes	5.5 (9.3)	5.8
2013'''2	ETN50 + MTX (n = 175)	56 (13.2)	48.9		4.9 (8.0)	5.9
Wajdula 2000	PBO (<i>n</i> = 111)	53	NR	N/A (12 week	7.2	NR
(reported in Chen <i>et al.</i> , 2006 ¹²³)	ETN (<i>n</i> = 105)	53	NR	study)	7.5	NR
Weinblatt <i>et al.</i> ,	MTX + PBO (n = 30)	53	73	Yes	13	NR
1999'24	ETN + MTX (n = 59)	48	06		13	NR
APPEAL ⁶⁷	MTX + DMARD (SSZ, HCQ or LEF) (<i>n</i> = 103)	48.5 (11.3)	88.4	NR	6.9 (8.5)	ESR 6.1 (1.1); CRP 5.34 (1.1)
	ETN + MTX (n = 197)	48.4 (12.0)	91.4		6.5 (7.3)	ESR 6.1 (1.1); CRP 5.23 (1.1)
GO-FORTH ⁹¹	PBO + MTX 6–8 mg/week (<i>n</i> = 90)	51.1 (11.6)	83.0	Yes	8.7 (8.2)	ESR 5.6 (0.99)
	GOL + MTX 6–8 mg/week (<i>n</i> = 89)	50.4 (9.9)	84.9		8.8 (8.8)	ESR 5.5 (1.18)
GO-FORWARD ⁹²	PBO + MTX (<i>n</i> = 133)	Mean (SD) = 51.2 (11.96)	82.0 (109/133)	Yes	Mean (SD)=8.62 (7.86)	CRP 5.458 (4.672–6.093); ^a ESR 6.111 /c 260 6 574) ^a
		52.0 (42.0–58.0)ª			6.5 (3.1–11.9) ^a	(4/0.0-007.0) 0
	GOL + MTX (n = 89)	Mean (SD) = 50.3 (10.98)	80.9 (72/89)		Mean (SD)=7.33 (7.83)	CRP 5.766 (4.628–6.322) ^a
		52.0 (43.0–57.0) ^a			4.5 (2.1–9.7) ^a	
						continued

Trial name/study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
Kay e <i>t al.</i> , 2008 ⁹⁸	PBO s.c. + MTX (<i>n</i> =35)	(46.0–66.0) ^a	74.3	Yes	5.6 (1.4–10.9)ª	CRP 5.8 (5.2–6.4); ^a ESR 6.3 (5.7–7.0) ^a
	GOL + MTX (n = 35)	57.0 (50.0-64.0) ^a	85.7		8.2 (4.1–14.3) ^a	CRP 5.9 (5.5–6.9); ^a ESR 6.4 (5.6–7.3) ^a
Abe <i>et al.</i> , 2006 ⁵⁶	PBO + MTX (n = 47)	55.1 (7.6)	74.5 (35/47)	NR	7.5 (5.0)	NR
	IFX + MTX ($n = 49$)	55.2 (10.9)	81.6 (40/49)		9.1 (7.4)	NR
ATTRACT ⁷⁵	PBO + MTX (n = 88)	51 (19.0–75.0) ^a	80 (70/88)	NR	8.9 (0.8–35.0) ^b	NR
	IFX + MTX (n = 86)	56 (25.0–74.0) ^a	81 (70/86)		8.4 (0.7–45.0) ^b	NR
Durez e <i>t al.</i> , 2004 [%]	Single i.v. infusion of MP (sodium hemisuccinate) at week 0 + MTX (n = 15)	56 (35–79) ^b	73	NR	12 (1–24) ^b	NR
	IFX + MTX (<i>n</i> = 12)	48 (34–60) ^b	100		10 (2–20) ^b	NR
START ¹¹⁸	PBO + MTX (<i>n</i> = 363)	52.0 (44–61) ^a	83.2	Yes	8.4 (4–15) ^a	NR
	IFX + MTX (n = 360)	53.0 (45–61) ^a	80.0		7.8 (3–15) ^a	NR
Swefot ¹¹⁹	SSZ + HCQ + MTX (n = 130)	52.9 (13.9)	78 (101/130)	Yes	0.525	4.79 (1.05)
	IFX + MTX (n = 128)	51.1 (13.3)	76 (97/128)		0.517	4.91 (0.98)
Wong et al., 2009 ¹²⁵	PBO + MTX (with crossover to open-label IFX at week 24) (<i>n</i> = 9)	50 (16)	8/9	Yes	NR	6.4 (0.8)
	IFX + MTX ($n = 17$)	48 (12)	14/17		NR	6.2 (0.9)
Zhang <i>et al.</i> ,	PBO + MTX (n = 86)	48.9 (8.0)	84.9	NR	8 (6.22)	NR
7006	IFX + MTX ($n = 87$)	47.9 (10.1)	85.1		7.13 (6.17)	NR
ACT-RAY ⁵⁷	TCZ + PBO (n = 277)	53.6 (11.9)	78.6	NR	8.3 (8.4)	ESR 6.36 (1.00)
	TCZ + MTX (n = 276)	53.0 (13.4)	81.9		8.2 (8.0)	ESR 6.33 (0.98)

TABLE 10 Population characteristics: populations 2 and 3 – cDMARD experienced vs. cDMARD(s) or PBO (continued)

Trial name/study	Treatment arms	Mean age (years) (SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (vears) (SD)	Mean DAS28 at baseline (SD) – ESR unless stated to be CRP
MEASURE ¹⁰³	PBO + MTX (n = 69)	NR	NR	Yes	NR	NR
	TCZ + MTX (n = 69)	NR	NR		NR	NR
Nishimoto <i>et al.</i> ,	PBO (<i>n</i> = 53)	53.0 (31–73) ^b	73.6	NR	8.4 (0.7–52.7) ^b	NR
2004 105	TCZ monotherapy ($n = 55$)	56.0 (25–74) ^b	83.6		8.3 (1.3–45.7) ^b	NR
SAMURAI ¹¹⁵	cDMARDs ($n = 145$)	53.1	82	NR	124.8 weeks	6.4
	TCZ monotherapy ($n = 157$)	52.9	79.6		114.4 weeks	6.5
SATORI ¹¹⁶	PBO + MTX ($n = 64$)	50.8 (12.2)	48/64 evaluated	NR	8.7 (7.1)	6.2 (0.9)
	TCZ + PBO (n = 61)	52.6 (10.6)	90.2		8.5 (8.4)	6.1 (0.9)
TOWARD ¹²¹	PBO + stable cDMARDs $(n = 415)$	54 (13)	84	Yes	9.8 (9.1)	6.6 (1.0)
	TCZ + stable DMARDs $(n = 805)$	53 (13)	81		9.8 (8.8)	6.7 (1.0)
TACIT ¹⁴¹	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
	AiC information has been removed	AiC information has been removed	AiC information has been removed		AiC information has been removed	AiC information has been removed
ACT-RAY, ACTemra (toc in Patients to be Treated Arthritis; ASSET, Abatace Therapy; AUGUST II, A Pl RA patients with low to General Evaluation study Activity Score 44 joints; L week subcutaneously; G arthritis despite methotre Arthritis study; MEASURE Inhibitor Certolizumab pé arthritis patients with an Therapy; Swefot, Swedisl DMARD therapy. a Median (interquartile r b Median (range). Data are shown to the le	lizumab) RAdiographic study; ADORE With Etanercept or an Alternative List pt Systemic SclErosis Trial; ASSURE, A nase II Dose-finding Study of Atacicep moderate disease activity; CHANGE, C rCREATE IIb, A 6-month Randomised, EO19, Efficacy and Safety of Adalimu D-FORTH, golimumab in combination atte therapy; JESNR, Japanese Efficac seckinumab in ankylosing spondyli gol; Study of Active Controlled Monc inadequate response to methotrexate n pharmacotherapy; TACIT, tumour ne ange).	c, ADjuvant Oxaliplatin in F ted; ARMADA, Anti-TNF fa ted; ARMADA, Anti-TNF fa ted; ARMADA, Anti-TNF fa ted; ARMADA, Anti-TNF thincal investigation in Hig . Inical investigation in Hig . Double-blind, Open Arm mab in Patients With Activ mab in Patients With Activ mab in Patients With Activ and Safety of Etanercep ay and Safety Of Etanercep atis; MP, methylprednisolor therapy Used for Rheuma crosis factor inhibitors ag ecrosis factor inhibitors ag material.	Ectal Cancer, AIM, Abata (Ectal Cancer, AIM, Abata (For Research study progr n Use with other RA ThEra RA); CERTAIN, efficacy an ny disease-affected rheum Comparator, Phase IIb WW Reumatoid Arthritis Tr nese patients with active t on Active Rheumatoid A e: NVA, not applicable; NF toid Arthritis, an IL-6 Inhit fulimumab in Rheumatoid a ainst combination intensiv ainst combination intensiv	cept in Inadequate respond mode the Monoclonal antil pies; ATTRACT, Anti-TNF tr pies; ATTRACT, Anti-TNF tr d safety of CERTolizumab p atoid Arthritis patients in J th AZD9056, in Patients W eated Concomitantly With heumatoid arthritis; GO-FC rthritis Despite Methotrecat heumatoid arthritis; GO-FC rthritis; START, Safety Trial rthritis; START, Safety Trial e therapy; TOWARD, TOcili e therapy; TOWARD, TOcili	lers to Methotrexate; APF body ADalimumab (D2E7 rial in Rheumatoid Arthrit apan with Adalimumab a fith Rheumatoid Arthritis (th Rheumatoid Arthritis (th Rheumatoid Arthritis) RA EvALuation In Subject RA EvALuation In Subject ve controlled TOcilizumat for rheumatoid Arthritis zumab in combination W	EAL, Asia-Pacific Study) in rheumatoid is with Concomitant sponse to DMARDS in pplying staNdard and RA), DAS44, Disease anercept 50 mg once a intercen Rheumatoid merican Rheumatoid icrive rheumatoid merican Rheumatoid ith traditional

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
Bejarano <i>et al.</i> , 2008 ⁷⁷	PBO + MTX	56 weeks	73	54.8	45.2	37.5	No
	ADA + MTX		75	71.6	56.0	50.7	
GUEPARD ³³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	12 weeks	32	50	27	19	No
	Initial ADA + MTX 12 weeks, then step-up therapy in both groups based on DAS28		33	84	66	44	
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	52 weeks	32	81	68	58	No
	Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28		33	85	67	42	
HIT HARD ⁹⁴	PBO + MTX	24 weeks	85	67.6	48.7	26.8	Yes
	ADA + MTX		87	79.0	63.8	48.0ª	
OPERA ¹⁰⁷	PBO + MTX + steroid	12 months	91	78	63	45	No
	ADA + MTX + steroid		89	86	80ª	65 ^a	
OPTIMA ¹⁴²	PBO + MTX	26 weeks	517	57	34	17	Yes
	ADA + MTX		515	70 ^b	52 ^b	35 ^b	
PREMIER ¹⁰⁹	PBO + MTX	26 weeks	257	61.5	40.5	22.2	Yes
(Supplementary data	ADA monotherapy + PBO		274	53.3	35.0	19.7	
identified via ClinicalTrials.gov)	ADA + MTX		268	68.7	58.6	42.5	

TABLE 11 American College of Rheumatology response data: population 1 – RCTs of biologic vs. DMARD(s) or PBO

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
PREMIER ¹⁰⁹	PBO + MTX	1 year	257	63	46	28	No
	ADA monotherapy + PBO		274	54^{a} (vs. MTX monotherapy)	41	26	
	ADA + MTX		268	73ª (vs. MTX monotherapy), b (vs. ADA monotherapy)	62 ^b	46 ^b	
	PBO + MTX	2 years	257	56	43	28	No
	ADA monotherapy + PBO		274	49	37	28	
	ADA + MTX		268	69^{a} (vs. MTX monotherapy), b (vs. ADA monotherapy)	59 ⁶	47 ^b	
COMET ⁸¹	PBO + MTX	24 weeks	268	169	102	47	Yes
	ETN + MTX		274	224	167	103	
	PBO + MTX	52 weeks	268	67	49	28	No
	ETN + MTX		274	86	71	48 ^b	
COMET ⁸²	MTX in year 1, MTX in year 2	2 years	66	61	46	32	No
	MTX year 1, ETN + MTX in year 2	(week 104)	06	81 ^a	66 ^a	48ª	
	ETN + MTX in year 1, ETN + MTX in year 2		111	86ª	70 ^a	57 ^b	
	ETN + MTX in year 1, ETN in year 2		111	80	64	44	
ERA ¹³⁹	PBO + MTX	6 months	217	58.2	31.54	14.24	Yes
	ETN + PBO		207	65.42	40.14	20.94ª	
	PBO + MTX	12 months	217	66 ^c	44 ^c	23 ^c	No
	ETN + PBO		207	72 ^c	49 ^c	26 ^c	
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	160	49.4	29.4	15.6	Yes
	GOL + MTX		159	61.6 ^ª	40.3ª	23.9	
GO-BEFORE ¹⁴³	PBO + MTX	52 weeks	160	63.1	40.6	24.4	No
	GOL + MTX		159	68.6	43.4	28.3	
							continued

A	Δ	
٠	υ	

TABLE 11 American Coll	ege of Rheumatology response data: popul	ation 1 – RCTs of	biologic vs. DI	MARD(s) or PBO (cont	inued)		
Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
ASPIRE ⁷¹	PBO + MTX	54 weeks	274	53.6	32.1	21.2	No
	IFX + MTX		351	62.4a	45.6 ^b	32.5ª	
BeST ⁷⁸	Sequential monotherapy	6 months	126	49.69	NR	15.9	Yes
	Step-up combination therapy		121	60.04	NR	11.77	
	Initial combination therapy + prednisone		133	70.63	NR	26.58	
	Initial combination therapy + IFX		128	74.3	NR	31.15	
Durez <i>et al.</i> , 2007 ¹²⁰	MTX	22 weeks	14	28.13	7.69	0	Yes
	MTX+i.v. MP	N/A	N/A	N/A	N/A	N/A	
	IFX + MTX	22 weeks	15	86.72ª	66.85 ^a	33.79ª	
	MTX	52 weeks	14	46 ^c	39 ^c	14 ^c	No
	MTX+i.v. MP		15	87 ^c	67 ^c	53°	
	IFX + MTX		15	80 ^c	65 ^c	29 ^c	
Quinn <i>et al.</i> , 2005 ¹¹⁰	PBO + MTX	14 weeks	10	20	0	0	No
	IFX + MTX		10	60	60	60	
	PBO + MTX	54 weeks	10	60	40	30	No
	IFX + MTX		10	80	80	70	
ASPIRE, Active controlled METhotrexate and etaber therapy, GUEPARD, GUÉr MP, methylprednisolone; treatment Initiation with h a $p < 0.05$. b $p < 0.001$. c Estimated from graphic Data are shown to the lev	Study of Patients receiving Infliximab for the tre cept in early rheumatoid arthriftis; ERA, Early Rh r la PolyARthrite rheumotoide Débutante (adali N/A, not applicable; NR, not reported; OPERA, Alethotrexate and Adalimumab; PREMIER, Patie al data.	aatment of Rheuma eumatoid Arthritis , mumab); HIT HARI OPtimized treatmer nts REceiving Meth	itoid arthritis of (etanercept); Go High Inductic of algorithm for otrexate and In otrexate and In	Early onset; BeST, BEha D-BEFORE, GOlimumab on THerapy with Anti-Rh on therapy with Early Rhe fliximab for the treatme fliximab for the treatme	ndelings STrategie; CC in active rheumatois ar eumatic Drugs (adalim umatoid Arthritis; OPTI nt of Early Rheumatoic	MET, Combination Of thritis BEFORE methot umab and methotrexa IMA, OPTimal protocol I arthritis.	exate te); for

4

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
ATTEST ⁷⁴	PBO + MTX	Day 197	110	41.8	20	9.1	Yes
	IFX + MTX	Day 197	165	59.4ª ^(vs. PBO)	37 ^a (vs. PBO)	24.2 ^a (vs. PBO)	
	ABT i.v. + MTX	Day 197	156	66.7 ^b (vs. PBO)	40.4 ^b (vs. PBO)	20.5 ^a (vs. PBO)	
AMPLE ⁶⁶	ABT s.c.	28 weeks (197 days)	328	66.13	45.7	24.19	Yes
	ADA	28 weeks (197 days)	318	64.52	42.47	22.58	
AMPLE ¹⁴⁴	ABT s.c.	1 year	328	64.8	46.2	29.2	No
	ADA	1 year	318	63.4	46	26.2	
ADACTA ⁵⁸	TCZ + s.c. PBO	24 weeks	163	65.0 ^a	47.2 ^a	32.5ª	Yes
	ADA + i.v. PBO	24 weeks	162	49.4	27.8	17.9	
deFilippis <i>et al.</i> ,	ETN + MTX	22 weeks	15	60	26	7	Yes
2006	IFX + MTX	22 weeks	15	60	33	7	
	ETN + MTX	54 weeks	15	74	53	7	No
	IFX + MTX	54 weeks	15	60	19	20	
AMPLE, abatacept vs. at a p < 0.05. b p < 0.001.	dalimumab in biologic-naive RA	patients with background M	.XT				

TABLE 12 American College of Rheumatology response data: populations 2 and 3 – biologic head-to-head RCTs

))				
Trial name/study	Treatment arms fo data extraction per	rr which rformed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
AIM ⁶²	PBO + MTX		6 months	219	39.7	16.8	6.5	Yes
	ABT i.v. + MTX			433	67.9	39.9	19.8	
	PBO + MTX		12 months	219	39.7	18.2	6.1	No
	ABT i.v. + MTX			433	73.1	48.3	28.8	
AUGUST II ⁷⁶	PBO + MTX		26 weeks	76	46	15	Ŀ	Yes
	ADA + MTX			79	71 ^b	38 ^b	18 ^a	
CHANGE ⁸⁰	PBO		24 weeks	87	13.8	5.7	1.1	Yes
	ADA monotherapy			91	44	24.2	12.1	
DE019 ⁸⁴	PBO + MTX		24 weeks	200	29.5	9.5	2.5	Yes
	ADA + MTX			207	63.3	39.1	20.8	
	PBO + MTX		52 weeks	200	24.0	9.5	4.5	No
	ADA + MTX			207	58.9 ^b	41.5 ^b	23.2 ^b	
STAR ¹¹⁷	PBO + cDMARDs		24 weeks	318	34.9	11.3	3.5	Yes
	ADA + cDMARDs			318	52.8ª	28.9ª	14.8 ^a	
Van De Putte <i>et al.</i> ,	PBO s.c.		26 weeks	110	19.1	8.2	1.8	Yes
2004 '22	ADA monotherapy			113	46.0 ^b	22.1 ^a	12.4ª	
ARMADA ⁶⁹	PBO + MTX		24 weeks	62	14.5	8.1	4.8	Yes
	ADA + MTX			67	67.2	55.2	26.9	
Kim <i>et al.</i> , 2007 ⁹⁹	PBO + MTX		24 weeks	63	36.5	14.3	7.9	Yes
	ADA + MTX			65	61.5	43.1	21.5	
CERTAIN ⁷⁹	PBO + cDMARDs		24 weeks	98	15.3	7.1	3.1	Yes
	CTZ + DMARDs			96	36.5 ^a	20.8 ^a	9.4	

TABLE 13 American College of Rheumatology response data: populations 2 and 3 – RCTs of biologic vs. DMARD(s) or PBO

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
REALISTIC ¹¹³	PBO + existing cDMARDs	12 weeks	29	20.7	NR	NR	No
	CTZ + existing cDMARDs		134	54.5	NR	NR	
ADORE ^{59,60}	ETN monotherapy	16 weeks	155	71.0	41.9	17.4	No
	ETN + MTX		152	67.1	40.1	18.4	
CREATE IIb ^{96,145}	PBO + DMARD	24 weeks	65	32.3	16.9	4.6	Yes
	ETN50 + DMARD		64	65.6	46.9	23.4	
ETN study 309 ⁸⁹	PBO + SSZ	24 weeks	50	28.0	14.0	2.0	Yes
	ETN + PBO		103	73.8ª ^(vs. 552)	46.6	21.4	
	ETN + SSZ		101	74.0 ^a (vs. SSZ, NS vs. ETN+PBO)	52.0 ^a (vs. SSZ, NS vs. ETN+PBO)	25.0 ^a (vs. SSZ, NS vs. ETN+PBO)	
	PBO + SSZ	104 weeks	50	34	10 ^c	2 ^c	No
	ETN + PBO		103	67 ^a (vs. SSZ)	45 ^a (vs. ^{SSZ}),c	24ª (vs. SSZ),c	
	ETN + SSZ		101	77^{a} (vs. SSZ)	58ª (vs. 552),c	27 ^a (vs. SSZ),c	
JESMR ¹⁴⁰	ETN monotherapy	24 weeks	69	63.8	47.8	26.1	Yes
	ETN + MTX		73	90.4 ^b	64.4	38.4	
	ETN monotherapy	52 weeks	69	63.8	43.5	29	No
	ETN + MTX		73	86.3 ^b	76.7 ^b	50.7 ^a	
Lan <i>et al.</i> , 2004 ¹⁰¹	PBO + MTX	12 weeks	29	34	10	0	No
	ETN + MTX		29	90 ^b	66 ^b	24	
LARA ¹⁰²	MTX + DMARD	24 weeks	142	50	23.2	11.3	Yes
	ETN50 + MTX		279	83.2 ^b	62 ^b	34.8 ^b	
							continued

nt
<u></u>
BO
Ļ
0
Š
R
4
۵
Ś.
<u>.</u>
ő
ō
ā
of
Ľ
Š
ī
Μ
pu
a
ŝ
5
ati
^D
ğ
ata
ö
se
õ
sp
E.
Š
8
atc
Ē
le L
5
ð
ē
eg
0
2
Gar
ŝrić
Ĕ
<

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
Moreland <i>et al.</i> ,	PBO	3 months	80	23	ø	4	No
1999; ¹⁰⁴ Mathias <i>et al.</i> , 2000 ¹⁰⁵	ETN + PBO		78	62 ^b	41 ^b	15 ^a	
	PBO	6 months	80	11	5	1	Yes
	ETN + PBO		78	59 ^b	40 ^b	15 ^b	
RACAT ¹¹¹	MTX + SSZ + HCQ	24 weeks	159	55.97	25.79	5.03	Yes
	ETN50 + MTX		163	55.21	35.58	15.95ª	
	MTX + SSZ + HCQ	48 weeks	154	57.4	35.5	18.1	No
	In analysis, <i>n</i> = 154 (of whom 39 switched to ETN)						
	ETN50 + MTX (<i>n</i> = 175)		155	65.8	42.6	26.5	
	In analysis, <i>n</i> = 155 (of whom 41 switched to MTX + SSZ + HCQ)						
Wajdula 2000	PBO	12 weeks	100	12	Ŀ	1	No
(reported in Chen <i>et al.</i> , 2006 ¹²³)	ETN		109	70	34	13	
Weinblatt <i>et al.</i> ,	PBO + MTX	24 weeks	30	27	ſ	0	Yes
1999'24	ETN + MTX		59	71 ^b	39 ^b	15 ^a	
APPEAL ⁶⁷	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	103	58	35	7	No
	ETN + MTX		197	79 ^b	57 ^b	19 ^a	
GO-FORTH ⁹¹	PBO + MTX	14 weeks	88	27.3	9.1	2.3	No
	GOL + MTX		86	72.1 ^b	43.0 ^b	22.1 ^b	
	PBO + MTX	24 weeks	88	33.0	14.8	5.7	Yes
	GOL + MTX		86	70.9 ^b	41.9 ^b	26.7 ^b	

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
GO-FORWARD ⁹²	PBO + MTX	14 weeks	133	33.1	9.8	3.8	No
	GOL + MTX		89	55.1 ^b	34.8 ^b	13.5 ^a	
	PBO + MTX	24 weeks	133	27.8	13.5	5.3	Yes
	GOL + MTX		89	59.6 ^b	37.1 ^b	20.2 ^b	
Kay <i>et al.</i> , 2008 ⁹⁸	PBO + MTX	16 weeks	35	37.1	5.7	0	No
	GOL + MTX		35	60.0	37.1 ^b	8.6	
Abe <i>et al.</i> , 2006 ⁵⁶	PBO + MTX	14 weeks	47	23.4	8.5	0	No
	IFX + MTX		49	61.2	30.6	10.2	
ATTRACT ⁷⁵	PBO + MTX	30 weeks	84	20	5	0	Yes
	IFX+MTX		83	50	27 ^b	8 ^a	
Lipsky <i>et al.</i> , 2000 ¹⁴⁶	PBO + MTX	54 week	88	17	80	2	No
	IFX + MTX		86	42 ^b	21 ^a	10 ^a	
Durez <i>et al.</i> , 2004 ⁸⁶	MP i.v. + MTX	14 weeks	12	œ	0	0	No
	IFX+MTX		6	67 ^a	44ª	0	
Swefot ¹¹⁹	SSZ + HCQ + MTX	12 months after study	130	28	15	7	No
	IFX + MTX	inclusion [8–9 months (35–39 weeks) after randomisation]	128	42ª	25 ^a	12	
Swefot ¹⁴⁷	SSZ + HCQ + MTX	24 months after study	130	33	22	14	No
	IFX + MTX	inclusion [20–21 months (87–91 weeks) after randomisation]	128	40	30	16	
START ¹¹⁸	PBO + MTX	22 weeks	363	25.5	9.7	4.7	Yes
	IFX + MTX		360	58.0 ^b	32.1 ^b	14.0 ^b	
Zhang <i>et al.</i> ,	PBO + MTX	18 weeks	NR (86 randomised)	48.84	25.58	13.95	No
2006	IFX + MTX		NR (87 randomised)	75.86 ^b	43.68ª	22.99	
							continued

TABLE 13 American College of Rheumatology response data: populations 2 and 3 – RCTs of biologic vs. DMARD(s) or PBO (continued)

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
ACT-RAY ⁵⁷	TCZ + oral PBO	24 weeks	276	70.3	40.2	25.4	Yes
	TCZ + MTX		277	71.5	45.5	24.5	
MEASURE ¹⁰³	PBO + MTX	12 weeks	NR	25	9	ſ	No
	TCZ + MTX		NR	51	17	10	
Nishimoto <i>et al.</i> ,	PBO	12 weeks	53	11.3	1.9	0	No
2004 👓	TCZ		55	78.2 ^b	40.0 ^b	16.4 ^ª	
SAMURAI ¹¹⁵	cDMARDs	24 weeks	145	38.67	17.64	6.86	Yes
	TCZ		157	82.06	57.27	33.82	
	cDMARDs	52 weeks	145	34	13	6	No
	TCZ		157	78 ^b	64 ^b	44 ⁶	
SATORI ¹¹⁶	PBO + MTX	24 weeks	64	25.0	10.9	6.3	Yes
	TCZ + PBO capsules		61	80.0	49.2	29.5	
TOWARD ¹²¹	PBO + stable cDMARDs	24 weeks	413	24.5	б	2.9	Yes
	TCZ + stable DMARDs		803	60.8 ^b	37.6 ^b	20.5 ^b	
ACT-RAY, ACTemra (in Patients to be Trea Arthritis; ATTRACT, A and safety of CERTolli rheumatoid Arthritis p Phase IIb With AZD90	cocilizumab) Radiographic studY; Al ed With Etanercept or an Alternativ nti-TNF trial in Rheumatoid Arthritis cumab pegol After INcomplete resp atients in Japan with Adalimumab a 56, in Patients With Rheumatoid Ar	DORE, ADjuvant Oxaliplatin in <i>I</i> e Listed; ARMADA, Anti-TNF with Concomitant Therapy; <i>P</i> onse to DMARDS in RA patier applying staNdard and Genera thritis (RA); DE019, Efficacy a	REctal Cancer; AIM, Aba factor Research study pro AUGUST II, A Phase II Dos nts with low to moderate al Evaluation study; CREA and Safety of Adalimumak	tacept in Inadequate ogram of the Monoclo e-finding Study of Att disease activity; CHAI TE IIb, A 6-month Rar in Patients With Activ	responders to Methot nal antibody ADalimu acicept in Rheumatoid VGE, Clinical investiga ndomised, Double-blin ve Rheumatoid Arthrit	rexate; APPEAL, Asia-P mab (D2E7) in rheuma Arthritis (RA); CERTAII tition in Highly disease- id, Open Arm Compara is Treated Concomitan	acific Study atoid N, efficacy affected ator, titly With

SAMURAI, Study of Active controlled Monotherapy Used for Rheumatoid Arthritis, an IL-6 Inhibitor; SATORI, Study of Active controlled TOcilizumab for Rheumatoid arthritis patients with an GO-FORWARD, golimumab in active rheumatoid arthritis despite methotrexate therapy; JESMR, Japanese Efficacy and Safety of Etanercept on Active Rheumatoid Arthritis Despite Methotrexate Methotrexate; ETN50, etanercept 50 mg once a week subcutaneously; GO-FORTH, golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis; Inadequate response to methotrexate; STAR, Safety Trial of Adalimumab in Rheumatoid arthritis; START, Safety Trial for rheumatoid Arthritis with Remicade Therapy; Swefot, Swedish Rheumatoid Arthritis Comparison of Active Therapies in Methotrexate Suboptimal Responders study; REALISTIC, RA EvALuation In Subjects receiving TNF Inhibitor Certolizumab pegol Therapy; LARA, Latin American Rheumatoid Arthritis study; MEASURE, secukinumab in ankylosing spondylitis; MP, methylprednisolone; NR, not reported; NS, non-significant; RACAT, pharmacotherapy; TOWARD, TOcilizumab in combination With traditional DMARD therapy. a p < 0.05. b p < 0.001*p* < 0.001

Data are shown to the level of accuracy available in the source material.

Estimated from graphical data.

ASSESSMENT OF CLINICAL EFFECTIVENESS

Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving no EULAR response	% achieving moderate EULAR response	% achieving good EULAR response	% EULAR responder (moderate/good)	In NMA?
GUEPARD ⁹³	MTX	Week 12	32	NR	NR	25	NR	No
	ADA + MTX	Week 12	33	NR	NR	63.6 ^ª	NR	No
	Initial MTX	Week 52	32	NR	NR	65.6	NR	No
	12 weeks, then step-up therapy							

TABLE 14 European League Against Rheumatism response: population 1 – RCTs of biologic vs. DMARD(s) or PBO

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

N N

74.4 80.5

NR NR

NR NR

25.6 19.5

NR

27

GO-BEFORE, GOlimumab in active rheumatoid arthritis BEFORE methotrexate therapy; GUEPARD, GUÉrir la polyARthrite rheumotoide Débutante (adalimumab); NR, not reported; OPERA, OPtimized treatment algorithm for patients with Early Rheumatoid Arthritis.

52 weeks 52 weeks

PBO + MTX GOL + MTX a $\rho < 0.05$. Data are shown to the level of accuracy available in the source material.

Yes Yes

61.3 73ª

NR NR

RR

38.7

160 159 160 159

~ ~

89

MTX + PBO + steroid ADA + MTX + steroid

GOL + MTX

GO-BEFORE¹⁴³

PBO+MTX

GO-BEFORE⁹⁰

9

12 months 12 months 24 weeks 24 weeks

94 93

on S

74 82

20 11

۶

NR

63.6

R

R

ЭЭ

Week 52

Initial ADA + MTX

12 weeks, then step-up

therapy

OPERA¹⁰⁷

Populations 2 and 3 There were three trials of head-to-head biologics for cDMARD-experienced patients who reported EULAR response data (*Table 15*). ATTEST⁷⁴ showed that patients treated with ABT plus MTX or IFX plus MTX responded similarly at 6 months' follow-up. A Randomised Efficacy and Discontinuation Study of Etanercept versus Adalimumab (RED-SEA)¹¹⁴ reported ADA plus cDMARDs and ETN (50 mg) once a week plus cDMARDs-treated patients responding similarly well at 1-year follow-up. ADACTA⁵⁸ reported that significantly more TCZ plus PBO-treated patients achieved a good EULAR response than ADA plus PBO-treated patients at 6 months' follow-up. ADACTA⁵⁸ and ATTEST⁷⁴ contributed EULAR data to the NMA, whereas RED-SEA¹¹⁴ did not report data within 22–30 weeks' follow-up.

Eleven other published trials reported EULAR data for biologics (Table 16). With the exception of CTZ, data were available for all interventions of interest. Two ADA trials reported EULAR data. A Phase II Dose-finding Study of Atacicept in Rheumatoid Arthritis (RA) (AUGUST II)⁷⁶ reported a significantly better EULAR result for ADA plus MTX than for MTX plus PBO at 6 months. ADA monotherapy had a significantly higher percentage of patients achieving at least moderate EULAR response than a PBO arm.¹²² Of four ETN trials, two compared ETN monotherapy with ETN combined with MTX. One of these studies⁵⁹ found similar EULAR responses for the groups at 16 weeks, whereas the other¹⁴⁰ reported significantly better results for combination therapy than for monotherapy at 6 months and 1 year. Latin American Rheumatoid Arthritis study (LARA)¹⁰² reported significantly better EULAR response for ETN (50 mg) once a week plus MTX than for MTX in combination with either SSZ or HCQ at 6 months. ETN plus MTX had a similar percentage of participants with good or moderate EULAR response to MTX plus DMARD (SSZ, HCQ or LEF) in the Asia-Pacific Study in Patients to be Treated With Etanercept or an Alternative Listed (APPEAL)⁶⁷ trial at 16 weeks' follow-up. GOL plus MTX was significantly better than MTX plus PBO in terms of EULAR response at both 14 and 24 weeks' follow-up in the golimumab in active rheumatoid arthritis despite methotrexate therapy (GO-FORWARD)⁹² trial. Swedish pharmacotherapy (Swefot)¹¹⁹ reported IFX plus MTX having significantly better EULAR response than triple therapy with cDMARDs (SSZ + HCQ + MTX) at 1 year, with the difference between groups not significant at 6 months and 2 years. TCZ monotherapy was investigated in two of the three TCZ trials reporting EULAR data. TCZ monotherapy results were similar to TCZ in combination with MTX, in the ACTemra (tocilizumab) RAdiographic studY (ACT-RAY)⁵⁷ trial at 6 months. TCZ monotherapy treatment had significantly better EULAR responses at 12 weeks compared with PBO.¹⁰⁶ The TOcilizumab in combination With traditional DMARD therapy (TOWARD)¹²¹ trial reported significantly better EULAR responses for TCZ in combination with stable cDMARDs than for PBO in combination with stable cDMARDs at 6 months. The following trials contributed EULAR data to the NMA: AUGUST II,⁷⁶ Van De Putte et al.,¹²² Japanese Efficacy and Safety of Etanercept on Active Rheumatoid Arthritis Despite Methotrexate Therapy (JESMR),¹⁴⁰ LARA,¹⁰² GO-FORWARD,⁹² Swefot,¹¹⁹ ACT-RAY⁵⁷ and TOWARD.¹²¹ ADjuvant Oxaliplatin in REctal Cancer (ADORE)⁵⁹ and APPEAL⁶⁷ did not have data within 22-30 weeks.

(Academic-in-confidence information has been removed.)

Disease Activity Score 28 joints

Population 1 One head-to-head biologics trial in MTX-naive patients reported DAS28 data¹⁰⁰ (see *Appendix 4, Table 346*). At 24 weeks' follow-up, Kume *et al.*¹⁰⁰ reported similar mean change from baseline in DAS28-ESR for ADA monotherapy and ETN monotherapy.
	R ler
	% EULA respond
	% achieving good EULAR
lead RCTs	% achieving moderate EULAR
3 – biologic head-to-h	% achieving no
llations 2 and 3	Numbers
natism response: popu	Assessment time
oean League Against Rheur	Treatment arms for which data extraction
TABLE 15 Euro	Trial name/

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving no EULAR response	% achieving moderate EULAR response	% achieving good EULAR response	% EULAR responder (moderate/good)	In NMA?
ATTEST ⁷⁴	PBO + MTX	Day 197	102	45.1	44.1	10.8	54.9	Yes
	ABT + MTX	Day 197	150	23.3	56.7	20.0	76.7	Yes
	IFX + MTX	Day 197	156	34.0	42.9	23.1	66.0	Yes
RED-SEA ¹¹⁴	ADA + cDMARDs	52 weeks	60	40.4	33.3	26.3	59.6	No
	ETN50 + cDMARDs	52 weeks	60	51.5	16.7	31.7	48.4	No
ADACTA ⁵⁸	TCZ + PBO	24 weeks	163	22.1	26.4	51.5ª	77.9	Yes
	ADA + PBO	24 weeks	162	45.1	35.1	19.8	54.9	Yes
ETN50, etanerce a $p < 0.01$ repo	pt 50 mg once a week subcut rted.	aneously; RED-SEA, a Rar	ndomised Effica	cy and Discontinuation	study of Etanercept versu	s Adalimumab.		

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving no EULAR response	% achieving moderate EULAR response	% achieving good EULAR response	% EULAR responder (moderate/good)	In NMA?
AUGUST II ⁷⁶	MTX+PBO	26 weeks	76	41	NR	NR	59	Yes
	ADA + MTX		79	19	NR	NR	81 ^a	Yes
Van De Putte	PBO	26 weeks	110	73.6	22.8	3.6	26.4	Yes
<i>et al.</i> , 2004 ¹²²	ADA		113	44.2	47.0	8.8	55.8	Yes
ADORE ^{59,60}	ETN	16 weeks	156	20.0	NR	NR	80.0	No
	ETN + MTX		151	17.6	NR	NR	82.4	No
JESMR ¹⁴⁰	ETN	24 weeks	69	29.0	37.7	33.3	71.0	Yes
	ETN + MTX 6–8 mg/week		73	4.1 ^b	43.8 ^c	52.1 ^c	95.9	Yes
	ETN	52 weeks	69	NR	NR	33.3	NR	No
	ETN + MTX 6–8 mg/week		73	NR	NR	52.1 ^c	NR	No
LARA ¹⁰²	MTX + DMARD	24 weeks	142	35.2	NR	12	64.8	Yes
	ETN50+MTX		279	8.2	NR	47 ^c	91.8 ^c	Yes
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	103	26.2	NR	NR	73.8	No
	ETN + MTX		197	12.2	NR	NR	87.8	No
GO-FORTH ⁹¹	PBO + MTX	6 months	84	51.2	35.7	13.1	48.8	Yes
	GOL + MTX		81	16.0	37.0	46.9	84.0	Yes

TABLE 16 European League Against Rheumatism: populations 2 and 3 - RCTs of biologic vs. DMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving no EULAR response	% achieving moderate EULAR response	% achieving good EULAR response	% EULAR responder (moderate/good)	In NMA?
GO-FORWARD ⁹²	PBO + MTX	14 weeks	133	55.6	NR	NR	44.4	No
	GOL + MTX		89	29.2	NR	NR	70.8 ^c	No
	PBO + MTX	24 weeks	133	57.9	NR	NR	42.1	Yes
	GOL + MTX		89	28.1	NR	NR	71.9 ^c	Yes
START ¹¹⁸	PBO + MTX	5.5 months	332	56	NR	NR	44	Yes
	IFX + MTX		333	25	NR	NR	75	Yes
Swefot ¹¹⁹	SSZ + HCQ + MTX	23.8 weeks	130	NR	NR	23.8	NR	Yes
	IFX + MTX		128	NR	NR	33.6	NR	Yes
	SSZ + HCQ + MTX	12 months after	130	51	NR	25	49	No
	IFX + MTX	study inclusion [8–9 months (35–39 weeks) after randomisation]	128	40	NR	39ª	60	No
	SSZ + HCQ + MTX	24 months after	130	50	NR	31	50	No
	IFX + MTX	study inclusion [20–21 months (87–91 weeks) after randomisation]	128	41	N.R.	38	59	No
ACT-RAY ⁵⁷	TCZ + PBO	24 weeks	276	13.8	34.8	51.4	86.2	Yes
	TCZ + MTX		277	10.5	27.8	61.7	89.5	Yes
Nishimoto <i>et al.</i> ,	PBO	12 weeks	53	81.1	NR	0	18.9	No
2004	TCZ		55	9.1	NR	18.2 ^c	90.9 ^c	No
SATORI ¹¹⁶	MTX	6 months	64	60.3	36.5	3.2	39.7	Yes
	TCZ		61	3.4	31.1	65.5	96.6	Yes
								continued

al name/ dy	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving no EULAR response	% achieving moderate EULAR response	% achieving good EULAR response	% EULAR responder (moderate/good)	In NMA?
WARD ¹²¹	PBO + stable cDMARDs	24 weeks	413	62.5	NR	NR	37.5	Yes
	TCZ + stable DMARDs		803	20.3	NR	NR	79.7 ^c	Yes
CIT ¹⁴¹ (AiC)	Intensive DMARDs	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	Yes
	Grouped biologics	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	Yes
V50, etanercep TORI, Study of erapy; TACIT, t p < 0.05 report p < 0.01 report p < 0.01 report	t 50 mg once a week subcu Active controlled TOcilizum umour necrosis factor inhibi ed. rted.	taneously; GO-FORTH, ab for Rheumatoid arth tors against combinatio	golimumab in combine ritis patients with an Ir n intensive therapy.	ation with methotrexat ladequate response to	e in Japanese patient methotrexate; START	s with active rheumato , Safety Trial for rheum	id arthritis; NR, not re hatoid Arthritis with R	ported; emicade

TABLE 16 European League Against Rheumatism: populations 2 and 3 – RCTs of biologic vs. DMARD(s) or PBO (continued)

Thirteen other trials reported DAS28 mean change or remission data for MTX-naive patient trials, comprising five ADA trials,^{93,94,107-109} one ETN trial,⁸¹ one GOL trial⁹⁰ and five IFX trials.^{71,78,86,95,110} Across all interventions, where reported, mean DAS28 improved slightly in all treatment arms, including control cDMARD arms. Biologic treatment arms reported significantly higher percentage of patients meeting pre-defined DAS28 remission (usually < 2.6), or having significantly more improved DAS28 than baseline, than controls for ADA plus MTX than MTX plus PBO;^{94,109} ADA plus MTX plus steroid than MTX plus PBO than steroid;¹⁰⁷ ETN plus MTX than MTX plus PBO;⁸¹ GOL plus MTX than MTX plus PBO at 6 months (not 1-year follow-up);⁹⁰ IFX plus MTX than MTX plus PBO.^{71,110} ADA monotherapy had similar DAS28 results to MTX plus PBO,¹⁰⁹ as did IFX plus MTX to MTX plus methylprednisolone (MP).^{86,95} Step-up therapy with initial ADA⁹³ or IFX⁷⁸ did not differ from control groups after 1 year or 6 months respectively. Results are shown in *Appendix 4, Table 347*.

Populations 2 and 3 Four head-to-head trials of cDMARD-experienced patients reported DAS28 results^{58,66,74,114} (see *Appendix 4, Table 348*). ABT, ADA, ETN (50 mg) once weekly, IFX and TCZ treatment arms all showed some improvement in DAS28. There were similar levels of DAS28 improvement for ABT plus MTX and IFX plus MTX (both of which were significantly more improved than MTX plus PBO),⁷⁴ ABT and ADA monotherapies,⁶⁶ and ADA and ETN (50 mg) once weekly both in combination with cDMARDs.¹¹⁴ ADACTA⁵⁸ reported significantly more improvement for TCZ monotherapy than for ADA monotherapy.

Twenty other trials reported DAS28 mean change or remission data for cDMARD-experienced patient trials (see Appendix 4, Table 349), comprising two ABT trials,^{62,72} one ADA trial,¹²² two CTZ trials,^{79,113} five ETN trials, 67,96,102,112,140 three GOL trials, 91,92,98 two IFX trials 118,125 and five TCZ trials. 57,103,115,116,121 Across all interventions, where reported, mean DAS28 improved in all treatment arms, including control cDMARD arms. Biologic treatment arms reported higher percentages of patients meeting pre-defined DAS28 remission (usually < 2.6) than non-biologic control arms with one or two cDMARDs or baseline cDMARDs. There was a significantly higher percentage of patients meeting pre-defined DAS28 remission (usually < 2.6), or having significantly more improved DAS28 than baseline, than controls for ABT plus MTX than MTX plus PBO;⁵² ADA monotherapy than PBO;¹²² ETN (50 mg) once weekly plus MTX than MTX plus one other cDMARD;67,102 ETN (50 mg) once weekly plus MTX than MTX plus SSZ plus HCQ at 24 weeks (in an analysis of treatment completers only, although not after 48 weeks with the option to switch therapy);¹¹² GOL plus MTX than MTX plus PBO at 6 months (not 1-year follow-up);^{91,92,98} IFX plus MTX than MTX plus PBO;^{118,125} TCZ plus MTX than TCZ monotherapy⁵⁷ or than MTX plus PBO;¹⁰³ TCZ monotherapy than cDMARDs,¹¹⁵ although not compared with MTX plus PBO; and¹¹⁶ TCZ plus DMARDs than DMARDs plus PBO.¹²¹ ETN plus MTX performed significantly better than ETN monotherapy,¹⁴⁰ although not at 16 weeks' follow-up.59

(Academic-in-confidence information has been removed.)

Health Assessment Questionnaire Disability Index

Population 1 Ten trials reported HAQ-DI change from baseline (see *Appendix 4, Table 350*). These comprised a head-to-head trial,¹⁰⁰ six ADA trials,^{77,93,94,107–109} two ETN trials^{81,87} and one GOL trial.⁹⁰ There were improvements in HAQ-DI for most treatments, interventions and controls, although there tended to be more improvement for biologics than control arms, although not in all cases.⁸⁷

Populations 2 and 3 Four head-to-head trials^{58,66,74,85} reported HAQ-DI change from baseline (see *Appendix 4, Table 351*). All trial arms improved HAQ-DI. ABT-treated patients achieved similar results to IFX⁷⁴ and ADA.⁶⁶ TCZ monotherapy produced slightly more improvement than ADA monotherapy (significance testing not reported).⁵⁸ In a small trial (n = 32), ETN plus MTX produced slightly better HAQ-DI results than IFX plus MTX.⁸⁵

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 TNS, UK.

Twenty-eight other trials reported HAQ-DI change from baseline for cDMARD-experienced patients (see *Appendix 4*, *Table 352*), comprising two ABT trials,^{62,73} four ADA trials,^{69,80,84,122} two CTZ trials,^{79,113} 11 ETN trials,^{59,67,88,96,101,102,104,112,123,124,140,145} two GOL trials,^{91,92} four IFX trials^{75,86,118,126} and two TCZ trials.^{57,121} Generally, there was some improvement in HAQ-DI for all trial arms, with more improvement for biologics than control arms. (AiC information has been removed.)

Joint counts and assessment of inflammation markers (C-reactive protein and erythrocyte sedimentation rate)

Population 1 The only head-to-head RCT in MTX-naive patients identified in this review¹⁰⁰ did not report any follow-up or change data on joint counts or assessment of inflammation markers. A total of seven RCTs of biologic versus DMARD(s) or PBO reported follow-up or change data on joint counts or assessment of inflammation markers in MTX-naive patients (three for ADA,^{94,107,108} one for ETN,⁸¹ one for GOL⁹⁰ and two for IFX^{110,120}) (see *Appendix 4*, *Table 364*). Statistically significant differences in swollen joint count favouring biologic treatment over comparator were reported for ADA (one study⁹⁴) and ETN (one study⁸¹). Statistically significant differences in tender joint count favouring biologic treatment over comparator were reported for ADA (two studies^{94,108}) and GOL (one study⁹⁰). Statistically significant differences in CRP response favouring biologic treatment over comparator were reported for ADA (one study¹⁰⁸). Statistically significant differences in ESR response were not identified in any trials.

Populations 2 and 3 Four head-to-head RCTs reporting data on joint counts and/or assessment of inflammation markers in cDMARD-experienced patients were identified (see *Appendix 4, Table 366*). Similar improvements were made in swollen joint count, tender joint count and CRP level among patients in the s.c. ABT plus MTX and ADA plus MTX arms of the abatacept vs. adalimumab in biologic-naive RA patients with background MTX (AMPLE) trial.¹⁴⁴ Likewise, swollen joint count, tender joint count and CRP level were not significantly different between patients in the ADA plus cDMARDs and ETN plus cDMARDs arms of the RED-SEA trial.¹¹⁴ The deFilippis trial⁸⁵ reported no difference in percentage change between arms for swollen joint count and CRP level but reported significantly greater improvements in tender joint count in the ETN plus MTX arm relative to the IFX versus MTX arm. Finally, similar reductions in swollen joint count and tender joint count were reported for patients in the TCZ plus PBO ADA and ADA plus PBO TCZ arms in the double-dummy ADACTA trial.⁵⁸

Twenty RCTs of biologic versus DMARD(s) or PBO reported follow-up or change data on joint counts or assessment of inflammation markers in cDMARD-experienced patients (see *Appendix 4, Table 365*). Statistically significant differences in swollen joint count favouring biologic treatment over comparator were reported in eight trials [one ADA trial,⁸⁰ four ETN trials,^{89,101,104,105,124} one GOL trial,⁹² one TCZ trial¹²¹ and (AiC information has been removed)]. Statistically significant differences in tender joint count favouring biologic treatment over comparator were reported in 11 trials [one ADA trial,⁸⁰ four ETN trials,^{101,102,104,105,124} one GOL trial,⁹² three IFX trials,^{75,86,125} one TCZ trial¹²¹ and (AiC information has been removed)]. Statistically significant differences in CRP response favouring biologic treatment over comparator were reported in six trials (one ADA trial,⁸⁰ four ETN trials^{89,101,104,105,124} and one TCZ trial¹²¹). Statistically significant differences in ESR response favouring biologic treatment over comparator were reported in seven trials [five ETN trials,^{59,60,67,68,104,105,124} one TCZ trial¹²¹ and (AiC information has been removed)].

Two trials compared biologic monotherapy with biologic combination therapy. A trial of ETN reported significant improvements in swollen joint count, tender joint count and ERS for ETN combined with MTX but not ETN monotherapy and the reverse for CRP,¹⁴⁰ whereas a trial of TCZ plus oral PBO versus TCZ combined with MTX found no differences in joint counts or inflammation markers.⁵⁷

One trial of biologic and cDMARD combination therapy (ETN + MTX) versus biologic monotherapy¹⁴⁰ reported significantly greater improvements in swollen joint count tender joint count and ESR in the combination therapy arm, but significantly greater improvements in CRP in the monotherapy arm.⁹⁷ Another trial of biologic and cDMARD combination therapy versus monotherapy (TCZ + MTX vs. TCZ + PBO)⁵⁷ reported similar changes from baseline in swollen joint count and tender joint count.

Patient and physician global assessments of disease activity

Population 1 No data were available for this outcome from the single identified head-to-head RCT in MTX-naive patients.¹⁰⁰ Four population 1 trials in MTX-naive patients contributed global assessment evidence (presented in *Appendix 4, Table 356*), of which two were for ADA,^{107,108} one for GOL⁹⁰ and one for IFX.¹⁴⁸ Of these four trials, statistically significant improvements in global assessments of disease activity were reported for one trial favouring GOL plus MTX over PBO and MTX,⁹⁰ and for one trial¹⁴⁸ that favoured initial combination cDMARD therapy plus prednisone and initial combination cDMARD therapy plus IFX over sequential cDMARD monotherapy and step-up combination cDMARD therapy.

Populations 2 and 3 Patient and physical global assessment of disease activity data were reported in three head-to-head RCTs of cDMARD-experienced patients^{66,85,114} (see *Appendix 4*, *Table 357*). No statistically significant differences in treatment response were reported.

A total of 23 further RCTs evaluated global assessments of disease activity in four ADA trials,^{69,70,80,99,122} four ETN trials,^{89,102,104,105,124} one GOL trial⁹² and three IFX trials^{75,86,125} (see *Appendix 4*, *Table 358*).

Radiological progression/joint damage

Population 1 Data were extracted from RCTs where absolute baseline and follow-up, mean change from baseline or proportion change from baseline in joint outcomes were available.

No joint damage/radiological progression data were identified from the single identified head-to-head population 1 trial.¹⁰⁰ Six trials of biologic interventions versus DMARD(s) or PBO in MTX-naive patients reported change in radiographic scores and/or radiographic non-progression (three ADA trials,^{93,108,109} two ETN trials^{81,139} and one IFX trial⁷¹). Joint outcomes were assessed using a range of radiographic scores, ¹⁴⁹ and magnetic resonance imaging. Data for radiographic scores are presented in *Table 359* (see *Appendix 4*). Statistically significant results favouring intervention in the reduction of radiological progression were reported for two ADA trials,^{108,109} one ETN trial¹³⁹ and one IFX trial.⁷¹ Two trials (one each for ADA^{108,150} and GOL¹⁵¹) provided joint assessment data as measured by magnetic resonance imaging (both of which reported statistically significant findings favouring biologic treatment; see *Appendix 4*, *Table 360*).

Populations 2 and 3 One head-to-head trial⁶⁶ (ADA vs. ABT) (see *Appendix 4, Table 361*) and eight trials of biologic interventions versus DMARD(s) or PBO in cDMARD-experienced patients reported change in radiographic scores and/or rates of radiographic non-progression (one for ATB,^{61,62} one for ADA,⁸⁴ two for ETN,^{102,111} one for GOL,⁹¹ two for IFX^{146,147} and two for TCZ^{115,152}) (see *Appendix 4, Table 362*). Statistically significant results indicating reduced radiological progression were reported for one ABT trial,^{61,62} one ADA trial,⁸⁴ one ETN trial,¹⁰² one GOL trial,⁹¹ both IFX trials^{146,147} and one TCZ trial.¹¹⁵ Joint outcome data as assessed by magnetic resonance imaging were presented in three trials (one each for ABT,⁷² GOL¹⁵³ and IFX¹²⁰) (see *Appendix 4, Table 363*), with statistically significant benefits to joint outcomes reported for the GOL trial.¹⁵³

Two trials compared biologic monotherapy with biologic combination therapy. A trial of ETN reported significant improvements in erosion score for ETN combined with MTX but not ETN monotherapy,¹⁴⁰ whereas a trial of TCZ plus oral PBO versus TCZ combined with MTX found no differences in radiographic progression.⁵⁷

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

Pain

Population 1 Six trials reported pain visual analogue scale (VAS) score change from baseline (see *Appendix 4, Table 364*). These comprised three ADA trials,¹⁰⁷⁻¹⁰⁹ one ETN trial,⁸¹ one GOL trial⁹⁰ and one IFX trial.⁷⁸ There were reductions in pain VAS for most treatments and there were significant benefits for all four biologics compared with controls.

Populations 2 and 3 Two head-to-head trials^{66,85} reported pain VAS change from baseline (see *Appendix 4*, *Table 365*). All trial arms reduced pain VAS score. No significant differences were reported between groups.

Twenty-seven other trials reported pain VAS change from baseline for cDMARD-experienced patients (see *Appendix 4, Table 366*), comprising two ABT trials,^{62,73} five ADA trials,^{69,80,84,99,122} one CTZ trial,⁷⁹ nine ETN trials,^{59,67,88,101,102,104,112,124,140} one GOL trial,⁹² two IFX trials^{75,118} and one TCZ trial.⁵⁷ Generally, there was some reduction in pain VAS for all trial arms. ABT had similar reductions compared with control groups.^{62,73} There was at least one trial reporting significantly more pain VAS reduction than control for each of ADA, CTZ, ETN, GOL and IFX. In the Rheumatoid Arthritis Comparison of Active Therapies in Methotrexate Suboptimal Responders study (RACAT)¹¹² ETN (50 mg) once weekly plus MTX had similar results to MTX plus SSZ plus HCQ. In the ACT-RAY trial⁵⁷ TCZ monotherapy had similar results to TCZ plus MTX.

Fatigue

Population 1 The only head-to-head RCT in MTX-naive patients identified in this review¹⁰⁰ did not report any follow-up or change data on fatigue. A total of three RCTs of biologic versus DMARD(s) or PBO reported follow-up or change data on fatigue in MTX-naive patients (two for ADA^{154,155} and one for ETN⁸³) (see *Appendix 4*, *Tables 377* and *378*). Statistically significant differences favouring biologic treatment over comparator were reported for VAS score (one ETN trial⁸³) and Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) score (one ADA trial¹⁵⁴). One further ADA trial reported significant differences between ADA and MTX arms at follow-up in a mixed-model repeated measures analysis, but the values appear to be similar.¹⁵⁵

Populations 2 and 3 Two head-to-head RCTs reporting data on fatigue in cDMARD-experienced patients were identified (see *Appendix 4, Tables 369* and *370*).^{58,144} Similar improvements were made on fatigue VAS score among patients in the s.c. ABT plus MTX and ADA plus MTX arms of the AMPLE trial¹⁴⁴ and on FACIT-F score among patients in the TCZ plus PBO ADA and ADA plus PBO TCZ arms in the ADACTA trial.⁵⁸

Six RCTs of biologic versus DMARD(s) or PBO reported follow-up or change data on fatigue data in cDMARD-experienced patients (see *Appendix 4*, *Tables 371* and *372*).^{63,68–70,79,92,121} A statistically significant difference in VAS fatigue score swollen joint count favouring biologic treatment over comparator was reported in one ABT trial.⁶³ Statistically significant differences in FACIT-F score favouring biologic treatment over comparator was reported in four trials (one ADA trial,^{69,70} one ETN trial,⁶⁸ one GOL trial⁹² and one TCZ trial¹²¹). Mean (SD) change from baseline in the Fatigue Assessment Scale has been reported for the efficacy and safety of CERTolizumab pegol After INcomplete response to DMARDS in RA patients with low to moderate disease activity (CERTAIN) trial⁷⁹ of 0.1 (SD 2.12) in the PBO arm and –1.2 (SD 2.24) in the CTZ arm at week 24 (ClinicalTrials.gov, NCT00674362) and (AiC information has been removed).¹⁵⁶

Health-related quality of life

Population 1 The only head-to-head RCT in MTX-naive patients identified in this review¹⁰⁰ did not report any follow-up or change data on health-related quality of life. A total of nine RCTs of biologic versus DMARD(s) or PBO reported follow-up or change data on health-related quality of life in MTX-naive patients (four for ADA,^{77,94,107,155} two for ETN^{83,157} and three for IFX^{71,72,110,158}) (see *Appendix 4, Tables 383–388*). Statistically significant differences in Short Form questionnaire-36 items (SF-36) components and domains favouring biologic treatment over comparator were reported for ADA (one study¹⁵⁴), ETN (two studies^{83,157}) and IFX (one study⁷⁸). One further ADA trial reported significant differences between ADA and MTX arms at follow-up in a mixed-model repeated measures analysis, but the values appear to be similar.¹⁵⁵ One study reported a statistically significant differences in Rheumatoid Arthritis Quality of Life (RAQoL) score favouring biologic treatment over comparator were reported for ADA (one study⁷⁷) and IFX (one study¹¹⁰). One further ADA trial reported significant differences on Short Form questionnaire-6 Dimensions (SF-6D) score between ADA and MTX arms at follow-up in a mixed-model repeated significant differences on Short Form questionnaire-6 Dimensions (SF-6D) score between ADA and MTX arms at follow-up in a mixed-model repeated measures analysis, but the values appear similar.¹⁵⁵ One study¹¹⁰).

Populations 2 and 3 Three head-to-head RCTs reporting data on health-related quality of life in cDMARD-experienced patients were identified (see *Appendix 4*, *Tables 389–391*). Similar improvements were made on SF-36 components and domains scores among patients in the s.c. ABT plus MTX and ADA plus MTX arms of the AMPLE trial¹⁴⁴ and among patients in the ABT plus MTX, IFX plus MTX and MTX plus PBO arms of the ATTEST trial.⁷⁴ Significantly greater improvements were reported on SF-36 mental component score among patients in the TCZ (+ PBO ADA) arm than in the ADA (+ PBO TCZ) arm in the ADACTA trial.⁵⁸ Similar improvements were made on EQ-5D score among patients in the ADA and ETN arms of the RED-SEA trial.¹¹⁴

Nine RCTs of biologic versus DMARD(s) or PBO reported follow-up or change data on health-related quality of life data in cDMARD-experienced patients (see *Appendix 4*, *Tables 392–397*). Statistically significant differences in SF-36 components and domains scores favouring biologic treatment over comparator were reported in six trials (one ABT trial,^{61,62} one ETN trial,⁶⁸ one GOL trial,⁹² two IFX trials^{86,159} and one TCZ trial¹²¹). (AiC information has been removed.) Statistically significant differences in EQ-5D domain scores favouring biologic treatment over comparator were reported a statistically significant improvement in EuroQol VAS score.⁸⁹

Extra-articular manifestations of disease

No included RCTs specifically evaluated the impact of biologic interventions on extra-articular manifestations of RA.

Adverse effects of treatment

Data were extracted relating to discontinuations due to AEs, number of patients experiencing one or more AEs and number of patients experiencing one or more serious AE. Details are presented in *Appendix 4*, *Tables 398–400*. Specific AEs of important note as highlighted in the FDA prescribing information for each intervention were extracted from RCTs and associated LTEs of individual included RCTs and tabulated (see *Appendix 4*, *Tables 401–403*). These key safety issues identified across the range of interventions included the number of patients experiencing one or more infections, number of patients experiencing one or more serious infections (with pneumonia and reactivation of tuberculosis noted as important safety issues), number of patients experiencing one or more malignancy, and the occurrences of infusion-related or injection-site reactions (as appropriate to the mode of administration for each intervention).

Mortality

Details of number of deaths, cause(s) of death and judgement by study team/adjudicator of whether or not death was potentially attributable to study drug were extracted and have been tabulated (see *Appendix 4, Tables 403* and *404*).

Additional evidence (trial data not eligible for full systematic review but included to inform network meta-analysis sensitivity analyses for populations 2 and 3)

Study and population characteristics for the trials ineligible for the full systematic review but provided as additional evidence to inform sensitivity analyses are presented in *Table 344* (see *Appendix 4*). Two RCTs^{137,138} in which TOF was evaluated were included as evidence to supplement the network.

The ACR and EULAR responses in populations 2 and 3 RCTs used in the sensitivity analyses are presented in *Tables 17* and *18* respectively.

Network meta-analysis results

For ease of interpretation, a summary of the data used in the NMA is provided (*Tables 19–22*). As described earlier a number of sensitivity analyses were undertaken to allow the impact of further information, albeit subject to potential biases, including a small proportion of patients with prior bDMARD use, and including studies in which the patients (for populations 2 and 3) have low background MTX use and may not be truly MTX failures. The RCTs have been grouped into those that fit within the Assessment Group base case and those that have prior bDMARD use and/or low background MTX use.

Tables 21 and *22* provide data for population 1 using EULAR and ACR criteria respectively. Only one RCT that reported EULAR data met the criteria for inclusion.

Additionally, the trials with EULAR data have been further subdivided into whether data were reported for all three categories or whether these were aggregated differently, for example only values for response or no response was provided. Data from the tumour necrosis factor inhibitors against combination intensive therapy (TACIT) study¹⁴¹ were provided as AiC.

Tables 19 and 20 provide data for populations 2 and 3 using EULAR and ACR criteria respectively.

In all tables the data have been apportioned so that these are mutually exclusive (i.e. that ACR20 now refers to patients who made an ACR20 response but not an ACR50 response). Typically, the RCTs would include patients with an ACR50 or ACR70 response within the ACR20 category, with the sum of the ACR responses being larger than the total number within the trial arm.

Population 1 (methotrexate naive)

American College of Rheumatology: main trials

A NMA was used to compare the effects of ADA (with and without MTX), ETN (with and without MTX), IFX plus MTX, GOL plus MTX, intensive cDMARDs and step-up intensive cDMARDs relative to cDMARDs on ACR response.

Data were available from eight studies comparing two, three or four interventions.78,81,86,87,90,94,108,109

Figure 4 presents the network of evidence and *Table 23* presents the frequency with which each pair of treatments was compared. There are eight treatment effects to estimate from eight studies.^{78,81,86,87,90,94,108,109}

٩Þ
Ā
5
_
5
~
e
Ē
Ļ
f
0
S
Ð
S
~
a
_
a
>
Þ
.2
· 🗄
÷
2
5
š
d 1
¥
₽
-
.⊆
0
ě
۲.
2
5
ž
<u> </u>
1
m
0
_
a
ŝ
2
.≌
Ę
<u>ס</u>
Ō.
0
ŏ
w w
š
nse
onse
bonse
shonse
response
response
ty response
ogy response
logy response
ology response
itology response
atology response
matology response
umatology response
eumatology response
heumatology response
Rheumatology response
^c Rheumatology response
of Rheumatology response
of Rheumatology response
le of Rheumatology response
ge of Rheumatology response
lege of Rheumatology response
llege of Rheumatology response
ollege of Rheumatology response
College of Rheumatology response
n College of Rheumatology response
an College of Rheumatology response
can College of Rheumatology response
rican College of Rheumatology response
erican College of Rheumatology response
merican College of Rheumatology response
American College of Rheumatology response
American College of Rheumatology response
American College of Rheumatology response
17 American College of Rheumatology response
17 American College of Rheumatology response
.E 17 American College of Rheumatology response
3LE 17 American College of Rheumatology response
NBLE 17 American College of Rheumatology response
ABLE 17 American College of Rheumatology response

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
ACQUIRE ¹²⁷	ABT s.c. + PBO + MTX	26 weeks	736	74.8	50.2	25.8	Yes (SAs)
	ABT i.v. + PBO + MTX	26 weeks	721	74.3	48.6	24.2	
NCT00254293 ¹³¹	PBO + MTX	25.7 weeks	119	35.3	11.8	1.7	Yes (SAs)
	ABT i.v. + MTX	25.7 weeks	115	60 ^a	36.5 ^ª	16.5 ^a	
ORAL STANDARD ¹³³	PBO + MTX	26 weeks	106	28.3	12	2	Yes (SAs)
	TOF5 + MTX	26 weeks	196	51.5	36	20	
	TOF10+MTX	26 weeks	196	52.6	33	22.5	
	ADA + MTX	26 weeks	199	47.2	27	9.5	
Yamamoto <i>et al.</i> , 2011 ¹²⁹	PBO + MTX	24 weeks	77	24.7	16.9	1.3	Yes (SAs)
	CTZ + MTX	24 weeks	82	73.2 ^b	54.9 ^b	29.3 ^b	
RA0025 ¹³⁴	PBO + MTX	24 weeks	40	27.5	20	2.5	Yes (SAs)
	CTZ + MTX	24 weeks	81	66.7 ^b	43.2ª	17.3ª	
RAPID1 ¹³⁵	PBO + MTX	24 weeks	199	13.6	7.6	£	Yes (SAs)
	CTZ + MTX	24 weeks	393	58.8 ^b	37.1 ^b	21.4 ^b	
RAPID2 ¹³⁶	PBO + MTX	24 weeks	127	8.7	3.1	0.8	Yes (SAs)
	CTZ + MTX	24 weeks	246	57.3 ^b	32.5 ^b	15.9^{a} (comparison of ORs from logistic regressions)	
TEAR ⁵³	MTX monotherapy	24 weeks	379	39.39	19	3.43	Yes (SAs)
	MTX + SSZ + HCQ	24 weeks	132	55.32	31.14	8.52	
	ETN50 + MTX	24 weeks	244	55.7	32.3	12.04	
							continued

rial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used ir NMA?
EMPO ⁵⁴	MTX monotherapy	24 weeks	228	74.18	41.31	15.9	Yes (SAs)
	ETN monotherapy	24 weeks	223	71.58	41.31	17.98	
	ETN + MTX	24 weeks	231	82.53	60.09	36.65	
ITHE ¹⁵²	PBO + MTX	24 weeks	393	27	10	2	Yes (SAs)
	TCZ + MTX	24 weeks	398	56 ^b	32 ^b	13 ^b	
PTION ¹³²	PBO + MTX	24 weeks	204	26	11	2	Yes (SAs)
	TCZ + MTX	24 weeks	205	59 ⁵	44 ^b	22 ^b	
MBITION ¹²⁸	MTX (MTX-experienced subgroup)	24 weeks	88	47.7	30.7	15.9	Yes (SAs)
	TCZ (MTX-experienced subgroup)	24 weeks	89	71.9ª	40.4	28.1	
ın der Heijde <i>et al.</i> , 2013 ¹³⁸	PBO + MTX	26 weeks	160	25.3	8.4	1.3	Yes (SAs)
	TOF5 + MTX	26 weeks	321	51.5 ^b (added vs. PBO+MTX)	32.4 ^b (added vs. PBO+MTX)	14.6 ^b (added vs. PBO+MTX)	
	TOF10+MTX	26 weeks	316	61.8 ^b (added vs. PBO+MTX)	43.7 ^b (added vs. PBO+MTX)	22.3 ^b (added vs. PBO+MTX)	
emer <i>et al.</i> , 2012 ¹³⁷	PBO + MTX	24 weeks	69	24.62	23.08	19.87	Yes (SAs)
	TOF5 + MTX	24 weeks	71	47.44	33.33	19.23 ^a (added vs. PBO+MTX)	
	TOF10+MTX	24 weeks	74	54.49 ^a (added vs. PBO+MTX)	34.62	16.67 ^a (added vs. PBO+MTX)	

Trial name/study	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving no EULAR response	% achieving moderate EULAR response	% achieving good EULAR response	% EULAR responder (moderate/good)	In NMA?
JRAPID ¹²⁹	PBO + MTX	24 weeks	77	70.1	NR	NR	29.9	Yes (SAs)
Yamamoto <i>et al.</i> , 2011 ¹²⁹	CTZ + MTX	24 weeks	82	14.6	NR	NR	85.4	Yes (SAs)
RAPID1 ¹³⁵	PBO + MTX	24 weeks	199	72.9	NR	NR	(AiC information has been removed)	Yes (SAs)
RAPID1 ¹³⁵	CTZ + MTX	24 weeks	393	19.1	NR	NR	(AiC information	Yes (SAs)
(AiC information has been removed)								
OPTION ¹³²	PBO + MTX	24 weeks	205	64.9	32.2	2.9	28.8	Yes (SAs)
	TCZ + MTX	24 weeks	204	20.6	41.2ª	38.2 ^b	79.4	Yes (SAs)
NR, not reported; OPTION, tC a $p < 0.001$.	ocilimumab Pivotal Trial In m	ethotrexate inadequate	e respONders;	RAPID, Rheumatoid A	thritis Prevention of str	uctural Damage;	SA, sensitivity analysis.	

TABLE 18 European League Against Rheumatism response: populations 2 and 3 – RCTs used in the sensitivity analyses of the NMA

TABLE 19 The EULAR data used in the NMA for populations 2 and 3

	Interventio	n		Mean	Interventior	n 1 (patients,	n)	
name/ study		2		disease duration (weeks)	No response	Moderate EULAR	Good EULAR	Total population
Base case: fu	ıll data repoi	rted						
ACT-RAY57	TCZ + MTX	TCZ		676	29	77	171	277
ADACTA ⁵⁸	ADA	TCZ		354	73	57	32	162
ATTEST ⁷⁴	cDMARD	ABT i.v. + MTX	IFX + MTX	405	46	45	11	102
CERTAIN ⁷⁹	cDMARD	CTZ + MTX		239	42	16	11	69
GO-FORTH ⁹¹	cDMARD	GOL+MTX		455	43	30	11	84
JESMR ¹⁴⁰	ETN + MTX	ETN		485	3	32	38	73
LARA ¹⁰²	Intensive cDMARD	ETN + MTX		430	50	75	17	142
SATORI ¹¹⁶	cDMARD	TCZ		447	39	23	2	64
TACIT ¹⁴¹	Intensive cDMARD	Grouped biologicsª + MTX		AiC information has been removed				
Van De Putte <i>et al.</i> , 2004 ¹²²	ADA	РВО		577	50	53	10	113
Base case: no	o response a	nd response (i.e. modera	te and good	combined) re	ported		
AUGUST II ⁷⁶	cDMARD	ADA + MTX		447	31			76
GO- FORWARD ⁹²	cDMARD	GOL + MTX		421	77			133
START ¹¹⁸	cDMARD	IFX + MTX			186			332
TOWARD ¹²¹	cDMARD	TCZ + MTX		510	258			413
Base case: ge	ood and not	good (i.e. mo	derate and	no response	combined) re	ported		
Swefot ¹¹⁹	Intensive cDMARD	IFX + MTX		27			31	130
Sensitivity a	nalyses: prio	r bDMARD us	e for some	patients – ful	l data report	ed		
OPTION ¹³²	cDMARD	TCZ + MTX		398	133	66	6	205
Sensitivity a	nalyses: prio	r biologics – r	no response	and response	e (i.e. modera	ate and good	combined) re	ported
RAPID1135	cDMARD	CTZ + MTX		319	145	54		199
Yamamoto <i>et al.</i> , 2011 ¹²⁹	cDMARD	CTZ + MTX		296	54	23		77

GO-FORTH, golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis; OPTION, tOcilimumab Pivotal Trial In methotrexate inadequate respONders; RAPID, Rheumatoid Arthritis Prevention of structural Damage; SATORI, Study of Active controlled TOcilizumab for Rheumatoid arthritis patients with an Inadequate response to methotrexate; START, Safety Trial for rheumatoid Arthritis with Remicade Therapy. a A clinician's choice of ADA or ETN or IFX all with MTX.

Intervention	2 (patients, <i>n</i>)			Intervention	3 (patients, <i>n</i>)		
No response	Moderate EULAR	Good EULAR	Total population	No response	Moderate EULAR	Good EULAR	Total population
38	96	142	276				
36	43	84	163				
35	85	30	150	53	67	36	156
18	32	29	79				
13	30	38	81				
20	26	23	69				
23	125	131	279				
2	19	40	61				
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed				
81	25	4	110				

15			79
25			89
83			333
163			803
		43	128
42	84	78	204
75	318		393
12	70		82

	Intervention			2 7	lean icoaco	Interventior	า 1 (patients, <i>r</i>	(Interventio	n 2 (patients	s, n)		
Trial name/ study				4	uration veeks)	No response	ACR20 response	ACR50 response	ACR70 response	Total population	No response	ACR20 response	ACR50 response	ACR70 response	Total population
Base case: full data repo	orted														
CREATE IIb ⁹⁶	cDMARD	ETN + MTX		4	19	44	10	00	m	65	22	12	15	15	64
ACT-RAY ⁵⁷	TCZ+MTX	TCZ		6	76	79	72	58	68	277	82	83	41	70	276
ADACTA ⁵⁸	ADA	TCZ		Э,	54	82	35	16	29	162	57	29	24	53	163
AIM ⁶¹	cDMARD	ABT i.v. + MTX		4	49	132	50	23	14	219	139	121	87	86	433
AMPLE ¹⁴⁴	ADA+MTX	ABT s.c. + MTX		ð	4	117	72	65	74	328	108	65	68	77	318
ARMADA ⁶⁹	cDMARD	ADA+MTX		90	07	53	4	2	m	62	22	ø	19	18	67
$ATTEST^{74}$	cDMARD	ABT i.v. + MTX	IFX+MTX	4(05	64	24	12	10	110	52	41	31	32	156
ATTRACT ⁷⁵	cDMARD	IFX + MTX		ïZ	Я	67	13	4	0	84	42	19	16	7	83
AUGUST II ⁷⁶	cDMARD	ADA+MTX		4	47	40	24	00	4	76	23	26	16	14	79
CERTAIN ⁷⁹	cDMARD	CTZ + MTX		25	39	83	00	4	m	98	61	15	11	6	96
CHANGE ⁸⁰	ADA	PBO		47	77	51	18	11	11	91	75	7	4	-	87
deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN+MTX	IFX + MTX				7	5	m	-	16	7	4	4	-	16
DE019 ⁸⁰	cDMARD	ADA + MTX		5(69	141	40	14	5	200	76	50	38	43	207
ETN study 309 ⁸⁹	cDMARD	ETN+MTX	ETN	ř	41	36	7	9	+	50	27	22	27	25	101
GO-FORTH ⁹¹	cDMARD	GOL+MTX		45	55	59	16	00	5	88	25	25	13	23	86
GO-FORWARD ⁹²	cDMARD	GOL + MTX		4	21	96	19	11	7	133	36	20	15	18	89
JESMR ¹⁴⁰	ETN+MTX	ETN		46	85	7	19	19	28	73	25	11	15	18	69
Kim et al., 2007 ⁹⁹	cDMARD	ADA+MTX		35	56	40	14	4	5	63	25	12	14	14	65
LARA ¹⁰²	Intensive cDMARD	ETN + MTX		4	30	71	38	17	16	142	47	59	76	97	279
Mathias <i>et al.</i> , 2000 ¹⁰⁵	ETN	PBO		5	98	31	15	20	12	78	71	Ŀ	m	-	80
O'Dell 2013 ¹¹²	Intensive cDMARD	ETN + MTX		2.	71	70	48	33	00	159	73	32	32	26	163
SAMURAI ¹¹⁵	cDMARD	TCZ		1	19	89	30	16	10	145	28	39	37	53	157
SATORI ¹¹⁶	cDMARD	TCZ		4	47	48	5	4	7	64	12	16	13	20	61
STAR ¹¹⁷	cDMARD	ADA+MTX		ζi	41	207	75	25	11	318	150	76	45	47	318
START ¹¹⁸	cDMARD	IFX		Z	В	271	57	18	17	363	152	93	65	50	360

NIHR Journals Library www.journalslibrary.nihr.ac.uk

	Intervention				Mean	Interventio	n 1 (patients, <i>i</i>	(د			Interventio	n 2 (patients	s, n)		
Trial name/ study					duration (weeks)	No response	ACR20 response	ACR50 response	ACR70 response	Total population	No response	ACR20 response	ACR50 response	ACR70 response	Total population
TOWARD ¹²¹	cDMARD	TCZ			510	312	64	25	12	413	315	186	137	165	803
Van De Putte <i>et al.</i> , 2004 ¹²²	ADA	PBO			577	61	27	11	14	113	68	12	7	2	110
Weinblatt <i>et al.</i> , 1999 ¹²⁴	cDMARD	ETN + MTX			676	22	7	-	0	30	17	19	14	6	59
Sensitivity analyses: priv	or bDMARD use fo	r some patients -	- full data report	ed											
AC QUIRE ¹²⁷	ABT i.v. + MTX	ABT s.c. + MTX			398	186	185	176	174	721	185	181	180	190	736
Kremer <i>et al.</i> , 2010 ⁶³	cDMARD	TOF5 + MTX	TOF10+MTX		444	52	-	2	14	69	37	10	10	14	71
LITHE ¹³⁰	cDMARD	TCZ+MTX			476	287	67	31	00	393	174	96	76	52	398
131	cDMARD	ABT i.v. + MTX			483	77	28	12	2	119	46	27	23	19	115
OPTION ^{1 32}	cDMARD	TCZ + MTX			398	151	31	18	4	204	84	31	45	45	205
RA0025 ¹³⁴	cDMARD	CTZ + MTX			303	29	n	7	-	40	27	19	21	14	81
RAPID1 ¹³⁵	cDMARD	CTZ + MTX			319	171	12	6	9	199	162	85	62	84	393
RAPID2 ¹³⁶	cDMARD	CTZ+MTX			308	116	7	m	-	127	105	61	41	39	246
van der Heijde <i>et al.,</i> 2013 ¹³⁸	cDMARD	TOF5 + MTX	TOF10+MTX		467	120	27	11	2	160	156	61	57	47	321
Yamamoto <i>et al.,</i> 2011 ¹²⁹	cDMARD	CTZ+MTX			296	58	9	12	-	77	22	15	21	24	82
Sensitivity analyses: priv	or biologics – no A	CR50 or ACR70 re	sported												
ORAL STANDARD ¹³³	cDMARD	ADA + MTX	TOF5 + MTX	TOF10+MTX	402	76	30			106	105	94	N/A	N/A	199
Sensitivity analyses: priv	or biologics – full c	lata reported and	1 low backgroun	d MTX use											
AMBITION ⁵⁵	cDMARD	TCZ			330	46	15	13	14	88	25	28	11	25	89
Sensitivity analyses: low	v background MTX	use													
TEAR ⁵³	cDMARD	Intensive cDMARD	ETN + MTX		18	230	77	59	13	379	59	32	30	11	132
TEMPO ⁵⁴	cDMARD	ETN + MTX	ETN		345	59	75	58	36	228	40	52	54	85	231

	Intervention		Interventio	n 3 (patients,	(ب			Interventio	n 4 (patient	s, n)		
Trial name			No response	ACR20 response	ACR50 response	ACR70 response	Total population	No response	ACR20 response	ACR50 response	ACR70 response	Total population
Base case: full data rep	orted											
$ATTEST^{74}$	IFX + MTX		67	37	21	40	165					
ETN study 309 ⁸⁹	ETN		27	28	26	22	103					
Sensitivity analyses: pn	or bDMARD use for some patients – full c	lata reported										
Kremer <i>et al.</i> , 2010 ⁶³	TOF10		34	15	13	12	74					
van der Heijde <i>et al.,</i> 2013 ¹³⁸	TOF10		121	57	68	70	316					
Sensitivity analyses: pri	or biologics – no ACR50 or ACR70 reporte	٩										
ORAL STANDARD ¹³³	TOF5 TOF	0	95	101	N/A	N/A	196	93	103	N/A	N/A	196
Sensitivity analyses: lov	v background MTX use											
TEAR ⁵³	ETN+MTX		109	57	49	29	244					
TEMPO ⁵⁴	ETN		63	68	52	40	223					
ACQUIRE, subcutar Monoclonal antiboo disease-affected rhé Active Rheumatoid LITHE, tocilizumab s Trough Concentrati OPTION, tOcilimum of structural Damag arthritis patients wii Therapy; TOF5, tofa	teous abatacept versus intravenous by ADalimumab (D2E7) in rheumatr eumatoid Arthritis patients in Japan Arthritis Treated Concomitantly Wi iafety and the prevention of structu ons, Safety, and Immunogenicity of ab Pivotal Trial In methotrexate inat ie; SAMURAI, Study of Active contr h an Inadequate response to meth- citinib 5 mg; T0F10, tofacitinib 10r	abatacept; AIM, Abatacept in Ir bid Arthritis; ATTRACT, Anti-TNF with Adalimumab applying stal h Methotrexate; GO-FORTH, gc ral joint damage methotrexate a Abatacept After Subcutaneous dequate respONders; ORAL, Tof olled Monotherapy Used for Rh otrexate; STAR, Safety Trial of A mg.	nadequate trial in Rh Vdard and Nimumab and sulfas (SC) Adm (SC) Adm (SC) Adm (SC) adm actinib or eumatoid dalimuma	r responders reumatoid / I General Ev in combina alazine corr alazine corr Arthritis, ar Arthritis, ar b in Rheurr	to Metho Arthritis wa aluation s bination t to Subject ab versus f atoid arth	trexate; A th Concol tudy; DE0 nethotrexu nation; NAA, r alacebo in flacebo in titor; SATC ritis; STAR	RMADA, Ar mitant Thera 19, Efficacy ate in Japan ord applicab nu applicab reumatoid Rheumatoid DRI, Study of CT, Safety Tri	nti-TNF fac apy: CHAN and Safety ese patient le; NCT002 thritis (RA) a Arthritis; f Active co al for rheu	tor Resear GE, Clinic GE, Clinic ts with acl 254293, S 254293, S 255293, S 254293, S 255293, S 2	ch study p al investig: numab in l tive rheum tudy to As reported; neumatoid Ocilizumab rthritis with	irogram of ation in Hi Patients M latoid arth seess Steac Arthritis F Arthritis F o for Rheu h Remicad	the ghly ith itis; y-State y-State revention matoid e

TABLE 20 The ACR data used in the NMA for populations 2 and 3 (continued)

-
population
for
data
The EULAR
21
TABLE

	Interventio	Ę			Mean	Intervention	1 (patients, <i>n</i>)				Intervention	2 (patients, r	e		
Trial name/study					disease duration (weeks)	No response	ACR20 response	ACR50 response	ACR70 response	Total population	No response	ACR20 response	ACR50 response	ACR70 response	Total population
Base case: full data repu	orted														
COMET ⁸¹	cDMARD	ETN + MTX				109	57	55	47	268	50	57	64	103	274
Durez <i>et al.</i> , 2007 ¹²⁰	cDMARD	IFX+MTX			21	10	m	1	0	14	2	m	£	£	15
ERA ¹³⁹	cDMARD	ETN			52	06	58	38	31	217	65	55	42	45	207
GO-BEFORE ³⁰	cDMARD	GOL + MTX			166	81	32	22	25	160	61	34	26	38	159
HIT HARD ⁹⁴	cDMARD	ADA+MTX			7	27	16	19	23	85	20	13	13	41	87
OPTIMA ¹⁰⁸	cDMARD	ADA+MTX			18	222	119	88	88	517	153	93	88	181	515
PREMIER ¹⁰⁹	cDMARD	ADA + MTX	ADA		38	66	54	47	57	257	84	27	43	114	268
Base case: data reporte	d only for A	CR20 and ACR7	0												
BeST ⁷⁸	cDMARD	IFX+MTX	Intensive cDMARD	Step-up intensive cDMARD ^a	NR	63	43		20	126	33	55		40	128
Sensitivity analyses: lov	v backgroun.	d MTX use													
TEAR ⁵³	cDMARD	Intensive cDMARD	ETN + MTX		18	230	77	59	13	379	59	32	30	11	132

ETN

ETN + MTX

cDMARD

TEMPO⁵⁴

TABLE 22 The ACR data used in the NMA for population 1

	Intervention		Interventio	າ 3 (patients, <i>n</i>	~			Interventio	1 4 (patients, I	(u		
Trial name			No response	ACR20 response	ACR50 response	ACR70 response	Total population	No response	ACR20 response	ACR50 response	ACR70 response	Total population
Base case: full data repo	rted											
PREMIER ¹⁰⁹	ADA		128	50	42	54	274					
Base case: data reportec	I only for ACR20 and ACR.	70										
BeST ⁷⁸	Intensive CDMARD	Step-up intensive cDMARD ^a	39	59		35	133	48	59		14	121
Sensitivity analyses: low	background MTX use											
TEAR ⁵³	ETN + MTX		109	57	49	29	244					
TEMPO ⁵⁴	ETN		63	68	52	40	223					
BeST, BEhandelings THerapy with Anti-R PREMIER, Patients RI a Intensive cDMARI	STrategie; ERA, Early heumatic Drugs (adal Eceiving Methotrexate With escalation of d	Rheumatoid Arthritis (etanercept), (imumab and methotrexate); NR, nc e and Infliximab for the treatment c loses as required.	COMET, Co ot reported; of Early Rhe	ombination (OPTIMA, O umatoid artl	Df METhotri PTimal prot nritis.	exate and e ocol for tre	tabercept in atment Initia	early rheur tion with N	natoid arthr 1ethotrexate	itis; HIT HA e and Adalii	(RD, High Ir mumab;	iduction

DOI: 10.3310/hta20350

FIGURE 4 American College of Rheumatology (population 1: main trials) – network of evidence. Int, intensive; SU, step-up. Solid green line (two-arm study); dotted blue line (three-arm study); and dotted green line (four-arm study).

TABLE 23 An	nerican College o	of Rheumatology	(population	1: main trials)	– the number	of RCTs in which	each pair
of intervention	ons were compar	ed					

Intervention	cDMARDs	ADA + MTX	ADA	ETN + MTX	ETN	IFX + MTX	GOL+ MTX	Intensive cDMARDs	Step-up intensive cDMARDs
cDMARDs	_	3	1	1	1	2	1	1	1
ADA + MTX	-	_	1	0	0	0	0	0	0
ADA	-	-	-	0	0	0	0	0	0
ETN + MTX	-	-	-	-	0	0	0	0	0
ETN	-	-	-	-	-	0	0	0	0
IFX + MTX	-	-	-	-	-	-	0	1	1
GOL + MTX	-	-	-	-	-	-	_	0	0
Intensive cDMARDs	-	-	-	-	-	-	-	-	1
Step-up intensive cDMARDs	-	-	-	-	-	-	-	-	-

The probit transformation provides a transformation of data that can only take values between zero and 1 to values that cover the whole real line (i.e. to values between $\pm \infty$). It is used to transform parameters that represent probabilities to a transformed parameter on the real line; treatment effects estimated on the real line usually have better statistical properties than estimates on a restricted scale. The transformation makes use of the standard normal distribution, which has mean zero and variance 1. Parameters representing probabilities can be thought of as being the area under the standard normal distribution from $-\infty$ to some value that represents the transformed value on the probit scale. In the case of EULAR and ACR, parameters represent the probabilities of being in one of several ordered categories. The statistical model includes parameters representing the baseline response (i.e. 'no response') for the control arm in each study; a cut-off representing the number of SDs on the standard normal scale. Large negative treatment effects represent positive treatment effects (i.e. a smaller proportion of patients in the lower categories).

Figure 5 presents the effects of each intervention relative to cDMARDs on the probit scale, and *Figure 6* and *Table 24* present the probabilities of treatment rankings. Treatment rankings should be interpreted as in the following example: for cDMARDs there is a 19.6% probability that it is the seventh most efficacious treatment, a 64.8% probability that is the eighth most efficacious treatment and an 11.5% probability that it is the least effective (i.e. ninth) treatment.

The model fitted the data reasonably well, with the total residual deviance, 64.87, close to the total number of data points, 53, included in the analysis. The largest residual deviances were 5.82 from Durez *et al.*⁸⁶ and 4.21 from the BEhandelings STrategie (BeST) study.⁷⁸

Treatment comparison (probit scale)	Effect (95% Crl)
vs. cDMARDs ADA + MTX ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	-0.43 (-0.71 to -0.13) 0.14 (-0.31 to 0.60) -0.63 (-1.12 to -0.15) -0.27 (-0.76 to 0.22) -0.78 (-1.33 to -0.39) -0.32 (-0.82 to 0.19) -0.56 (-1.12 to -0.08) -0.19 (-0.75 to 0.27)
VS. ADA + MIX ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	0.57 (0.11 to 1.01) -0.20 (-0.77 to 0.36) 0.16 (-0.41 to 0.72) -0.35 (-0.99 to 0.11) 0.10 (-0.48 to 0.70) -0.13 (-0.78 to 0.41) 0.23 (-0.41 to 0.76)
vs. ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	-0.77 (-1.44 to -0.09) -0.41 (-1.08 to 0.27) -0.92 (-1.67 to -0.38) -0.47 (-1.13 to 0.21) -0.70 (-1.44 to -0.08) -0.34 (-1.08 to 0.29)
vs. ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	0.36 (-0.33 to 1.05) -0.15 (-0.90 to 0.42) 0.31 (-0.38 to 1.01) 0.07 (-0.71 to 0.73) 0.44 (-0.33 to 1.09)
vs. ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	-0.51 (-1.28 to 0.09) -0.05 (-0.76 to 0.67) -0.29 (-1.06 to 0.38) 0.07 (-0.68 to 0.74)
vs. IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	0.46 (-0.14 to 1.24) 0.22 (-0.23 to 0.77) 0.59 (0.13 to 1.13)
vs. GOL + MTX Int cDMARDs SU Int cDMARDs	–0.24 (–1.01 to 0.43) 0.13 (–0.66 to 0.79)
vs. Int cDMARDs SU Int cDMARDs	0.37 (–0.15 to 0.89)
-2 -1 0 1 2 Favours intervention Favours control	

FIGURE 5 American College of Rheumatology (population 1: main trials) – effects of interventions relative to cDMARDs on the probit scale. CrI, credible interval; Int, intensive; SU, step-up.

FIGURE 6 American College of Rheumatology (population 1: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive; SU, step-up.

TABLE 24 Americar	College of Rheumatology	(population	1: main trials) -	 probability 	of treatment	rankings in
terms of efficacy (m	nost efficacious $=$ 1)					

	Donk	Rank								
Intervention	(mean)		2		4	5		7	8	9
cDMARDs	7.8	0.000	0.000	0.000	0.001	0.006	0.034	0.196	0.648	0.115
ADA + MTX	4.2	0.013	0.057	0.180	0.378	0.234	0.101	0.031	0.005	0.001
ADA	8.5	0.001	0.001	0.004	0.007	0.013	0.029	0.066	0.135	0.744
ETN + MTX	2.6	0.228	0.329	0.242	0.091	0.056	0.030	0.014	0.006	0.004
ETN	5.6	0.013	0.030	0.060	0.110	0.204	0.289	0.206	0.050	0.037
IFX + MTX	1.6	0.633	0.243	0.077	0.027	0.014	0.004	0.001	0.000	0.000
GOL + MTX	5.2	0.021	0.048	0.093	0.156	0.235	0.229	0.145	0.042	0.030
Intensive cDMARDs	3.2	0.086	0.278	0.305	0.151	0.099	0.054	0.016	0.007	0.003
Step-up intensive cDMARDs	6.2	0.004	0.015	0.039	0.079	0.138	0.230	0.324	0.106	0.065

The between-study SD was estimated to be 0.13 [95% credible interval (Crl) 0.01 to 0.52], which implies mild to moderate heterogeneity between studies in intervention effects.

All interventions except for ADA were associated with beneficial treatment effects relative to cDMARDs with the greatest effect being associated with IFX plus MTX. However, the treatment effects were statistically significant only for ADA plus MTX, ETN plus MTX, IFX plus MTX and intensive cDMARDs at a conventional 5% level. IFX plus MTX (mean rank 1.6; probability of being the best 0.633) was the treatment that was most likely to be the most effective intervention.

A meta-analysis was used to estimate the proportion of patients experiencing an ACR 'no response' when treated with cDMARDs.

Data were available from eight studies.^{78,81,86,87,90,94,108,109}

The model fitted the data reasonably well, with the total residual deviance, 11.74, close to the total number of data points, 8, included in the analysis. The largest residual deviance was 3.35 from Durez *et al.*⁸⁶

The between-study SD was estimated to be 0.14 (95% Crl 0.01 to 0.44), which implies mild heterogeneity between studies in the baseline response.

Table 25 presents the probabilities of achieving at least an ARC20 response, an ACR50 response and an ACR70 response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

American College of Rheumatology: main trials plus methotrexate experienced A NMA was used to compare the effects of ADA (with and without MTX), ETN (with and without MTX), IFX plus MTX, GOL plus MTX, intensive cDMARDs and step-up intensive cDMARDs relative to cDMARDs on ACR response.

Data were available from 10 studies comparing two, three or four interventions.^{53,54,78,81,90,94,109,120,139,142}

Figure 7 presents the network of evidence and *Table 26* presents the frequency with which each pair of treatments was compared. There are eight treatment effects to estimate from 10 studies.

Intervention	At least ACR20 (95% Crl)	At least ACR50 (95% Crl)	At least ACR70 (95% Crl)
cDMARDs	0.564 (0.495 to 0.632)	0.322 (0.245 to 0.411)	0.169 (0.116 to 0.237)
ADA + MTX	0.722 (0.600 to 0.820)	0.486 (0.345 to 0.629)	0.298 (0.184 to 0.436)
ADA	0.507 (0.323 to 0.692)	0.272 (0.133 to 0.457)	0.136 (0.054 to 0.276)
ETN + MTX	0.785 (0.612 to 0.903)	0.566 (0.360 to 0.754)	0.370 (0.195 to 0.578)
ETN	0.668 (0.466 to 0.829)	0.424 (0.235 to 0.632)	0.246 (0.112 to 0.441)
IFX + MTX	0.828 (0.697 to 0.935)	0.627 (0.453 to 0.815)	0.432 (0.268 to 0.656)
GOL + MTX	0.686 (0.481 to 0.844)	0.445 (0.245 to 0.653)	0.263 (0.116 to 0.464)
Intensive cDMARDs	0.766 (0.586 to 0.904)	0.542 (0.339 to 0.754)	0.348 (0.179 to 0.577)
Step-up intensive cDMARDs	0.639 (0.446 to 0.827)	0.395 (0.219 to 0.626)	0.223 (0.101 to 0.432)

TABLE 25 American College of Rheumatology (population 1: main trials) – probabilities of achieving ACR responses

FIGURE 7 American College of Rheumatology (population 1: main trials + MTX experienced) – network of evidence. Int, intensive; SU, step-up. Solid green line (two-arm study); dotted blue line (three-arm study); and dotted green line (four-arm study).

Intervention	cDMARDs	ADA + MTX	ADA	ETN + MTX	ETN	IFX + MTX	GOL+ MTX	Intensive cDMARDs	Step-up intensive cDMARDs
cDMARDs	-	3	1	3	2	2	1	8	
ADA + MTX	-	-	1						
ADA	-	-	-						
ETN + MTX	-	-	-	_	1			1	
ETN	-	-	-	_	-				
IFX + MTX	-	-	-	_	-	_		1	
GOL + MTX	-	-	-	_	-	_	_		
Intensive cDMARDs	-	-	-	-	-	-	-	-	
Step-up intensive cDMARDs	-	-	-	-	-	-	_	-	-

TABLE 26 American College of Rheumatology (population	1: main trials + MTX	experienced)	– the numl	per of RCTs
with which each pair of interventions were com	pared				

Figure 8 presents the effects of each intervention relative to cDMARDs on the probit scale, and *Figure 9* and *Table 27* presents the probabilities of treatment rankings.

The model fitted the data reasonably well, with the total residual deviance, 84.19, close to the total number of data points, 71, included in the analysis. The largest residual deviances were 5.89 and 3.92 from the Patients REceiving Methotrexate and Infliximab for the treatment of Early Rheumatoid arthritis (PREMIER) study¹⁰⁹ and 4.08 from the BeST study.⁷⁸

Treatment comparison (probit scale)	Effect (95% Crl)
vs. cDMARDs ADA + MTX ADA ETN + MTX ETN ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs 	-0.43 (-0.60 to -0.25) 0.14 (-0.12 to 0.41) -0.54 (-0.70 to -0.39) -0.13 (-0.33 to 0.07) -0.71 (-1.07 to -0.41) -0.31 (-0.63 to 0.01) -0.48 (-0.72 to -0.26) -0.15 (-0.48 to 0.19)
vs. ADA + MTX ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	0.56 (0.30 to 0.83) -0.12 (-0.35 to 0.11) 0.30 (0.04 to 0.56) -0.28 (-0.70 to 0.06) 0.12 (-0.25 to 0.48) -0.05 (-0.36 to 0.22) 0.28 (-0.11 to 0.65)
vs. ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	-0.68 (-1.00 to -0.38) -0.27 (-0.60 to 0.06) -0.84 (-1.32 to -0.47) -0.44 (-0.87 to -0.04) -0.61 (-0.99 to -0.29) -0.28 (-0.74 to 0.13)
vs. ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	0.42 (0.19 to 0.65) -0.17 (-0.55 to 0.18) 0.24 (-0.13 to 0.59) 0.06 (-0.20 to 0.31) 0.40 (0.03 to 0.76)
vs. ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	-0.58 (-0.99 to -0.24) -0.18 (-0.58 to 0.20) -0.35 (-0.66 to -0.07) -0.02 (-0.41 to 0.36)
vs. IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs	0.41 (-0.02 to 0.88) 0.23 (-0.09 to 0.57) 0.57 (0.22 to 0.93)
vs. GOL + MTX Int cDMARDs	-0.18 (-0.57 to 0.21) 0.16 (-0.31 to 0.61)
vs. Int cDMARDs SU Int cDMARDs	0.33 (0.01 to 0.66)
Favours intervention Favours control	

FIGURE 8 American College of Rheumatology (population 1: main trials + MTX experienced) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive; SU, step-up.

FIGURE 9 American College of Rheumatology (population1: main trials + MTX experienced) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive; SU, step-up.

TABLE 27	American	College of	Rheumatology	(population	1: main t	rials + MTX	experienced)	 probability of
treatment	: rankings i	in terms of	efficacy (most	efficacious =	1)			

	Pank	Rank								
Intervention	(mean)		2		4	5		7	8	9
cDMARDs	7.8	0.000	0.000	0.000	0.001	0.021	0.032	0.210	0.683	0.086
ADA + MTX	3.8	0.018	0.240	0.443	0.184	0.029	0.032	0.004	0.001	0.000
ADA	8.7	0.000	0.000	0.001	0.004	0.016	0.020	0.045	0.108	0.825
ETN + MTX	2.4	0.130	0.271	0.083	0.020	0.002	0.008	0.000	0.000	0.000
ETN	6.5	0.000	0.002	0.009	0.089	0.398	0.075	0.413	0.068	0.020
IFX + MTX	1.3	0.801	0.050	0.024	0.006	0.001	0.001	0.000	0.000	0.000
GOL+ MTX	4.9	0.017	0.074	0.143	0.439	0.177	0.509	0.072	0.021	0.008
Intensive cDMARDs	3.2	0.034	0.351	0.255	0.100	0.009	0.033	0.001	0.000	0.000
Step-up intensive cDMARDs	6.4	0.000	0.012	0.042	0.157	0.346	0.290	0.255	0.119	0.062

The between-study SD was estimated to be 0.07 (95% Crl 0.00 to 0.26), which implies mild heterogeneity between studies in intervention effects. The addition of the studies including patients who were MTX experienced has reduced the estimate of the between-study SD.

All interventions except for ADA were associated with beneficial treatment effects relative to cDMARDs, with the greatest effect being associated with IFX plus MTX. However, the treatment effects were statistically significant only for ADA plus MTX, ETN plus MTX, IFX plus MTX and intensive cDMARDs at a conventional 5% level. IFX plus MTX (mean rank 1.3; probability of being the best 0.801) was the treatment that was most likely to be the most effective intervention.

A meta-analysis was used to estimate the proportion of patients experiencing an ACR 'no response' when treated with cDMARDs.

Data were available from 10 studies. 53,54,78,81,86,87,90,94,108,109

The model fitted the data well, with the total residual deviance, 10.95, close to the total number of data points, 10, included in the analysis.

The between-study SD was estimated to be 0.32 (95% CrI 0.18 to 0.62), which implies mild to moderate heterogeneity between studies in the baseline response.

Table 28 presents the probabilities of achieving at least an ACR20 response, an ACR50 response and an ACR70 response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

Populations 2 and 3 (methotrexate-experienced populations)

European League Against Rheumatism: main trials

A NMA was used to compare the effects of ABT i.v. plus MTX, ADA (with and without MTX), intensive cDMARDs, ETN (with and without MTX), GOL plus MTX, IFX plus MTX, PBO, TCZ (with and without MTX), the grouped biologics (from the TACIT RCT¹⁴¹) and CTZ plus MTX relative to cDMARDs on EULAR response.

Data were available from 15 studies comparing two or three interventions.^{57,58,74,76,79,91,92,102,116,118,119,121,122,140,141}

TABLE 28	American	College of	Rheumatology	(population	1: main	trials + MTX	experienced) – probabilities of
achieving A	ACR respo	nses						

Intervention	At least ACR20 (95% Crl)	At least ACR50 (95% Crl)	At least ACR70 (95% Crl)
cDMARDs	0.559 (0.464 to 0.650)	0.306 (0.218 to 0.406)	0.144 (0.090 to 0.216)
ADA + MTX	0.718 (0.613 to 0.806)	0.468 (0.344 to 0.595)	0.263 (0.168 to 0.379)
ADA	0.504 (0.356 to 0.640)	0.259 (0.153 to 0.394)	0.115 (0.056 to 0.205)
ETN + MTX	0.756 (0.658 to 0.837)	0.515 (0.391 to 0.637)	0.302 (0.201 to 0.422)
ETN	0.608 (0.486 to 0.721)	0.352 (0.236 to 0.482)	0.174 (0.101 to 0.276)
IFX + MTX	0.805 (0.683 to 0.901)	0.582 (0.421 to 0.738)	0.364 (0.224 to 0.533)
GOL + MTX	0.676 (0.525 to 0.805)	0.420 (0.268 to 0.588)	0.224 (0.119 to 0.373)
Intensive cDMARDs	0.737 (0.621 to 0.832)	0.491 (0.355 to 0.630)	0.282 (0.174 to 0.413)
Step-up intensive cDMARDs	0.616 (0.455 to 0.761)	0.360 (0.216 to 0.527)	0.180 (0.089 to 0.313)

Figure 10 presents the network of evidence and *Table 29* presents the frequency with which each pair of treatments was compared. There are 13 treatment effects to estimate from 15 studies.^{57,58,74,76,79,91,92,102,116,118,119,121,122,140,141}

Figure 11 presents the effects of each intervention relative to cDMARDs on the probit scale and *Figure 12* and *Table 30* present the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 59.57, close to the total number of data points, 52, included in the analysis.

The between-study SD was estimated to be 0.38 (95% CrI 0.18 to 0.73), which implies mild to moderate heterogeneity between studies in intervention effects.

All interventions were associated with beneficial treatment effects relative to cDMARDs, with the greatest effects being associated with TCZ, TCZ plus MTX and ETN plus MTX. However, the treatment effects were statistically significant only for GL plus MTX, TCZ and TCZ plus MTX at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although TCZ was ranked highest and was the treatment that was most likely to be the most effective intervention (mean rank 2.4; probability of being the best 0.377).

A meta-analysis was used to estimate the proportion of patients experiencing a EULAR 'no response' when treated with cDMARDs.

Data were available from eight studies.^{74,76,79,91,92,116,118,121}

The model fitted the data well, with the total residual deviance, 8.63, close to the total number of data points, 8, included in the analysis.

The between-study SD was estimated to be 0.18 (95% Crl 0.05 to 0.44), which implies mild heterogeneity between studies in the baseline response.

Table 31 presents the probabilities of achieving at least a moderate and at least a good EULAR response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

FIGURE 10 European League Against Rheumatism (populations 2 and 3: main trials) – network of evidence. Int, intensive; mono, monotherapy. Solid green line (two-arm study); and dotted blue line (three-arm study).

FIGURE 11 European League Against Rheumatism (populations 2 and 3: main trials) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

FIGURE 11 European League Against Rheumatism (populations 2 and 3: main trials) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive.

FIGURE 12 European League Against Rheumatism (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive.

		Rank													
Intervention	Rank (mean)		2		4	S.		7	œ		10	11	12	5	14
cDMARDs	12.7	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.008	0.019	0.044	060.0	0.176	0.340	0.319
ABT i.v. + MTX	8.6	0.006	0.010	0.023	0.043	0.067	060.0	0.111	0.123	0.129	0.122	0.112	0.089	0.052	0.023
ADA + MTX	8.3	0.015	0.020	0.041	0.061	0.081	0.092	0.096	0.102	0.096	0.096	0.100	0.096	0.067	0.038
ADA	7.1	0.020	0.041	0.093	0.105	0.104	0.100	0.098	0.083	0.079	0.077	0.075	0.075	0.045	0.004
Intensive cDMARDs	10.7	0.000	0.001	0.006	0.014	0.020	0.037	0.050	0.066	0.085	0.114	0.153	0.187	0.165	0.104
ETN + MTX	3.8	0.268	0.139	0.158	0.116	0.085	0.067	0.048	0.039	0:030	0.022	0.016	0.009	0.004	0.001
ETN	8.2	0.027	0.068	0.054	0.073	0.078	0.073	0.072	0.068	0.071	0.077	0.082	0.079	0.074	0.104
GOL + MTX	6.4	0.015	0.030	0.080	0.127	0.155	0.150	0.126	0.099	0.078	0.060	0.042	0.025	0.010	0.002
IFX + MTX	8.6	0.000	0.002	0.007	0.016	0.042	0.080	0.134	0.175	0.191	0.168	0.113	0.053	0.016	0.003
PBO	11.2	0.006	0.008	0.013	0.028	0:030	0.033	0.040	0.045	0.053	0.064	0.075	0.098	0.151	0.354
TCZ + MTX	3.0	0194	0.308	0.205	0.131	0.070	0.041	0.022	0.014	0.008	0.004	0.002	0.001	0.000	0.000
TCZ	2.4	0.377	0.275	0.164	0.087	0.047	0.023	0.013	0.007	0.004	0.002	0.001	0.000	0.000	0.000
Grouped biologics	7.4	0.037	0.054	0.070	0.087	0.099	0.095	0.083	0.082	0.081	0.082	0.078	0.064	0.051	0.037
CTZ + MTX	6.7	0.034	0.044	0.087	0.111	0.123	0.118	0.104	0.088	0.076	0.068	0.061	0.047	0.025	0.012

Intervention	At least moderate (95% Crl)	At least good (95% Crl)
cDMARDs	0.451 (0.384 to 0.520)	0.094 (0.058 to 0.144)
ABT i.v. + MTX	0.690 (0.358 to 0.913)	0.242 (0.058 to 0.571)
ADA + MTX	0.700 (0.330 to 0.934)	0.252 (0.049 to 0.631)
ADA	0.757 (0.328 to 0.975)	0.311 (0.050 to 0.781)
Intensive cDMARDs	0.581 (0.180 to 0.910)	0.162 (0.017 to 0.567)
ETN + MTX	0.893 (0.426 to 0.996)	0.519 (0.082 to 0.931)
ETN	0.706 (0.121 to 0.989)	0.257 (0.009 to 0.867)
GOL + MTX	0.786 (0.545 to 0.929)	0.345 (0.134 to 0.620)
IFX + MTX	0.688 (0.436 to 0.874)	0.241 (0.084 to 0.490)
РВО	0.495 (0.070 to 0.942)	0.115 (0.004 to 0.648)
TCZ + MTX	0.914 (0.738 to 0.984)	0.568 (0.283 to 0.833)
TCZ	0.930 (0.770 to 0.990)	0.613 (0.319 to 0.875)
Grouped biologics	0.746 (0.211 to 0.983)	0.298 (0.022 to 0.823)
CTZ + MTX	0.779 (0.428 to 0.957)	0.336 (0.082 to 0.708)

TABLE 31	European	League A	Against	Rheumatism	(population	ons 2	and 3:	main	trials) -	 probability 	/ of	achieving
EULAR re	sponses											

European League Against Rheumatism: main trials plus prior biologics

A NMA was used to compare the effects of ABT i.v. plus MTX, ADA (with and without MTX), intensive cDMARDs, ETN (with and without MTX), GOL plus MTX, IMFX plus MTX, PBO, TCZ (with and without MTX), the grouped biologics (from the TACIT RCT¹⁴¹) and CTZ plus MTX relative to cDMARDs on EULAR response.

Data were available from 18 studies comparing two or three interventions.^{57,58,74,76,79,91,92,102,116,118,119,121,122,132,135,139–141}

Figure 13 presents the network of evidence and *Table 32* presents the frequency with which each pair of treatments was compared. There are 13 treatment effects to estimate from 18 studies.^{57,58,74,76,79,91,92,102,116,118,119,121,122,132,135,139–141}

FIGURE 13 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – network of evidence. Int, intensive. Solid green line (two-arm study); and dotted blue line (three-arm study).
TABLE 32 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – the number of RCTs with which each pair of interventions

were compare	a													
Intervention	cDMARDs	ABT i.v. + MTX	ADA + MTX	ADA	Intensive cDMARDs	ETN + MTX	ETN	GOL + MTX	IFX + MTX	PBO	TCZ + MTX	TCZ	Grouped biologics	CTZ + MTX
cDMARDs	I	-	1					2	2		2	-		n
ABT i.v. + MTX	I	I							-					
ADA + MTX	I	I	I											
ADA	I	I	I	I						. 		-		
Intensive cDMARDs	I	I	I	I	I	-			—				-	
ETN + MTX	I	I	I	I	I	I	-							
ETN	I	I	I	I	I	I	I							
GOL + MTX	I	I	I	I	I	I	I	I						
IFX + MTX	I	I	I	I	I	I	I	I	I					
PBO	I	I	I	I	I	I	I	I	I	I				
TCZ + MTX	I	I	I	I	I	I	I	I	I	I	I	-		
TCZ	I	I	I	I	I	I	I	Ι	Ι	I	I	I		
Grouped biologics	I	I	I	I	Ι	I	I	Ι	I	I	I	I	I	
CTZ + MTX	I	I	I	I	I	I	I	I	I	I	I	I	I	I

Figure 14 presents the effects of each intervention relative to cDMARDs on the probit scale and *Figure 15* and *Table 33* present the probabilities of treatment rankings.

FIGURE 14 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

FIGURE 14 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive.

FIGURE 15 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive.

TABLE 33 European League Against Rheumatism (populations 2 and 3: main trials + prior biologics) – probability of treatment rankings in terms of efficacy

(most efficacious = 1)															
		Rank													
Intervention	Rank (mean)		2		4	S		7	œ		10	11	12	13	14
cDMARDs	12.8	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.005	0.013	0.035	0.076	0.164	0.372	0.333
ABT i.v. + MTX	8.7	0.004	0.006	0.015	0:030	0.058	0.085	0.118	0.138	0.136	0.136	0.122	0.091	0.045	0.016
ADA + MTX	8.5	0.012	0.014	0.026	0.047	0.075	0.096	0.109	0.107	0.107	0.103	0.108	0.100	0.065	0.031
ADA	7.6	0.013	0.035	0.048	0.075	660.0	0.114	0.113	0.098	060.0	060.0	0.088	0.093	0.040	0.003
Intensive cDMARDs	11.0	0.000	0.001	0.003	0.007	0.011	0.020	0.039	0.059	0.085	0.123	0.172	0.215	0.168	0.096
ETN + MTX	3.7	0.287	0.131	0.113	0.131	0.104	0.074	0.054	0.036	0.027	0.020	0.013	0.007	0.002	0.000
ETN	8.4	0.017	0.064	0.046	0.048	0.073	0.085	0.082	0.082	0.079	0.084	0.089	0.084	0.073	0.095
GOL + MTX	6.7	0.011	0.022	0.045	0.105	0.159	0.169	0.151	0.113	0.084	0.063	0.043	0.024	0.009	0.001
IFX + MTX	8.9	0.000	0.000	0.002	0.008	0.025	0.065	0.121	0.185	0.218	0.185	0.118	0.057	0.015	0.001
PBO	11.7	0.003	0.004	0.008	0.012	0.018	0.027	0.034	0.045	0.050	0.059	0.079	0.103	0.166	0.392
TCZ + MTX	3.2	0.131	0.267	0.244	0.170	0.095	0.050	0.022	0.012	0.005	0.003	0.001	0.000	0.000	0.000
TCZ	2.4	0.377	0.243	0.169	0.103	0.054	0.026	0.013	0.006	0.004	0.002	0.001	0.000	0.000	0.000
Grouped biologics	7.5	0.033	0.050	0.055	0.063	0.095	0.105	0.101	0.094	0.091	0.091	0.085	0.061	0.044	0.032
CTZ + MTX	3.7	0.113	0.162	0.225	0.200	0.133	0.082	0.042	0.021	0.011	0.006	0.003	0.001	0.000	0.000

The model fitted the data well, with the total residual deviance, 70.90, close to the total number of data points, 60, included in the analysis.

The between-study SD was estimated to be 0.34 (95% CrI 0.17 to 0.62), which implies mild to moderate heterogeneity between studies in intervention effects. The addition of the studies including patients who had received prior biologics resulted in a small reduction in the estimate of the between-study SD.

All interventions were associated with beneficial treatment effects relative to cDMARDs, with the greatest effects being associated with TCZ, TCZ plus MTX, ETN plus MTX and CTZ plus MTX. However, the treatment effects were statistically significant only for ETN plus MTX, GOL plus MTX, IFX plus MTX, TCZ plus MTX, TCZ and CTZ plus MTX at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although TCZ was ranked highest and was the treatment that was most likely to be the most effective intervention (mean rank 2.4; probability of being the best 0.377). The addition of the studies including patients who had received prior biologics had the greatest impact on the estimate of the effect of CTZ plus MTX.

A meta-analysis was used to estimate the proportion of patients experiencing a EULAR 'no response' when treated with cDMARDs.

Data were available from 11 studies.^{74,76,79,91,92,116,118,121,129,132,135}

The model fitted the data well, with the total residual deviance, 11.42, close to the total number of data points, 11, included in the analysis.

The between-study SD was estimated to be 0.24 (95% CrI 0.13 to 0.46), which implies mild heterogeneity between studies in the baseline response.

Table 34 presents the probabilities of achieving at least a moderate and at least a good EULAR response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

American College of Rheumatology: main trials

A NMA was used to compare the effects of ABT i.v. plus MTX, ADA (with and without MTX), intensive cDMARDs, ETN (with and without MTX), GOL plus MTX, IFX plus MTX, PBO, TCZ (with and without MTX), CTZ plus MTX and ABT s.c. plus MTX relative to cDMARDs on ACR response.

Data were available from 28 studies comparing two or three interventions. 57,58,62,66,69,70,74–76,79,80,84,85,89,91,92,96,99,102,105,112,115–118,121,122,124,140,160

Figure 16 presents the network of evidence and *Table 35* presents the frequency with which each pair of treatments was compared. There were 13 treatment effects to estimate from 28 studies.

Figure 17 presents the effects of each intervention relative to cDMARDs on the probit scale and *Figure 18* and *Table 36* present the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 185.61, close to the total number of data points, 174, included in the analysis. The largest residual deviances were 7.24 and 3.86 from O'Dell *et al.*,¹¹¹ and 4.99 from the Anti-TNF factor Research study program of the Monoclonal antibody ADalimumab (D2E7) in rheumatoid Arthritis (ARMADA) study.⁶⁹

The between-study SD was estimated to be 0.24 (95% CrI 0.14 to 0.40), which implies mild heterogeneity between studies in intervention effects.

Intervention	At least moderate (95% Crl)	At least good (95% Crl)
cDMARDs	0.410 (0.344 to 0.479)	0.077 (0.048 to 0.117)
ABT i.v. + MTX	0.655 (0.356 to 0.878)	0.212 (0.057 to 0.494)
ADA + MTX	0.664 (0.327 to 0.903)	0.220 (0.048 to 0.546)
ADA	0.704 (0.321 to 0.948)	0.254 (0.047 to 0.669)
Intensive cDMARDs	0.539 (0.178 to 0.863)	0.136 (0.016 to 0.463)
ETN + MTX	0.871 (0.437 to 0.992)	0.473 (0.085 to 0.886)
ETN	0.670 (0.132 to 0.973)	0.224 (0.010 to 0.772)
GOL + MTX	0.754 (0.528 to 0.902)	0.305 (0.126 to 0.545)
IFX + MTX	0.652 (0.424 to 0.832)	0.210 (0.079 to 0.416)
РВО	0.433 (0.071 to 0.883)	0.086 (0.004 to 0.500)
TCZ + MTX	0.88 (0.751 to 0.958)	0.495 (0.293 to 0.710)
TCZ	0.907 (0.752 to 0.979)	0.550 (0.298 to 0.800)
Grouped biologics	0.711 (0.217 to 0.967)	0.260 (0.023 to 0.743)
CTZ + MTX	0.864 (0.722 to 0.946)	0.462 (0.263 to 0.668)

TABLE 34 European Leagu	ue Against Rheumatism	n (populations 2	2 and 3: main	trials) - prob	ability of acl	hieving
EULAR responses						

FIGURE 16 American College of Rheumatology (populations 2 and 3: main trials) – network of evidence. Int, intensive; mono, monotherapy. Solid green line (two-arm study); and dotted blue line (three-arm study).

TABLE 35 Am	erican Colleg	e of Rheuma	tology (populat	tions 2 a	nd 3: main tr	rials) – freque	ncy wit	:h which each	oair of interve	entions	were compar	eq		
Intervention	cDMARDs	ABT i.v. + MTX	ADA + MTX	ADA	Intensive cDMARDs	ETN + MTX	ETN	GOL + MTX	IFX + MTX	PBO	TCZ + MTX	TCZ	CTZ + MTX	ABT s.c. + MTX
cDMARDs	I	2	5			m	-	2	m		-	2	-	
ABT i.v. + MTX	I	I							-					
ADA + MTX	I	I	I											-
ADA	I	Ι	I	I						2		-		
Intensive cDMARDs	I	I	I	I	I	2								
ETN + MTX	I	I	I	I	I	I	2		-					
ETN	I	I	I	I	I	I	I			-				
GOL + MTX	I	I	I	I	I	I	I	I						
IFX + MTX	I	I	I	I	I	I	I	I	I					
PBO	I	I	I	I	I	I	I	I	I	I				
TCZ + MTX	I	I	I	I	I	I	I	I	I	I	I	-		
TCZ	I	I	I	Ι	I	Ι	I	I	Ι	I	I	I		
CTZ + MTX	I	I	I	I	I	I	I	I	I	I	I	I	I	
ABT s.c. + MTX	I	I	I	I	I	I	I	I	I	I	I	I	I	I

which each nair of inter ÷ fro main trialc). 2 and 3. ilations idou) atologi of Rhai College arican A m ц С ù

FIGURE 17 American College of Rheumatology (populations 2 and 3: main trials) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

FIGURE 17 American College of Rheumatology (populations 2 and 3: main trials) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive.

FIGURE 18 American College of Rheumatology (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive.

		Rank													
Intervention	Rank (mean)	-	2	m	4	ß	9	7	œ	6	10	11	12	13	14
cDMARDs	13.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.063	0.859	0.075
ABT i.v. + MTX	8.3	0.007	0.014	0.025	0.039	0.062	0.082	0.108	0.131	0.166	0.169	0.130	0.067	0.001	0.000
ADA + MTX	6.8	0.004	0.019	0.040	0.078	0.122	0.168	0.181	0.164	0.117	0.071	0.029	0.006	0.000	0.000
ADA	10.1	0.003	0.005	0.011	0.017	0.029	0.038	0.049	0.058	0.085	0.136	0.230	0.312	0.027	0.000
Intensive cDMARDs	10.0	0.001	0.005	0.010	0.016	0.026	0.037	0.050	0.065	060.0	0.144	0.242	0.291	0.022	0.003
ETN + MTX	3.1	0.247	0.210	0.196	0.144	0.089	0.054	0.031	0.017	0.008	0.003	0.001	0.000	0.000	0.000
ETN	5.7	0.045	0.086	0.103	0.136	0.136	0.118	0.101	0.094	0.086	0.064	0.027	0.005	0.000	0.000
GOL + MTX	5.8	0.067	0.079	0.098	0.113	0.124	0.118	0.103	0.094	0.076	0.065	0.042	0.019	0.000	0.000
IFX + MTX	7.8	0.005	0.013	0:030	0.055	0.084	0.119	0.147	0.168	0.166	0.126	0.069	0.019	0.000	0.000
PBO	13.9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.008	0.071	0.919
TCZ + MTX	3.6	0.213	0.202	0.168	0.133	0.093	0.063	0.049	0.033	0.023	0.015	0.007	0.002	0.000	0.000
TCZ	3.0	0.239	0.251	0.192	0.131	0.080	0.047	0.028	0.017	0.010	0.004	0.001	0.000	0.000	0.000
CTZ + MTX	8.2	0.044	0.037	0.043	0.049	0.060	0.067	0.069	0.081	0.096	0.124	0.149	0.161	0.015	0.003
ABT s.c. + MTX	6.0	0.125	0.081	0.083	060.0	0.095	0.089	0.083	0.079	0.077	0.078	0.069	0.047	0.003	0.001

TABLE 36 American College of Rheumatology (populations 2 and 3: main trials) – probability of treatment rankings in terms of efficacy (most efficacious = 1)

All interventions except for PBO were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with ETN plus MTX and TCZ (with and without MTX). The treatment effects were statistically significant for all interventions except for ADA and PBO at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although TCZ (mean rank 3.0; probability of being the best 0.234), ETN plus MTX (mean rank 3.1; probability of being the best 0.247) and TCZ plus MTX (mean rank 3.6; probability of being the best 0.213) were the treatments that were most likely to be the most effective interventions.

A meta-analysis was used to estimate the proportion of patients experiencing an ACR 'no response' when treated with cDMARDs.

Data were available from 18 studies. 62,69,70,74-76,79,84,89,91,92,96,99,115-118,121,124,160

The model fitted the data well, with the total residual deviance, 18.70, close to the total number of data points, 18, included in the analysis.

The between-study SD was estimated to be 0.23 (95% Crl 0.14 to 0.38), which implies mild heterogeneity between studies in the baseline response.

Table 37 presents the probabilities of achieving at least an ACR20, an ACR50 and an ACR70 response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

American College of Rheumatology: main trials plus prior biologics with AMBITION A NMA was used to compare the effects of ABT i.v. plus MTX, ADA (with and without MTX), intensive cDMARDs, ETN (with and without MTX), GOL plus MTX, IFX plus MTX, PBO, TCZ (with and without MTX), CTZ plus MTX, ABT s.c. plus MTX, TOF (5-mg and 10-mg doses) and MTX relative to cDMARDs on ACR response.

Intervention	At least ACR20 (95% Crl)	At least ACR50 (95% Crl)	At least ACR70 (95% Crl)
cDMARDs	0.298 (0.255 to 0.344)	0.123 (0.098 to 0.1530	0.042 (0.031 to 0.056)
ABT i.v. + MTX	0.573 (0.418 to 0.719)	0.328 (0.200 to 0.480)	0.156 (0.079 to 0.268)
ADA + MTX	0.615 (0.500 to 0.726)	0.368 (0.263 to 0.489)	0.183 (0.115 to 0.276)
ADA	0.499 (0.286 to 0.712)	0.264 (0.116 to 0.472)	0.115 (0.039 to 0.263)
Intensive cDMARDs	0.503 (0.293 to 0.704)	0.266 (0.120 to 0.462)	0.117 (0.041 to 0.254)
ETN + MTX	0.713 (0.576 to 0.823)	0.472 (0.330 to 0.617)	0.263 (0.157 to 0.394)
ETN	0.645 (0.467 to 0.798)	0.398 (0.237 to 0.580)	0.205 (0.100 to 0.359)
GOL + MTX	0.642 (0.469 to 0.793)	0.395 (0.239 to 0.573)	0.202 (0.101 to 0.351)
IFX + MTX	0.595 (0.466 to 0.718)	0.348 (0.236 to 0.479)	0.169 (0.099 to 0.268)
РВО	0.175 (0.063 to 0.362)	0.059 (0.015 to 0.163)	0.016 (0.003 to 0.061)
TCZ + MTX	0.706 (0.542 to 0.837)	0.464 (0.299 to 0.638)	0.256 (0.136 to 0.415)
TCZ	0.717 (0.578 to 0.830)	0.477 (0.332 to 0.627)	0.266 (0.159 to 0.405)
CTZ + MTX	0.564 (0.314 to 0.785)	0.319 (0.133 to 0.563)	0.150 (0.046 to 0.341)
ABT s.c. + MTX	0.638 (0.400 to 0.837)	0.391 (0.188 to 0.637)	0.199 (0.073 to 0.415)

 TABLE 37 American College of Rheumatology (populations 2 and 3: main trials) – probability of achieving ACR responses

Data were available from 40 studies comparing two, three or four interventions. 55,57,58,62,66,69,70,74-76,79,80,84,85,89,91,92,96,99,102,105,112,115-118,121,122,124,127,129-138,140,160

Figure 19 presents the network of evidence and *Table 38* presents the frequency with which each pair of treatments was compared. There were 15 treatment effects to estimate from 40 studies.^{55,57,58,62,66,69,70,74-76,79,80,84,85,89,91,92,96,99,102,105,112,115-118,121,122,124,127,129-138,140,160}

Figure 20 presents the effects of each intervention relative to cDMARDs on the probit scale and *Figure 21* and *Table 39* present the probabilities of treatment rankings.

There was some suggestion that model was not a good fit to all of the data, with the total residual deviance, 291.84, being larger than the total number of data points, 250, included in the analysis. The largest residual deviances, 14.21 and 14.70, were from Kremer *et al.*,¹³⁷ which included patients who received prior biologics, and were from the cDMARDs arm, in which only one patient had an ACR20 response and two patients had an ACR50 response. The next largest residual deviances were 5.92 and 4.04 from the O'Dell *et al.* study¹¹¹ and 3.95 from the JESMR study.¹⁴⁰

The between-study SD was estimated to be 0.21 (95% Crl 0.14 to 0.32), which implies mild heterogeneity between studies in intervention effects. The addition of the AMBITION study⁵⁵ and studies in which patients had received prior biologics reduced the point estimate and the uncertainty in the between study SD.

All interventions except for PBO were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with CTZ plus MTX and ETN plus MTX. The treatment effects were statistically significant for all interventions except for ADA and PBO at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although CTZ plus MTX (mean rank 1.9; probability of being the best 0.538) and ETN plus MTX (mean rank 2.9; probability of being the best 0.263) were the treatments that were most likely to be the most effective interventions. The inclusion of the additional studies has had a small impact on six of the treatment effects. However, the effects of ADA (with and without MTX), TCZ (with and without MTX), ABT s.c. plus MTX and PBO were smaller, and the effect of CTZ plus MTX were larger relative to cDMARDs.

A meta-analysis was used to estimate the proportion of patients experiencing an ACR 'no response' when treated with cDMARDs.

FIGURE 19 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – network of evidence. Int, intensive. Solid green line (two-arm study); dotted blue line (three-arm study); and dotted green line (four-arm study).

TABLE 38 Ame were compared	rican College	e of Rheumato	ology (po	oulatior	is 2 and 3: m	aın trials	+ prior	biologics	with AN	1BITIOI	N ²²) – tre	quency	with w	nich each pa	iir of interventio	su
Intervention	cDMARDs	ABT i.v.+MTX	ADA + MTX	ADA	Intensive cDMARDs	ETN + MTX	ETN	GOL + MTX	IFX + MTX –	PBO	TCZ + MTX	TCZ	CTZ + MTX	ABA s.c. + MTX	TOF5 + MTX	TOF10+MTX
cDMARDs	I	m	9			m	-	2	ω		m	ω	10		m	m
ABT i.v. + MTX	I	I							, -					1		
ADA + MTX	I	I	I											1	-	Ţ
ADA	I	I	I	I						2		-				
Intensive cDMARDs	I	I	I	I	I	2										
ETN + MTX	I	I	I	I	I	I	2		-							
ETN	I	I	I	I	I	I	I			-						
GOL + MTX	I	I	I	I	Ι	I	I	I								
IFX + MTX	I	I	I	I	I	I	I	I	I							
PBO	Ι	I	I	I	Ι	I	I	I		I						
TCZ + MTX	I	I	I	I	Ι	I	I	I	·	, I	I	-				
TCZ	I	I	I	I	Ι	I	I	I		I	I	I				
CTZ + MTX	I	I	I	I	I	I	I	I		1	I	I	I			
ABT s.c. + MTX	I	I	I	I	I	I	I	I			I	I	1	I		
TOF5 + MTX	I	I	I	I	I	I	I	I		I	I	I		I	I	C
TOF10+MTX	I	I	I	I	I	I	I	I			1	I		I	I	I
TOF5, tofacitinil	o 5 mg; TOF1(0, tofacitinib 10	0 mg.													

FIGURE 20 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

(b)	Treatment comparison		Effect (95% Crl)
-	vs. ADA + MTX		
	ADA		0.34 (–0.17 to 0.87)
	Int cDMARDs		0.23 (-0.29 to 0.77)
	ETN + MTX		-0.33 (-0.71 to 0.06)
	ETN		-0.12 (-0.57 to 0.33)
	GOL+MTX		-0.13 (-0.57 to 0.31)
	IFX + MTX		-0.01 (-0.35 to 0.33)
	PBO		1.24 (0.69 to 1.80)
	TCZ+MTX		–0.18 (–0.50 to 0.15)
	TCZ		–0.18 (–0.51 to 0.16)
	CTZ + MTX		–0.41 (–0.73 to –0.08)
	ABT s.c. + MTX		-0.03 (-0.40 to 0.33)
	TOF 5 mg	-	0.07 (–0.25 to 0.41)
	TOF 10 mg	— — —	–0.06 (–0.38 to 0.27)
	vs. ADA		
			-0.11 (-0.75 to 0.52)
			-0.67 (-1.20 to -0.14)
			-0.47(-0.99 to 0.05)
			-0.48(-1.08(0)0.14)
			-0.55(-0.91(0,0.20))
			0.50(0.52(01.27))
			-0.52(-1.04(0-0.01))
	CTZ + MTX		-0.32(-0.37)(0-0.00)
			-0.37(-0.99 to 0.22)
	TOF 5 mg		-0.27 (-0.84 to 0.29)
	TOF 10 mg		-0.41(-0.96 to 0.16)
	l'of foling	—	
	vs. Int cDMARDs		
	ETN + MTX		–0.56 (–0.92 to –0.21)
	ETN		–0.36 (–0.85 to 0.15)
	GOL+MTX		–0.37 (–0.98 to 0.25)
	IFX + MTX		–0.24 (–0.78 to 0.29)
	PBO		1.00 (0.36 to 1.66)
	TCZ + MTX		-0.41 (-0.95 to 0.13)
	TCZ		-0.41 (-0.95 to 0.13)
	CIZ+MTX		-0.65 (-1.19 to -0.10)
	ABT S.C. + MTX		-0.27 (-0.87 to 0.34)
	IUF 5 mg		-0.16 (-0.72 to 0.40)
	IOF IUmg		-0.30 (-0.86 to 0.26)
		-2 -1 0 1 2	
		Favours intervention Favours control	

FIGURE 20 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

FIGURE 20 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

FIGURE 20 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive.

FIGURE 21 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive.

(most efficacious = 1)														ch IIVI IB			'n
		Rank															
Intervention	Rank (mean)		2		4	Ŀ		7	∞		10	11	12	13	14	15	16
cDMARDs	15.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.002	0.058	606.0	0.032
ABT i.v. + MTX	9.5	0.001	0.004	0.013	0.024	0.039	0.057	0.082	0.107	0.129	0.144	0.154	0.145	0.078	0.023	0.000	0.000
ADA + MTX	8.9	0.001	0.004	0.010	0.023	0.043	0.076	0.112	0.143	0.165	0.162	0.132	0.088	0.035	0.006	0.000	0.000
ADA	12.9	0.001	0.001	0.003	0.004	0.007	0.010	0.013	0.018	0.021	0:030	0.044	0.073	0.228	0.505	0.043	0.000
Intensive cDMARDs	11.8	0.000	0.004	0.009	0.014	0.018	0.022	0.030	0.035	0.039	0.051	0.070	0.104	0.299	0.288	0.016	0.001
ETN + MTX	2.9	0.263	0.295	0.165	0.103	0.067	0.042	0.026	0.017	0.011	0.006	0.004	0.001	0.000	0.000	0.000	0.000
ETN	6.4	0.037	0.077	0.122	0.110	0.104	0.098	0.088	0.075	0.067	0.061	0.060	0.072	0.026	0.004	0.000	0.000
GOL + MTX	6.3	0.063	0.096	0.107	0.105	0.102	0.096	0.083	0.070	0.064	0.056	0.056	0.054	0.035	0.014	0.000	0.000
IFX + MTX	8.6	0.003	0.011	0.029	0.049	0.066	0.091	0.105	0.117	0.120	0.116	0.115	0.106	0.056	0.016	0.000	0.000
PBO	16.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.032	0.967
TCZ + MTX	5.1	0:030	0.100	0.153	0.179	0.162	0.123	0.089	0.061	0.041	0:030	0.018	0.010	0.003	0.001	0.000	0.000
TCZ	5.2	0.033	0.093	0.152	0.176	0.154	0.126	0.088	0.064	0.046	0:030	0.022	0.012	0.004	0.000	0.000	0.000
CTZ + MTX	1.9	0.538	0.239	0.115	0.051	0.029	0.014	0.007	0.004	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000
ABT s.c. + MTX	8.0	0.020	0.040	0.054	0.063	0.076	0.086	0.094	0.098	0.096	0.097	0.094	060.0	0.065	0.027	0.000	0.000
TOF5 + MTX	10.2	0.001	0.004	0.009	0.017	0.029	0.045	0.064	0.082	0.097	0.123	0.147	0.187	0.142	0.053	0.000	0.000
TOF10 + MTX	7.4	0.010	0.032	0.060	0.083	0.103	0.115	0.120	0.110	0.102	0.091	0.083	0.058	0.027	0.006	0.000	0.000
TOF5, tofacitinib 5 m	g; TOF10, tofacitir	nib 10 mg															

Data were available from 29 studies. 55,62,69,70,74-76,79,84,89,91,92,96,99,115-118,121,124,128-138,160

The model fitted the data well, with the total residual deviance, 29.14, close to the total number of data points, 29, included in the analysis.

The between-study SD was estimated to be 0.27 (95% Crl 0.19 to 0.38), which implies mild heterogeneity between studies in the baseline response.

Table 40 presents the probabilities of achieving at least an ACR20, an ACR50 and an ACR70 response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

American College of Rheumatology: main trials plus prior biologics without AMBITION A NMA was used to compare the effects of ABT i.v. plus MTX, ADA (with and without MTX), intensive cDMARDs, ETN (with and without MTX), GOL plus MTX, IFX plus MTX, PBO, TCZ (with and without MTX), CTZ plus MTX, ABT s.c. plus MTX and TOF plus MTX (5-mg and 10-mg doses) relative to cDMARDs on ACR response.

Data were available from 39 studies comparing two, three or four interventions. 57,58,62,66,69,70,74-76,79,80,84,85,89,91,92,96,99,102,105,112,115-118,121,122,124,127,129-138,140,160

Intervention	At least ACR20 (95% Crl)	At least ACR50 (95% Crl)	At least ACR70 (95% Crl)
cDMARDs	0.279 (0.242 to 0.318)	0.117 (0.095 to 0.142)	0.038 (0.029 to 0.049)
ABT i.v. + MTX	0.556 (0.444 to 0.664)	0.321 (0.228 to 0.428)	0.148 (0.092 to 0.223)
ADA + MTX	0.568 (0.475 to 0.659)	0.332 (0.252 to 0.424)	0.155 (0.106 to 0.220)
ADA	0.432 (0.253 to 0.625)	0.219 (0.102 to 0.387)	0.088 (0.032 to 0.194)
Intensive cDMARDs	0.475 (0.290 to 0.667)	0.253 (0.123 to 0.432)	0.106 (0.041 to 0.226)
ETN + MTX	0.690 (0.563 to 0.800)	0.457 (0.328 to 0.593)	0.246 (0.152 to 0.365)
ETN	0.616 (0.452 to 0.761)	0.378 (0.233 to 0.542)	0.187 (0.095 to 0.317)
GOL + MTX	0.619 (0.460 to 0.759)	0.381 (0.240 to 0.540)	0.189 (0.099 to 0.316)
IFX + MTX	0.572 (0.453 to 0.683)	0.336 (0.234 to 0.451)	0.158 (0.096 to 0.241)
РВО	0.143 (0.054 to 0.293)	0.047 (0.014 to 0.126)	0.012 (0.003 to 0.042)
TCZ + MTX	0.637 (0.532 to 0.734)	0.400 (0.299 to 0.508)	0.202 (0.134 to 0.288)
TCZ	0.636 (0.524 to 0.758)	0.399 (0.292 to 0.513)	0.201 (0.130 to 0.292)
CTZ + MTX	0.721 (0.620 to 0.804)	0.492 (0.381 to 0.599)	0.274 (0.189 to 0.371)
ABT s.c. + MTX	0.580 (0.428 to 0.723)	0.344 (0.215 to 0.496)	0.163 (0.085 to 0.278)
TOF5 + MTX	0.541 (0.413 to 0.660)	0.308 (0.204 to 0.425)	0.139 (0.080 to 0.220)
TOF10 + MTX	0.593 (0.469 to 0.708)	0.356 (0.246 to 0.478)	0.171 (0.103 to 0.262)
TOES tofacitinib 5 mg; T	OF10 tofacitinih 10 mg		

TABLE 40 American College of Rheumatology (populations 2 and 3: main trials + prior biologics with AMBITION⁵⁵) – probability of achieving ACR responses

Figure 22 presents the network of evidence and *Table 41* presents the frequency with which each pair of treatments was compared. There were 15 treatment effects to estimate from 39 studies.

Figure 23 presents the effects of each intervention relative to cDMARDs on the probit scale and *Figure 24* and *Table 42* present the probabilities of treatment rankings.

There was some suggestion that model was not a good fit to all of the data, with the total residual deviance, 281.87, being larger than the total number of data points, 244, included in the analysis. The largest residual deviances, 14.8 and 14.21, were from the Kramer *et al.* study,¹³⁷ which included patients who received prior biologics, and were from the cDMARDs arm, in which only one patient had an ACR20 response and two patients had an ACR50 response. The next largest residual deviances were 5.76 and 4.23 from the O'Dell *et al.* study,¹¹¹ 4.08 from the JESMR study¹⁴⁰ and 3.86 from the ARMADA study.⁶⁹

The between-study SD was estimated to be 0.20 (95% Crl 0.12 to 0.31), which implies mild heterogeneity between studies in intervention effects. The exclusion of the AMBITION study⁵⁵ had little impact on the estimate of the between-study SD from studies including patients who had received prior biologics.

All interventions except for PBO were associated with beneficial treatment effects relative to cDMARDs, with the greatest effects being associated with CTZ plus MTX, ETN plus MTX and TCZ. The treatment effects were statistically significant for all interventions except for PBO at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although CTZ plus MTX (mean rank 2.1; probability of being the best 0.459) and ETN plus MTX (mean rank 3.0; probability of being the best 0.246) were the treatments that were most likely to be the most effective interventions. The exclusion of the AMBITION study⁵⁵ has increased the treatment effects for ADA and TCZ (with and without MTX) back towards the effects estimated from the main studies alone, but shrunk the effect of ABT s.c. plus MTX.

A meta-analysis was used to estimate the proportion of patients experiencing an ACR 'no response' when treated with cDMARDs.

Data were available from 28 studies. 62,69,70,74-76,79,84,89,91,92,96,99,115-118,121,124,129-138,160

The model fitted the data well, with the total residual deviance, 28.26, close to the total number of data points, 28, included in the analysis.

FIGURE 22 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – network of evidence. Int, intensive. Solid green line (two-arm study); and dotted blue line (three-arm study).

were compared							2 2 2						, , , , , , , , , , , , , , , , , , ,			25
Intervention	cDMARDs	ABT i.v. + MTX	ADA + MTX	ADA	Intensive cDMARDs	ETN + MTX	ETN	GOL + MTX	IFX + MTX	PBO	TCZ + MTX	TCZ	CTZ+ MTX	ABT s.c. + MTX	TOF5 + MTX	TOF10 + MTX
cDMARDs	I	m	9			m	-	2	m		ω	2	ß		S	C
ABT i.v. + MTX	Ι	I							. 					-		
ADA + MTX	I	I	I											-	—	-
ADA	I	I	I	I						2		. 				
Intensive cDMARDs	I	I	I	I	I	2										
ETN + MTX	I	I	I	I	I	I	2		-							
ETN	I	I	I	I	I	I	I			-						
GOL + MTX	I	I	I	I	I	I	I	I								
IFX + MTX	Ι	I	I	Ι	I	I	I	I	I							
PBO	Ι	I	I	I	Ι	I	I	I	I	I						
TCZ + MTX	Ι	I	I	I	I	I	I	I	I	I	1	, -				
TCZ	I	I	I	Ι	I	I	I	I	I	I	I	I				
CTZ + MTX	I	I	I	I	I	I	I	I	I	I	I	I	I			
ABT s.c. + MTX	I	I	I	ļ	I	I	I	I	I		I	I	I	I		
TOF5 + MTX	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	C
TOF10+MTX	I	T	I	Т	T	Т	Т	Т	Т			I		1	I	I

frequency with which each pair of interventions American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) -TABLE 41

vs. cDMARDs ABT i.v. + MTX ADA + MTX ADA + MTX ADA + MTX ADA MBT i.v. + MTX ADA Int cDMARDs ETN GOL + MTX PBO TCZ + MTX ADA + MTX ABT s.c. + MTX ADA + MTX ABT s.c. + MTX ADA + MTX ADA + MTX ABT s.c. + MTX ADA + MTX ADA + MTX ADA + MTX ABT s.c. + MTX ADA + MTX	(a)	Treatment comparison		Effect (95% Crl)
ABT i.v. + MTX -0.73 (-0.98 to -0.48) ADA + MTX -0.75 (-0.95 to -0.56) ADA -0.51 (-0.98 to -0.05) Int cDMARDs -0.51 (-1.00 to -0.07) ETN + MTX -0.91 (-1.29 to -0.52) GOL+MTX -0.95 (-0.95 to -0.51) IFX + MTX -0.91 (-1.29 to -0.52) GOL+MTX -0.91 (-1.29 to -0.51) PBO -0.97 (-1.04 to -0.51) DBO -0.97 (-1.21 to -0.73) TCZ -1.10 (-1.15 to -0.74) TOF 5 mg -0.65 (-0.77) (-1.04 to -0.53) Vs. ABT i.v. + MTX -0.97 (-1.21 to -0.73) ADA + MTX -0.97 (-1.21 to -0.73) ADA + MTX -0.03 (-0.33 to 0.27) ADA + MTX -0.03 (-0.33 to 0.27) ADA + MTX -0.11 to -0.53) Vs. ABT i.v. + MTX -0.01 (-0.33 to 0.27) ADA -0.15 (-0.64 to 0.28) GOL + MTX -0.16 (-0.64 to 0.28) IFX + MTX -0.04 (-0.37 to 0.20) IFX + MTX -0.16 (-0.61 to 0.28) IFX + MTX -0.16 (-0.64 to 0.28) GOL + MTX -0.17 (-0.74 to 0.05) IFX + MTX -0.17 (-0.77 to 0.22)		vs. cDMARDs		
ADA + MTX ADA ADA ADA ADA ADA ADA ADA AD		ABT i.v. + MTX		-0.73 (-0.98 to -0.48)
ADA Int cDMARDs ETN+MTX ETN + MTX GOL+MTX GOL+MTX FTN HTX GOL+MTX HTX HTX HTX HTX HTX HTX HTX H		ADA+MTX		-0.75 (-0.95 to -0.56)
Int cDMARDs -0.54 (-1.00 to -0.07) ETN + MTX -0.54 (-1.00 to -0.07) FTN -0.91 (-1.29 to -0.52) GOL + MTX -0.91 (-1.29 to -0.52) IFX + MTX -0.97 (-1.21 to -0.51) PBO -0.97 (-1.21 to -0.73) TCZ -1.10 (-1.41 to -0.93) ABT s.c. + MTX -0.97 (-1.21 to -0.73) TOF 5 mg -0.79 (-1.15 to -0.40) TOF 10 mg -0.93 (-0.33 to 0.27) ADA -0.93 (-0.33 to 0.27) ADA -0.82 (-1.10 to -0.53) Vs. ABT i.v. + MTX -0.93 (-0.33 to 0.27) ADA -0.18 (-0.64 to 0.28) Int cDMARDs -0.18 (-0.61 to 0.28) ETN + MTX -0.03 (-0.33 to 0.27) ADA -0.18 (-0.64 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) IFX + MTX -0.04 (-0.72 to 0.05) IFX + MTX -0.04 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.91 (-0.46 to 0.29) TOF 5 mg -0.04 (-0.33 to 0.41)		ADA		-0.51 (-0.98 to -0.05)
ETN + MTX ETN GOL + MTX HTX GOL + MTX HTX PBO TCZ + MTX ADA + MTX ADA TCZ TCZ HTX ADA HTX HTX ADA HTX HTX ADA HTX HTX ADA HTX HTX ADA HTX HTX HTX HTX HTX HTX HTX HTX		Int cDMARDs		-0.54 (-1.00 to -0.07)
ETN GOL+MTX IFX+MTX PBO TCZ+MTX TCZ ABT s.c.+MTX ADA + MTX ADA + MTX ADA TOF 5 mg GOL+MTX TCZ TTX ADA MTX ADA ATX ATX ATX ADA ATX ATX ATX ADA ATX ATX ATX ATX ATX ATX ATX AT		ETN + MTX		-1.10 (-1.41 to -0.79)
GOL+MTX -0.89 (-1.26 to -0.52) IFX+MTX -0.77 (-1.04 to -0.51) PBO -0.97 (-1.21 to -0.73) TCZ -0.97 (-1.21 to -0.73) TCZ -0.97 (-1.21 to -0.73) ABT s.c.+MTX -0.97 (-1.21 to -0.73) TOF 5 mg -0.79 (-1.15 to -0.44) TOF 5 mg -0.82 (-1.10 to -0.53) vs. ABT i.v.+MTX -0.97 (-1.21 to -0.33 to 0.27) ADA + MTX -0.03 (-0.33 to 0.27) ADA -0.37 (-0.77 to 0.02) ETN + MTX -0.16 (-0.61 to 0.28) GOL+MTX -0.16 (-0.51 to 0.28) IFX + MTX -0.34 (-0.79 to -0.09) ADA -0.34 (-0.72 to 0.05) ETN + MTX -0.44 (-0.79 to -0.09) ADA -0.16 (-0.61 to 0.28) IFX + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.33 to 0.41) TOF 5 mg -0.04 (-0.33 to 0.41) TOF 5 mg -0.04 (-0.33 to 0.41) TOF 5 mg -0.09 (-0.46 to 0.29) -0.44 (-0.79 to -0.09) -0.44 (-0.79 to -0.09) -0.44 (-0.79 to -0.02) -0.09 (-0.46 to 0.29) <td></td> <td>ETN</td> <td></td> <td>-0.91 (-1.29 to -0.52)</td>		ETN		-0.91 (-1.29 to -0.52)
IFX+MTX -0.77 (-1.04 to -0.51) PBO -0.97 (-1.21 to -0.73) TCZ + MTX -0.97 (-1.21 to -0.73) TCZ -0.97 (-1.21 to -0.73) CTZ + MTX -0.97 (-1.14 to -0.93) ABT s.c. + MTX -0.97 (-1.15 to -0.44) TOF 5 mg -0.97 (-1.10 to -0.53) vs. ABT i.v. + MTX -0.03 (-0.33 to 0.27) ADA -0.97 (-1.10 to -0.53) vs. ABT i.v. + MTX -0.03 (-0.33 to 0.27) ADA -0.37 (-0.77 to 0.02) ETN + MTX -0.38 (-0.61 to 0.28) GOL + MTX -0.04 (-0.37 to 0.28) PBO -0.18 (-0.64 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.44 (-0.72 to 0.05) TCZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to 0.09) ABT s.c. + MTX -0.44 (-0.79 to 0.09) TOF 5 mg -0.04 (-0.33 to 0.41) TOF 10 mg -0.91 (-0.46 to 0.29)		GOL+MTX	— —	-0.89 (-1.26 to -0.52)
PBO 0.41 (-0.09 to 0.91) TCZ + MTX -0.97 (-1.21 to -0.73) TCZ -1.06 (-1.36 to -0.77) CTZ + MTX -0.79 (-1.15 to -0.44) TOF 5 mg -0.79 (-1.15 to -0.40) TOF 10 mg -0.82 (-1.10 to -0.53) vs. ABT i.v. + MTX -0.03 (-0.33 to 0.27) ADA -0.03 (-0.33 to 0.27) DAA -0.37 (-0.77 to 0.02) ETN + MTX -0.37 (-0.77 to 0.02) ETN + MTX -0.04 (-0.33 to 0.28) GOL + MTX -0.04 (-0.37 to 0.28) PBO -0.18 (-0.64 to 0.28) TCZ + MTX -0.04 (-0.37 to 0.28) IFX + MTX -0.04 (-0.37 to 0.29) IFX + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 5 mg -0.04 (-0.33 to 0.41) TOF 10 mg -0.11 2		IFX + MTX		-0.77 (-1.04 to -0.51)
TCZ + MTX -0.97 (-1.21 to -0.73) TCZ -1.06 (-1.36 to -0.77) CTZ + MTX -1.17 (-1.41 to -0.93) ABT s.c. + MTX -0.97 (-1.21 to -0.73) TOF 5 mg -0.79 (-1.21 to -0.73) TOF 10 mg -0.79 (-1.21 to -0.73) vs. ABT i.v. + MTX -0.97 (-1.21 to -0.73) ADA + MTX -0.97 (-1.21 to -0.73) ADA -0.97 (-1.21 to -0.73) Int cDMARDs -0.69 (-0.97 to -0.40) GOL + MTX -0.03 (-0.33 to 0.27) IFX + MTX -0.37 (-0.77 to 0.02) PBO -0.16 (-0.61 to 0.28) IFX + MTX -0.4 (-0.37 to 0.28) PBO -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 10 mg -0.1 2		PBO	÷	0.41 (-0.09 to 0.91)
TCZ		TCZ + MTX		–0.97 (–1.21 to –0.73)
CTZ + MTX ABT s.c. + MTX TOF 5 mg TOF 10 mg vs. ABT i.v. + MTX ADA + MTX ADA + MTX ADA TMTX ADA ADA MTX ADA ADA ADA ADA ADA ADA ADA AD		TCZ		-1.06 (-1.36 to -0.77)
ABT s.c. + MTX TOF 5 mg TOF 10 mg 		CTZ + MTX		–1.17 (–1.41 to –0.93)
TOF 5 mg TOF 10 mg -0.69 (-0.97 to -0.40) -0.82 (-1.10 to -0.53) vs. ABT i.v. + MTX ADA + MTX ADA + MTX ADA -0.03 (-0.33 to 0.27) 0.21 (-0.32 to 0.75) Int cDMARDs ETN + MTX -0.03 (-0.33 to 0.27) 0.19 (-0.33 to 0.72) ETN + MTX -0.37 (-0.77 to 0.02) BOL + MTX -0.16 (-0.64 to 0.28) GOL + MTX -0.04 (-0.37 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.24 (-0.59 to 0.11) TCZ -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 10 mg -0.04 (-0.33 to 0.41)		ABT s.c. + MTX		–0.79 (–1.15 to –0.44)
TOF 10 mg -0.82 (-1.10 to -0.53) vs. ABT i.v. + MTX -0.03 (-0.33 to 0.27) ADA + MTX -0.03 (-0.33 to 0.27) ADA 0.21 (-0.32 to 0.75) Int cDMARDs -0.18 (-0.64 to 0.28) ETN + MTX -0.16 (-0.61 to 0.28) GOL + MTX -0.04 (-0.37 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.44 (-0.79 to -0.09) TCZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.11 2		TOF 5 mg		–0.69 (–0.97 to –0.40)
vs. ABT i.v. + MTX ADA + MTX ADA ADA Int cDMARDs ETN + MTX GOL + MTX IFX + MTX PBO TCZ + MTX ABT s.c. + MTX TOF 5 mg TOF 10 mg		TOF 10 mg		–0.82 (–1.10 to –0.53)
ADA + MTX -0.03 (-0.33 to 0.27) ADA 0.21 (-0.32 to 0.75) Int cDMARDs 0.19 (-0.33 to 0.22) ETN + MTX -0.37 (-0.77 to 0.02) ETN -0.18 (-0.64 to 0.28) GOL + MTX -0.16 (-0.61 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 5 mg -0.04 (-0.33 to 0.41) TOF 10 mg -0.11		vs. ABT i.v. + MTX		
ADA 0.21 (-0.32 to 0.75) Int cDMARDs 0.19 (-0.33 to 0.72) ETN + MTX -0.37 (-0.77 to 0.02) ETN -0.18 (-0.64 to 0.28) GOL + MTX -0.16 (-0.61 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.24 (-0.59 to 0.11) TCZ + MTX -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 5 mg -0.04 (-0.33 to 0.41) TOF 10 mg -0.11 2		ADA+MTX		–0.03 (–0.33 to 0.27)
Int cDMARDs 0.19 (-0.33 to 0.72) ETN + MTX -0.37 (-0.77 to 0.02) ETN -0.18 (-0.64 to 0.28) GOL + MTX -0.16 (-0.61 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO 1.13 (0.59 to 1.70) TCZ + MTX -0.24 (-0.59 to 0.11) TCZ -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.11		ADA		0.21 (–0.32 to 0.75)
ETN + MTX -0.37 (-0.77 to 0.02) ETN -0.18 (-0.64 to 0.28) GOL + MTX -0.16 (-0.61 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.24 (-0.59 to 0.11) TCZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.04 (-0.33 to 0.41) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.11 2		Int cDMARDs		0.19 (–0.33 to 0.72)
ETN GOL+MTX IFX+MTX PBO TCZ+MTX TCZ CTZ+MTX TOF 5 mg TOF 10 mg -2 -1 0 1 2 -0.18 (-0.64 to 0.28) -0.16 (-0.61 to 0.28) -0.04 (-0.37 to 0.28) 1.13 (0.59 to 1.70) -0.24 (-0.59 to 0.11) -0.34 (-0.72 to 0.05) -0.44 (-0.79 to -0.09) -0.06 (-0.40 to 0.28) 0.04 (-0.33 to 0.41) -0.09 (-0.46 to 0.29)		ETN + MTX		–0.37 (–0.77 to 0.02)
GOL + MTX -0.16 (-0.61 to 0.28) IFX + MTX -0.04 (-0.37 to 0.28) PBO 1.13 (0.59 to 1.70) TCZ + MTX -0.24 (-0.59 to 0.11) TCZ -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.06 (-0.40 to 0.28) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.11 2		ETN		–0.18 (–0.64 to 0.28)
IFX + MTX -0.04 (-0.37 to 0.28) PBO -0.04 (-0.37 to 0.28) TCZ + MTX -0.04 (-0.37 to 0.28) TCZ + MTX -0.04 (-0.59 to 0.11) TCZ -0.04 (-0.72 to 0.05) CTZ + MTX -0.04 (-0.79 to -0.09) ABT s.c. + MTX -0.06 (-0.40 to 0.28) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.00 (-0.46 to 0.29)		GOL+MTX		–0.16 (–0.61 to 0.28)
PBO 1.13 (0.59 to 1.70) TCZ + MTX -0.24 (-0.59 to 0.11) TCZ -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.06 (-0.40 to 0.28) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.09 (-0.46 to 0.29)		IFX + MTX		–0.04 (–0.37 to 0.28)
TCZ + MTX -0.24 (-0.59 to 0.11) TCZ -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.06 (-0.40 to 0.28) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.09 (-0.46 to 0.29)		PBO		1.13 (0.59 to 1.70)
TCZ -0.34 (-0.72 to 0.05) CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.06 (-0.40 to 0.28) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.09 (-0.46 to 0.29)		TCZ + MTX		–0.24 (–0.59 to 0.11)
CTZ + MTX -0.44 (-0.79 to -0.09) ABT s.c. + MTX -0.06 (-0.40 to 0.28) TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.09 (-0.46 to 0.29)		TCZ		–0.34 (–0.72 to 0.05)
ABT s.c. + MTX0.06 (-0.40 to 0.28) TOF 5 mg0.09 (-0.33 to 0.41) TOF 10 mg -0.09 (-0.46 to 0.29)		CTZ + MTX		–0.44 (–0.79 to –0.09)
TOF 5 mg 0.04 (-0.33 to 0.41) TOF 10 mg -0.09 (-0.46 to 0.29) -2 -1 0 1 2		ABT s.c. + MTX		–0.06 (–0.40 to 0.28)
TOF 10 mg -0.09 (-0.46 to 0.29)		TOF 5 mg	— — —	0.04 (–0.33 to 0.41)
-2 -1 0 1 2		TOF 10 mg		-0.09 (-0.46 to 0.29)
)
Favours intervention Favours control			Favours intervention Favours control	-

FIGURE 23 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (*continued*)

FIGURE 23 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

(c)	Treatment comparison	Effect (95% Crl)
	vs. ETN + MTX ETN GOL + MTX IFX + MTX PBO TCZ + MTX TCZ CTZ + MTX ABT s.c. + MTX TOF 5 mg TOF 10 mg	0.19 (-0.15 to 0.54) 0.21 (-0.27 to 0.69) 0.33 (-0.06 to 0.71) 1.50 (0.99 to 2.02) 0.13 (-0.26 to 0.52) 0.04 (-0.38 to 0.44) -0.07 (-0.46 to 0.33) 0.31 (-0.16 to 0.77) 0.41 (0.00 to 0.84) 0.28 (-0.14 to 0.71)
	vs. ETN GOL + MTX IFX + MTX PBO TCZ + MTX TCZ CTZ + MTX ABT s.c. + MTX TOF 5 mg TOF 10 mg	0.02 (-0.52 to 0.56) 0.14 (-0.32 to 0.59) 1.31 (0.83 to 1.80) -0.06 (-0.51 to 0.38) -0.16 (-0.61 to 0.29) -0.26 (-0.72 to 0.20) 0.12 (-0.40 to 0.64) 0.22 (-0.26 to 0.71) 0.08 (-0.38 to 0.57)
	vs. GOL + MTX IFX + MTX PBO TCZ + MTX TCZ CTZ + MTX ABT s.c. + MTX TOF 5 mg TOF 10 mg	0.12 (-0.34 to 0.57) 1.30 (0.68 to 1.92) -0.08 (-0.52 to 0.36) -0.17 (-0.65 to 0.29) -0.28 (-0.72 to 0.17) 0.10 (-0.41 to 0.61) 0.20 (-0.26 to 0.67) 0.07 (-0.39 to 0.54)
	vs. IFX + MTX PBO TCZ + MTX TCZ CTZ + MTX ABT s.c. + MTX TOF 5 mg TOF 10 mg	1.18 (0.63 to 1.74) -0.20 (-0.55 to 0.16) -0.29 (-0.69 to 0.10) -0.40 (-0.75 to -0.04) -0.02 (-0.45 to 0.41) 0.08 (-0.30 to 0.48) -0.05 (-0.43 to 0.34)
	-2 -1 0 1 2 Favours intervention Favours control	

FIGURE 23 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (*continued*)

FIGURE 23 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive.

FIGURE 24 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive. (*continued*)

FIGURE 24 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive.

		Rank															
Intervention	Rank (mean)		2		4	IJ		7	∞		10	1	12	13	14	15	16
cDMARDs	15.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.027	0.921	0.051
ABT i.v. + MTX	9.7	0.000	0.002	0.007	0.015	0:030	0.051	0.079	0.109	0.133	0.146	0.158	0.148	0.089	0.032	0.000	0.000
ADA + MTX	9.2	0.000	0.001	0.005	0.013	0.031	0.061	0.103	0.146	0.167	0.168	0.148	0.102	0.045	0.011	0.000	0.000
ADA	12.2	0.001	0.002	0.004	0.007	0.013	0.020	0.028	0:030	0.036	0.046	0.058	0.093	0.241	0.405	0.016	0.000
Intensive cDMARDs	12.0	0.001	0.003	0.005	0.010	0.017	0.024	0.030	0.035	0.042	0.051	0.067	0.099	0.245	0.358	0.013	0.001
ETN + MTX	3.0	0.246	0.253	0.187	0.130	0.080	0.047	0.025	0.013	0.00	0.007	0.003	0.001	0.000	0.000	0.000	0.000
ETN	6.3	0.035	0.073	0.102	0.118	0.130	0.118	0.092	0.076	0.063	0.058	0.054	0.054	0.023	0.004	0.000	0.000
GOL + MTX	6.6	0.046	0.068	0.088	0.104	0.117	0.115	0.098	0.080	0.068	0.060	0.053	0.051	0.035	0.016	0.000	0.000
IFX + MTX	8.9	0.001	0.006	0.017	0.032	0.058	0.091	0.113	0.122	0.124	0.125	0.120	0.108	0.062	0.020	0.000	0.000
PBO	16.0	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.050	0.948
TCZ + MTX	4.9	0.028	0.085	0.154	0.200	0.191	0.136	0.084	0.049	0.031	0.019	0.013	0.007	0.002	0.000	0.000	0.000
TCZ	3.4	0.164	0.216	0.209	0.163	0.102	0.062	0.034	0.022	0.013	0.008	0.004	0.002	0.001	0.000	0.000	0.000
CTZ + MTX	2.1	0.459	0.243	0.143	0.080	0.041	0.017	0.010	0.003	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000
ABT s.c. + MTX	8.3	0.012	0.026	0.037	0.054	0.073	0.096	0.106	0.107	0.100	0.097	0.095	0.093	0.068	0.036	0.000	0.000
TOF5 + MTX	10.5	0.000	0.002	0.004	0.011	0.021	0.036	0.060	0.081	0.101	0.120	0.144	0.184	0.156	0.080	0.000	0.000
TOF10+MTX	7.7	0.006	0.019	0.038	0.064	0.095	0.125	0.139	0.125	0.111	0.094	0.083	090.0	0.031	0.010	0.000	0.000

TABLE 42 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – probability of treatment rankings in terms of efficacy (most efficacious = 1)

The between-study SD was estimated to be 0.26 (95% Crl 0.18 to 0.37), which implies mild heterogeneity between studies in the baseline response.

Table 43 presents the probabilities of achieving at least an ACR20, ACR50 and an ACR70 response. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

American College of Rheumatology: main trials plus randomised controlled trials that have potentially low prior methotrexate exposure

A NMA was used to compare the effects of ABT i.v. plus MTX, ADA (with and without MTX), intensive cDMARDs, ETN (with and without MTX), GOL plus MTX, IFX plus MTX, PBO, TCZ (with and without MTX), CTZ plus MTX and ABT s.c. plus MTX relative to cDMARDs on ACR response.

Data were available from 30 studies comparing two or

three interventions. 53,54,57,58,62,66,69,70,74-76,79,80,84,85,89,91,92,96,99,102,105,112,115-118,121,122,124,140,160

TABLE 43 American College of Rheumatology (populations 2 and 3: main trials + prior biologics without AMBITION⁵⁵) – probability of achieving ACR responses

Intervention	At least ACR20 (95% Crl)	At least ACR50 (95% Crl)	At least ACR70 (95% Crl)
cDMARDs	0.273 (0.238 to 0.311)	0.114 (0.093 to 0.138)	0.037 (0.028 to 0.047)
ABT i.v. + MTX	0.550 (0.442 to 0.657)	0.316 (0.226 to 0.421)	0.144 (0.090 to 0.217)
ADA + MTX	0.560 (0.472 to 0.648)	0.325 (0.249 to 0.411)	0.150 (0.103 to 0.209)
ADA	0.465 (0.284 to 0.651)	0.244 (0.121 to 0.415)	0.101 (0.039 to 0.212)
Intensive cDMARDs	0.473 (0.293 to 0.658)	0.251 (0.125 to 0.422)	0.105 (0.041 to 0.217)
ETN + MTX	0.689 (0.567 to 0.797)	0.457 (0.331 to 0.589)	0.244 (0.153 to 0.360)
ETN	0.619 (0.460 to 0.758)	0.382 (0.241 to 0.539)	0.188 (0.098 to 0.314)
GOL + MTX	0.613 (0.461 to 0.748)	0.375 (0.241 to 0.527)	0.183 (0.098 to 0.303)
IFX + MTX	0.566 (0.453 to 0.675)	0.331(0.235 to 0.442)	0.153 (0.095 to 0.232)
РВО	0.156 (0.064 to 0.307)	0.053 (0.017 to 0.134)	0.014 (0.003 to 0.046)
TCZ + MTX	0.643 (0.541 to 0.736)	0.406 (0.308 to 0.512)	0.205 (0.139 to 0.290)
TCZ	0.678 (0.561 to 0.781)	0.443 (0.325 to 0.569)	0.233 (0.150 to 0.340)
CTZ + MTX	0.714 (0.618 to 0.798)	0.485 (0.380 to 0.591)	0.267 (0.186 to 0.362)
ABT s.c. + MTX	0.574 (0.428 to 0.713)	0.338 (0.215 to 0.484)	0.158 (0.085 to 0.266)
TOF5 + MTX	0.534 (0.412 to 0.649)	0.302 (0.204 to 0.413)	0.135 (0.079 to 0.211)
TOF10 + MTX	0.586 (0.465 to 0.697)	0.350 (0.243 to 0.466)	0.166 (0.100 to 0.251)

Figure 25 presents the network of evidence and *Table 44* presents the frequency with which each pair of treatments was compared. There were 13 treatment effects to estimate from 30 studies.^{53,54,57,58,62,66,69,70,74–76,79,80,84,85,89,91,92,96,99,102,105,112,115–118,121,122,124,140,160}

Figure 26 presents the effects of each intervention relative to cDMARDs on the probit scale and *Figure 27* and *Table 45* present the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 198.62, close to the total number of data points, 192, included in the analysis. The largest residual deviances were 5.999 from the O'Dell *et al.* study¹¹¹ and 3.913 from the Safety Trial for rheumatoid Arthritis with Remicade Therapy (START) study.¹¹⁸

The between-study SD was estimated to be 0.30 (95% Crl 0.20 to 0.46), which implies mild heterogeneity between studies in intervention effects. The addition of the TEAR⁵³ and TEMPO⁵⁴ studies has increased the variability between treatment effects relative to that estimated from the main studies alone.

All interventions except for PBO were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with TCZ (with and without MTX). The treatment effects were statistically significant for all interventions except for CTZ plus MTX, ADA, intensive cDMARDs and PBO at a conventional 5% level. There was insufficient evidence to differentiate between treatments although TCZ (mean rank 2.95; probability of being the best 0.251) and TCZ plus MTX (mean rank 3.28; probability of being the best 0.269) were the treatments that were most likely to be the most effective interventions.

FIGURE 25 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – network of evidence. Int, intensive. Solid green line (two-arm study); and dotted blue line (three-arm study).

interventions w	ere comparec	-												
Intervention	cDMARDs	ABT i.v. + MTX	ADA + MTX	ADA	Intensive cDMARDs	ETN + MTX	ETN	GOL + MTX	IFX + MTX	PBO	TCZ + MTX	TCZ	CTZ + MTX	ABT s.c. + MTX
cDMARDs	I	2	ъ		-	£	2	2	m		-	2 1		
ABT i.v. + MTX	I	Ι							, -					
ADA + MTX	I	I	I											-
ADA	I	I	I	I						2		-		
Intensive cDMARDs	I	I	I	I	I	m								
ETN + MTX	I	I	Ι	I	I	I	m		-					
ETN	I	I	I	I	1	I	I			-				
GOL + MTX	I	I	I	I	I	I	I	I						
IFX + MTX	I	I	Ι	I	I	I	I	I	I					
PBO	I	I	I	I	I	I	I	I	I	I				
TCZ + MTX	I	I	Ι	I	I	I	I	I	I	I	Ι	~		
TCZ	I	Ι	Ι	I	I	I	I	I	I	I	I	I		
CTZ + MTX	I	I	Ι	I	I	I	I	I	I	I	Ι	I		
ABT s.c. + MTX	I	I	I	I	1	I	Т	I	I	I	I	I		

TABLE 44 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – frequency with which each pair of

FIGURE 26 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive. (continued)

FIGURE 26 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – effects of interventions relative to cDMARDs on the probit scale. Int, intensive.

FIGURE 27 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – probability of treatment rankings in terms of efficacy (most efficacious = 1). Int, intensive.
TABLE 45 American (terms of efficacy (mo	College of Rheumé st efficacious = 1)	atology (p	opulation	s 2 and 3:	main trial	s + RCTs th	nat have p	otentially	low prior	MTX expo	sure) – pr	obability c	of treatme	nt ranking	s in
		Rank													
Intervention	Rank (mean)		2		4	Ŋ		7	∞		10	11	12	13	14
cDMARDs	12.83	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.015	0.167	0.791	0.026
ABT i.v. + MTX	7.12	0.019	0.037	0.058	0.078	0.089	0.108	0.124	0.147	0.137	0.099	0.068	0.034	0.002	0.000
ADA + MTX	5.48	0.020	0.068	0.109	0.159	0.174	0.165	0.127	0.095	0.054	0.025	0.010	0.001	0.000	0.000
ADA	10.32	0.002	0.006	0.012	0.019	0.022	0.028	0.036	0.054	0.085	0.134	0.203	0.285	0.113	0.000
Intensive cDMARDs	10.47	0.001	0.002	0.002	0.006	0.011	0.015	0.029	0.053	0.100	0.183	0.281	0.284	0.031	0.002
ETN + MTX	5.48	0.020	0.056	0.105	0.148	0.170	0.176	0.151	0.103	0.057	0.012	0.002	0.000	0.000	0.000
ETN	9.28	0.001	0.003	0.008	0.014	0.024	0.043	0.068	0.110	0.184	0.264	0.206	0.071	0.003	0.000
GOL + MTX	4.91	0.122	0.125	0.136	0.120	0.108	0.094	0.085	0.076	0.061	0.039	0.025	0.011	0.001	0.000
IFX + MTX	6.60	0.017	0.034	0.061	0.088	0.116	0.133	0.158	0.157	0.119	0.072	0.034	0.011	0.000	0.000
PBO	13.96	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.005	0.025	0.968
TCZ + MTX	3.28	0.269	0.224	0.157	0.102	0.072	0.055	0.047	0.032	0.023	0.012	0.006	0.002	0.000	0.000
TCZ	2.95	0.251	0.275	0.178	0.108	0.074	0.046	0.032	0.021	0.011	0.004	0.001	0.000	0.000	0.000
CTZ + MTX	7.18	0.082	0.066	0.068	0.065	0.061	0.066	0.074	0.085	0.104	0.101	0.103	0.094	0.027	0.003
ABT s.c. + MTX	5.10	0.196	0.111	0.106	0.093	0.078	0.070	0.069	0.068	0.067	0.054	0.046	0.034	0.007	0.001

A meta-analysis was used to estimate the proportion of patients experiencing an ACR 'no response' when treated with cDMARDs.

Data were available from 20 studies. 53,54,62,69,70,74-76,79,84,89,91,92,96,99,115-118,121,124,160

The model fitted the data well, with the total residual deviance, 19.53, close to the total number of data points, 20, included in the analysis.

The between-study SD was estimated to be 0.37 (95% Crl 0.26 to 0.55), which implies mild to moderate heterogeneity between studies in the baseline response. The addition of the TEAR⁵³ and TEMPO⁵⁴ studies has increased the variability between studies in the CDMARDs 'no response' rate relative to that estimated from the main studies alone.

Table 46 presents the probabilities of achieving at least an ACR20, an ACR50 and an ACR70. These are derived by combining the treatment effects estimated from the NMA with the estimate of the cDMARDs 'no response' rate.

 TABLE 46
 American College of Rheumatology (populations 2 and 3: main trials + RCTs that have potentially low prior MTX exposure) – probability of achieving ACR responses

Intervention	At least ACR20 (95% Crl)	At least ACR50 (95% Crl)	At least ACR70 (95% Crl)
cDMARDs	0.323 (0.264 to 0.389)	0.136 (0.102 to 0.180)	0.046 (0.031 to 0.067)
ABT i.v. + MTX	0.601 (0.410 to 0.767)	0.351 (0.192 to 0.537)	0.166 (0.073 to 0.309)
ADA + MTX	0.649 (0.509 to 0.771)	0.400 (0.268 to 0.542)	0.199 (0.113 to 0.315)
ADA	0.466 (0.228 to 0.713)	0.234 (0.083 to 0.472)	0.095 (0.024 to 0.256)
Intensive cDMARDs	0.473 (0.296 to 0.662)	0.240 (0.120 to 0.412)	0.098 (0.039 to 0.209)
ETN + MTX	0.645 (0.515 to 0.765)	0.396 (0.273 to 0.534)	0.197 (0.117 to 0.307)
ETN	0.526 (0.360 to 0.695)	0.284 (0.160 to 0.450)	0.123 (0.057 to 0.238)
GOL + MTX	0.670 (0.463 to 0.833)	0.421 (0.232 to 0.629)	0.216 (0.093 to 0.398)
IFX + MTX	0.614 (0.456 to 0.758)	0.364 (0.227 to 0.525)	0.175 (0.090 to 0.300)
РВО	0.136 (0.039 to 0.337)	0.042 (0.008 to 0.146)	0.010 (0.001 to 0.050)
TCZ + MTX	0.723 (0.524 to 0.870)	0.483 (0.280 to 0.689)	0.264 (0.121 to 0.462)
TCZ	0.729 (0.563 to 0.857)	0.489 (0.316 to 0.666)	0.268 (0.142 to 0.437)
CTZ + MTX	0.593 (0.300 to 0.839)	0.343 (0.122 to 0.637)	0.160 (0.040 to 0.406)
ABT s.c. + MTX	0.670 (0.383 to 0.883)	0.422 (0.175 to 0.710)	0.216 (0.063 to 0.487)

Discussion of systematic reviewing results

This review differed from other reviews of biologics in RA,^{123,161–172} in that it included only licensed doses of biologics, was limited to first-line biologics, and considered separately MTX-naive and cDMARD-experienced trials.

Sixty trials met the inclusion criteria for the systematic review of clinical effectiveness and safety evidence. Of these, 38 trials were also used in the NMA^{56-126,141,160} (eight for population 1 and 30 for populations 2 and 3).

Seven MTX-naive trials^{78,81–83,87,90,94,108,109} and 24 cDMARD-experienced trials^{57,58,61–65,68–70,74–76,79,80,84,85,88,89,91,92,96, 97,99,102,104,105,111,112,115–119,121,122,124,141,160} (of which four were head-to-head evidence^{58,66,74,85}) were included in the NMA for ACR response. One MTX-naive trial and 15 cDMARD experienced trials were included in the NMA for EULAR data.

In addition, 14 trials (12 trials with interventions of interest^{53–55,127–136} and two TOF trials^{137,138}) were included in sensitivity analyses for populations 2 and 3 (all 14 with ACR data and 3 with EULAR data). Two of these trials (presenting ACR data only) were used in sensitivity analyses for population 1.^{53,54}

Many of the trials were of good quality (see *Figure 3*). They were mostly Phase III trials. Some trials did not report in enough detail to judge randomisation method or allocation concealment, or if all outcomes were reported. Further details regarding study quality are provided in *Table 333* (see *Appendix 4*).

There were several large, multinational, multicentre studies. A few trials were conducted in a single country. For the cDMARD-experienced population, some trial populations may not have had adequate MTX to class as failure. Of particular note, for populations 2 and 3, are the trials that were conducted in Japan only, as some of these trials also utilised low-dose MTX treatment prior to randomisation, potentially impacting on the extent of MTX failure among trial populations and restricting external validity to the UK. Further details regarding geographical location are provided in *Tables 335–338* (see *Appendix 4*). Based on the results shown within the company submissions made by AbbVie¹⁷³ and MSD,^{159,174} which did not show a marked difference when Asian studies were excluded, no formal analyses were undertaken removing such studies.

The issues relating to the external validity of RCTs in RA, including (1) the application of strict trial inclusion criteria resulting in narrower study populations relative to RA clinical practice and (2) the limitations of RCTs in general in capturing rare AEs, have been previously discussed and should be borne in mind when considering the generalisability of the trial evidence.^{175,176} Some trials had step-up therapy, which in the opinion of our clinical advisors is consistent with real-world practice.

Strengths of this systematic review included the undertaking of a comprehensive search for evidence; the extensive number of RCTs that were identified relating to the decision problem; data were identified for all interventions of interest; there were long-term safety data from LTEs of trials; trials that were not eligible for inclusion in the systematic review or NMA base case (e.g. trials with populations having \leq 20% prior biologic experience) were explored in sensitivity analyses; and graphical data for the NMA were extracted using Engauge version 4.1.

Limitations of the review included evidence was restricted to English-language publications; ongoing/ unpublished trial resources could not be explored owing to the time scales of the assessment; some studies (and consequently some interventions) could not be included in a NMA of EULAR outcome data where this was not reported; and, owing to the extensive variability in the range of available outcome measures reported in trials, it was necessary to prioritise the assessment of the most widely used measures.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Although there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in population 1, IFX plus MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups: (1) ETN plus MTX, intensive cDMARDs and ADA plus MTX; (2) GOL plus MTX, ETN and step-up intensive cDMARDs; and (3) CDMARDs and ADA.

Although there was uncertainty in, and overlap between, the effects of treatment on EULAR for interventions in populations 2 and 3 in the main trials, TCZ, TCZ plus MTX and ETN plus MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: (1) GOL plus MTX, CTZ plus MTX, ADA, grouped biologics, ETN, ADA plus MTX, ABT i.v. plus MTX and IFX plus MTX; and (2) intensive cDMARDs, PBO and cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although the effect of CTZ plus MTX was much greater and similar to that for TCZ, TCZ plus MTX and ETN plus MTX.

Although there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions in populations 2 and 3 in the main trials, ETN plus MTX, TCZ and TCZ plus MTX, were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: (1) ETN, GOL plus MTX, ABT s.c. plus MTX, ADA plus MTX, INF plus MTX, CTX plus MTX and ATB i.v. plus MTX; and (2) intensive cDMARDs, ADA and cDMARDs. The inclusion of the additional studies in which patients received prior biologics suggested resulted in a greater estimate of the effect of CTZ plus MTX. Other interventions appeared to give rise to broadly similar response rates.

Other efficacy outcomes

Population 1: methotrexate naive

Where there was step-up therapy with initial biologic or control, the groups were similar after 6 months to a year (i.e. after step-up). Biologic monotherapy was better than PBO, but similar to MTX. Biologic combined with MTX was better than MTX plus PBO.

Populations 2 and 3: conventional disease-modifying antirheumatic drugs experienced

Head-to-head trials indicate similarity of biologics. One exception was the ADACTA trial.58

This reported greater improvement with TCZ monotherapy than ADA monotherapy for DAS and mental component summary of SF-36 at 24 weeks,⁵⁸ although this trial had similar results for ADA and TCZ for swollen and tender joint counts, and fatigue. This suggests that the impacts of different biologics on different outcomes may not be straightforward.

Biologics combined with MTX treatment arms reported more improvement than non-biologic control arms with one or two cDMARDs or baseline cDMARDs. Biologics combined with MTX did better than biologic monotherapy, except for TCZ for joint counts and HAQ-DI.

Chapter 4 Assessment of cost-effectiveness

Systematic review of existing cost-effectiveness evidence

The Assessment Group conducted a systematic review of published economic evaluations undertaken of the RA interventions being assessed. The objective of this systematic review is to summarise the existing economic evidence for the use of each intervention in patients with RA. The systematic review will assess the strengths and limitations of each specific economic evaluation.

Methods for reviewing existing cost-effectiveness evidence

Systematic searches of online databases were undertaken to identify all published economic evaluations of disease-modifying therapies for RA. To ensure that the systematic search had high sensitivity, the search was developed by applying economic terms to a general disease search for RA and disease-modifying therapies. Database filters to identify economic evaluations were used from the InterTASC Information Specialists' Sub-Group website [www.york.ac.uk/inst/crd/intertasc/index.htm (accessed 5 July 2013)]. The keywords used for the systematic review are provided in *Table 47*.

The search strategies used medical subject heading terms, including 'rheumatoid arthritis' and 'economics' and text string terms, which were combined in the search strategy using Boolean logic. The search strategies were designed to maximise sensitivity (i.e. the identification of all appropriate studies); however, this was at the cost of poor specificity (the rejection of inappropriate studies). This meant the search returned a lot of inappropriate studies and was reliant on hand-sifting, including the removal of economic evaluations of treatments that are not included in this appraisal (RTX, conventional DMARDs, anakinra, etc.).

Systematic searches were conducted in 10 databases provided in *Table 48*. Reference search was undertaken on all included studies, including any identified reviews of published economic evaluations of disease-modifying therapies for RA.

All database searches were undertaken on 1 February 2013 and no date restriction was applied. No study type or language restrictions were applied to the electronic search. The search strategies were reviewed by an information specialist.

The objective of the systematic search was to identify economic evaluations of ABT, ADA, CTZ, ETN, GOL, IFX and TCZ within populations 1, 2 and 3. The search was irrespective of the decision-making context or the geographical location. The eligibility criteria are presented in *Box 1*.

The identified studies were appraised using the commonly used and validated Drummond checklist.¹⁷⁷

Population	RA
Intervention/ comparator	Disease modifying, disease-modifying, DMARD, biologic, therapy, treatment, anti-rheumatic, anti rheumatic, TNF, tumor necrosis factor alpha, tumour necrosis factor alpha, TNF-alpha, TNF inhibitor, TNF blocker, interleukin 1, IL-1, monoclonal antibody, costimulation blocker, interleukin 6, IL-6
Outcomes	Economic, economics, cost, cost-effectiveness, cost-utility, cost-benefit, utility, health related quality of life, quality adjusted life year, QALY
II -1 interleukin 1 [.] II -6	interleukin 6: OALY, guality-adjusted life-year

TABLE 47 Keywords for systematic review

TABLE 48 Systematic review databases

Database	Date
Bioscience Information Service (all databases)	1899–February 2013
Cochrane Database of Systematic Reviews	All years–February 2013
Cochrane Database of Methodological Reviews	All years–February 2013
Cochrane Central Register of Controlled Trials	All years–February 2013
Database of Abstracts of Reviews and Effects	All years–February 2013
CINAHL	1994–February 2013
EMBASE	1974–February 2013
MEDLINE	1945–February 2013
NHS Economic Evaluations Database	All years–February 2013
Science Citation Index: Web of Science	1899–February 2013

BOX 1 Eligibility criteria

Inclusion criteria

Economic evaluation including a comparison of costs and benefits based on outcomes data or undertaken using decision-analytic methods.

Economic evaluations of interventions targeting a change to the natural disease profile of people with RA (i.e. disease-modifying therapies).

Studies reporting costs and health outcomes.

Exclusion criteria

Evaluations of treatments not under review in this appraisal.

Evaluations in patient populations not under review in this appraisal (e.g. sequential biologics).

Partial or non-comparative economic evaluations.

Cost analyses/cost-of-illness/burden-of-illness studies.

Methodological papers that do not report economic and health benefit outcomes.

Commentaries, letters, editorials.

Conference abstracts.

Studies that claim cost-effectiveness, but with no empirical estimation of the costs and effectiveness outcomes.

Economic evaluations of therapies and treatments which do not modify the natural progression of RA.

Non-English language.

Results

From the systematic searching of electronic databases, 8281 citations were identified (*Figure 28*). After excluding 3250 duplicate citations electronically, the remaining 5031 citations were screened by their abstract. Of these, 4913 abstracts did not meet the inclusion criteria and 118 full-text papers were retrieved for a full inspection. A total of 97 papers were excluded for not meeting the inclusion criteria, and nine other studies were identified by reference searches and searching any identified systematic reviews. A total of 30 studies were included in the systematic review.

The studies identified are summarised in *Table 49*. Twenty-three of the 30 studies (77%) were evaluations of bDMARDs in patients who had already had DMARD therapy previously. Six studies (20%) were in DMARD-naive patients, with one study (3%) in both DMARD-naive and -experienced populations.

No studies were identified that evaluated GOL and CTZ, with the majority focusing on ETN, IFX and ADA.

A total of 27 of the 30 studies (90%) were cost–utility analyses and a wide range of model methods and time horizons were adopted.

For ease of reading, the cost-effectiveness results are split into cDMARD-naive (*Table 50*) and bDMARD-naive (*Table 51*) populations.

The range of price year, currencies, discount rates and time horizons means that drawing strong conclusions regarding the cost-effectiveness of particular therapies is not possible, and would probably be misleading. In addition, the complex nature of RA and the range of parameters required to develop a cost-effectiveness model mean that a very detailed review of each study would be required, which was not feasible. In some instances, the price year was not reported, and in a few cases it was not clear if bDMARDs were given with concomitant MTX or if they were a monotherapy. Results in GBP are all above the £30,000 per quality-adjusted life-year (QALY) threshold.

In general, the results in *Table 51* suggest that bDMARDs are unlikely to be cost-effective in patients who have not undertaken DMARD therapy.

FIGURE 28 Quality of reporting of meta-analyses flow diagram.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Study	Treatment history	Disease severity	Country (sponsor)	Interventions considered	Form of economic analysis	Model used	Time horizon
Bansback <i>et al.</i> , 2005 ¹⁷⁸	Two cDMARDs	Moderate/ severe	Sweden (Abbott)	TNF-α with or without MTX vs. cDMARDs	CUA	Individual-level Markov model	Lifetime
Barbieri <i>et al.</i> , 2005 ¹⁷⁹	cDMARDs and resistant to MTX	Severe	UK (Schering- Plough)	IFX + MTX vs. MTX	CUA	Markov model	1 year and lifetime
Barton <i>et al.</i> , 2004 ¹⁸⁰	SSZ and MTX	Unclear	UK (HTA)	ETN vs. IFX vs. cDMARD sequence	CUA	Individual sampling model	Lifetime
Benucci <i>et al.</i> , 2009 ¹⁸¹	Two cDMARDs	Moderate/ severe	ltaly (none reported)	ABT with LEF or MTX vs. ETN with LEF or MTX	CUA	Observational analysis	2 years
Brennan <i>et al.</i> , 2004 ¹⁸²	Two cDMARDs	Unclear	UK (Wyeth)	ETN vs. cDMARD sequence	CUA	Individual sampling model	Lifetime
Brennan <i>et al.</i> , 2007 ¹⁸³	At least two cDMARDs	Active	UK (BSRBR)	TNF-α vs. cDMARDs	CUA	Individual sampling model	Lifetime
Chen <i>et al.</i> , 2006 ¹²³	None (at least for first-line comparators)	Active	UK (HTA)	TNF- α with or without MTX at first line or third line	CUA	Individual sampling model	Lifetime
Chiou <i>et al.</i> , 2004 ¹⁸⁴	Unclear	Moderate/ severe	USA (none reported)	AKR vs. ETN vs. ADA vs. IFX	CUA	Decision tree	1 year
Choi <i>et al.,</i> 2002 ¹⁸⁵	MTX	Unclear	USA (no funding source)	cDMARD monotherapy and combination vs. bDMARD monotherapy and combination	CEA	Decision tree	6 months
Coyle <i>et al.,</i> 2006 ¹⁸⁶	None	Aggressive	Canada (CCOHTA)	GLD vs. bDMARD monotherapy and combination	CUA	Markov model	5 years
Davies <i>et al.</i> , 2009 ¹⁸⁷	None	Unclear	USA (Abbott)	MTX vs. ADA + MTX vs. ETN vs. IFX + MTX vs. ADA + MTX	CUA	Individual sampling model	Lifetime
Diamantopoulos <i>et al.</i> , 2012 ¹⁸⁸	cDMARDs	Moderate/ severe	Italy (Roche)	Sequential bDMARD use	CUA	Individual sampling model	lifetime
Finckh <i>et al.</i> , 2009 ¹⁸⁹	None	Active	USA (Arthritis Foundation)	Symptomatic therapy vs. MTX vs. bDMARDs	CUA	Individual sampling model	Lifetime
Jobanputra et al., 2002 ¹⁷²	SSZ and MTX	Active	UK (HTA)	Adding ETN and IFX into a cDMARD sequence	CUA	Individual sampling model	Lifetime
Kobelt <i>et al.</i> , 2003 ¹⁹⁰	cDMARDs including MTX IR	Unclear, 'advanced'	Sweden, UK (Schering- Plough)	IFX + MTX vs. MTX	CUA	Markov model	10 year

TABLE 49 Health economic studies assessing bDMARDs in bDMARD-naive patients with RA

Study	Treatment history	Disease severity	Country (sponsor)	Interventions considered	Form of economic analysis	Model used	Time horizon
Kobelt <i>et al.</i> , 2004 ¹⁹¹	Two cDMARDs including MTX IR	Unclear	Sweden (multiple funders)	TNF-α vs. cDMARDs	CUA	Trial analysis	1 year
Kobelt <i>et al.</i> , 2005 ¹⁹²	cDMARDs other than MTX	Severe	Sweden (Wyeth)	ETN vs. MTX vs. ETN + MTX	CUA	Markov model	5 years/ 10 years
Kobelt <i>et al.</i> , 2011 ¹⁹³	None	Severe	Sweden (Wyeth)	ETN + MTX vs. MTX	CUA	Markov model	10 years
Lekander <i>et al.</i> , 2010 ¹⁹⁴	No TNF-αs	Active	Sweden (Schering- Plough)	IFX vs. cDMARDs	CUA	Markov model	20 years
Marra <i>et al.</i> , 2007 ¹⁹⁵	cDMARDs	Active	Canada (none reported)	IFX + MTX vs. MTX	CUA	Markov model	10 years
Nuijten <i>et al.</i> , 2001 ¹⁹⁶	Two cDMARDs	Unclear	The Netherlands (Wyeth)	ETN vs. IFX	СМА	Unclear	1 year
Rubio-Terrés and Dominguez-Gil, 2001 ¹⁹⁷	cDMARDs (including MTX)	Active	Spain (none reported)	IFX + MTX vs. LEF	СМА	Unclear	1 year
Soini <i>et al.</i> , 2012 ¹⁹⁸	At least one cDMARD	Moderate/ severe	Finland (Roche)	ADA vs. ETN vs. TCZ	CUA	Individual sampling model	Lifetime
Spalding and Hay, 2006 ¹⁹⁹	None	Unclear	USA (University of Southern California)	MTX vs. bDMARD monotherapy and combination	CUA	Markov model	Lifetime
Tanno <i>et al.</i> , 2006 ²⁰⁰	Bucillamine	Unclear	Japan (Japanese Government)	Adding ETN to a cDMARD sequence	CUA	Markov model	Lifetime
van den Hout <i>et al.</i> , 2009 ²⁰¹	None	Active	The Netherlands (multiple funders)	Comparing cDMARD combination vs. IFX combination therapy	CUA	Trial analysis	2 years
Vera-Llonch <i>et al.</i> , 2008 ²⁰²	MTX	Moderate/ severe	USA (none reported)	ABT vs. cDMARDs	CUA	Individual sampling model	Lifetime
Wailoo <i>et al.</i> , 2008 ²⁰³	No bDMARDs	Unclear	USA (US AHRQ)	ETN vs. ADA vs. AKR vs. IFX	CUA	Individual sampling model	Lifetime
Welsing <i>et al.</i> , 2004 ²⁰⁴	cDMARDs	Active	The Netherlands (none reported)	Usual care vs. LEF vs. TNF-α vs. LEF, TNF-α sequences	CUA	Markov model	5 years
Wong <i>et al.,</i> 2002 ²⁰⁵	MTX	Active refractory disease	USA (Schering- Plough, NIH)	IFX + MTX vs. MTX	CUA	Markov model	Lifetime

TABLE 49 Health economic studies assessing bDMARDs in bDMARD-naive patients with RA (continued)

AHRQ, Agency for Healthcare Research and Quality; AKR, anakinra; CCOHTA, Canadian Coordinating Office For Health Technology Assessment; CEA, cost-effectiveness analysis; CMA, cost-minimisation analysis; CUA, cost-utility analysis; IR, inadequate responder; NIH, National Institutes of Health; US AHRQ, United States Agency for Healthcare Research & Quality.

Comparator	Study	Price year	Time horizon	Previous treatments	ICER (per QALY gained)
MTX	Spalding and Hay, 2006 ¹⁹⁹	2005	Lifetime	None	US\$64,000
cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	None	£53,000
MTX	Spalding and Hay, 2006 ¹⁹⁹	2005	Lifetime	None	US\$195,000
cDMARDs	Davies <i>et al.</i> , 2009 ¹⁸⁷	2007	Lifetime	None	US\$23,000
cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	None	£170,000
MTX	Spalding and Hay, 2006 ¹⁹⁹	2005	Lifetime	None	US\$90,000
cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	None	£49,000
cDMARDs	Davies <i>et al.</i> , 2009 ¹⁸⁷	2007	Lifetime	None	US\$28,000
MTX	Kobelt <i>et al.</i> , 2011 ¹⁹³	2008	10 years	None	€14,000
cDMARDs	Coyle <i>et al.</i> , 2006 ¹⁸⁶	?	5 years	None	Before/after GLD = CA\$145,000/ CA\$126,000
cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	None	£78,000
MTX	Spalding and Hay, 2006 ¹⁹⁹	2005	Lifetime	None	US\$410,000
cDMARDs	Coyle <i>et al.</i> , 2006 ¹⁸⁶	?	5 years	None	Before/after GLD = CA\$113,000/ CA\$98,000
cDMARDs	Davies <i>et al.</i> , 2009 ¹⁸⁷	2007	Lifetime	None	US\$32,000
cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	None	£650,000
Combination cDMARDs	van den Hout <i>et al.</i> , 2009 ²⁰¹	2008	2 years	None	€130,000
cDMARDs	Finckh <i>et al.</i> , 2009 ¹⁸⁹	2007	Lifetime	None	Dominated
	Comparator MTX cDMARDs MTX cDMARDs cDMARDs dMTX cDMARDs MTX cDMARDs MTX cDMARDs dMTX cDMARDs dMTX cDMARDs dDMARDs cDMARDs dDMARDs cDMARDs dDMARDs cDMARDs cDMARDs cDMARDs cDMARDs cDMARDs cDMARDs	ComparatorStudyMTXSpalding and Hay, 2006199cDMARDsChen et al., 2006123MTXSpalding and Hay, 2006199cDMARDsDavies et al., 2009187cDMARDsChen et al., 2006123MTXSpalding and Hay, 2006199cDMARDsChen et al., 2006123MTXSpalding and Hay, 2006199cDMARDsChen et al., 2006123MTXSpalding and Hay, 2006199cDMARDsChen et al., 2009187cDMARDsCoyle et al., 2006123MTXKobelt et al., 2006123MTXSpalding and Hay, 2006199cDMARDsCoyle et al., 2006123MTXSpalding and Hay, 2006199cDMARDsCoyle et al., 2006123MTXSpalding and Hay, 2006199cDMARDsCoyle et al., 2009187cDMARDsCoyle et al., 2009187cDMARDsDavies et al., 2009187cDMARDsCoyle et al., 2009187cDMARDsChen et al., 2009187cDMARDsChen et al., 2009187cDMARDsChen et al., 2009187cDMARDsScone et al., 2009187cDMARDsSinck et al., 2009187	Comparator Study Price year MTX Spalding and Hay, 2006 ¹⁹⁹ 2005 cDMARDs Chen et al., 2006 ¹²³ 2004 MTX Spalding and Hay, 2006 ¹⁹⁹ 2005 MTX Spalding and Hay, 2006 ¹⁹⁹ 2007 cDMARDs Davies et al., 2009 ¹⁸⁷ 2004 cDMARDs Spalding and Pay, 2006 ¹⁹⁹ 2004 MTX Spalding and 2006 ¹²³ 2004 MTX Spalding and Pay, 2006 ¹⁹⁹ 2005 cDMARDs Chen et al., 2009 ¹⁸⁷ 2004 cDMARDs Davies et al., 2006 ¹²³ 2004 cDMARDs Davies et al., 2009 ¹⁸⁷ 2007 MTX Kobelt et al., 2001 ¹⁹³ 2008 cDMARDs Coyle et al., 2006 ¹²⁶ ? cDMARDs Spalding and Pay, 2006 ¹⁹⁹ ? cDMARDs Davies et al., 2000 ¹⁸⁷ ? cDM	ComparatorStudyPrice yearTime horizonMTXSpalding and Hay, 20061992005LifetimecDMARDsChen et al., 20061232004LifetimeMTXSpalding and Hay, 20061992005LifetimeMTXSpalding and Hay, 20061992007LifetimecDMARDsDavies et al., 20091872004LifetimecDMARDsChen et al., 20061232004LifetimeMTXSpalding and Hay, 20061992005LifetimeMTXSpalding and Hay, 20061232004LifetimecDMARDsChen et al., 20091872004LifetimecDMARDsDavies et al., 20091872007LifetimecDMARDsCole et al., 20091872007LifetimemTXSpalding and 2009187200810 yearscDMARDsCoyle et al., 20061862004LifetimecDMARDsCoyle et al., 20061862004LifetimemTXSpalding and 20061862005LifetimecDMARDsCoyle et al., 20061862005LifetimecDMARDsCoyle et al., 20061862005LifetimecDMARDsDavies et al., 20061862007LifetimecDMARDsCoyle et al., 20061862007LifetimecDMARDsDavies et al., 20061862007LifetimecDMARDsChen et al., 20061862004LifetimecDMARDsChen et al., 20061862004LifetimecD	ComparatorStudyPrice yearTime horizonPrevious treatmentsMTXSpalding and Hay, 2006 ¹⁹⁹ 2005LifetimeNonecDMARDsChen et al., 2006 ¹²³ 2004LifetimeNoneMTXSpalding and Hay, 2006 ¹⁹⁹ 2005LifetimeNoneMTXSpalding and Hay, 2006 ¹⁹⁹ 2005LifetimeNonecDMARDsDavies et al., 2009 ¹⁸⁷ 2004LifetimeNonecDMARDsChen et al., 2006 ¹²³ 2004LifetimeNoneMTXSpalding and 2006 ¹²³ 2004LifetimeNonecDMARDsChen et al., 2006 ¹²³ 2004LifetimeNonecDMARDsDavies et al., 2009 ¹⁸⁷ 2004LifetimeNoneMTXSpalding and 2009 ¹⁸⁷ 2004LifetimeNonecDMARDsColle et al., 2009 ¹⁸⁷ 200810 yearsNoneMTXSpalding and 2006 ¹⁸⁶ 2004LifetimeNoneMTXSpalding and 2006 ¹⁸⁶ 2004LifetimeNoneMTXSpalding and 2006 ¹⁹⁹ 2005LifetimeNoneMTXSpalding and 2006 ¹⁹⁹ 2005LifetimeNoneCDMARDsCoyle et al., 2006 ¹⁹⁹ 2004LifetimeNoneCDMARDsCoyle et al., 2006 ¹⁹⁹ 2007LifetimeNonecDMARDsCoyle et al., 2006 ¹⁹⁹ 2007LifetimeNonecDMARDsCoyle et al., 2006 ¹⁹⁹ 2007Lifetime </td

TABLE 50 Cost-effectiveness results for studies in DMARD-naive patients with RA

?, not stated; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year.

Drug	Comparator	Study	Price year	Time horizon	Previous treatments	ICER (per QALY gained)
ABT i.v. + MTX	MTX	Vera-Llonch <i>et al.</i> , 2008 ²⁰²	2006	Lifetime	MTX	US\$46,000
ADA	MTX	Bansback <i>et al.</i> , 2005 ¹⁷⁸	2001	Lifetime	Two previous cDMARDs	€42,000
	cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	Two previous cDMARDs	£35,000-140,000
	Anakinra	Chiou <i>et al.</i> , 2004 ¹⁸⁴	2003	1 year	Unclear	Dominated
	Anakinra	Wailoo <i>et al.</i> , 2008 ²⁰³	?	Lifetime	No bDMARDs	US\$143,000
	IFX + MTX	Wailoo <i>et al.</i> , 2008 ²⁰³	?	Lifetime	No bDMARDs	Dominates
ADA + MTX	MTX	Bansback <i>et al.</i> , 2005 ¹⁷⁸	2001	Lifetime	Two previous cDMARDs	€34,000
	MTX	Soini <i>et al.</i> , 2012 ¹⁹⁸	2010	Lifetime	At least one cDMARD	€21,000
	cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	Two previous cDMARDs	£30,000-64,000
	Anakinra	Chiou 2004 ¹⁸⁴	2003	1 year	Unclear	Dominated
ETN	MTX	Bansback <i>et al.</i> , 2005 ¹⁷⁸	2001	Lifetime	Two previous cDMARDs	€37,000
	MTX	Tanno <i>et al.</i> , 2006 ²⁰⁰	2005	Lifetime	Bucillamine	Yen 2.5M
	MTX	Kobelt <i>et al.</i> , 2005 ¹⁹²	2004	5 years/ 10 years	cDMARDs other than MTX	5 years/10 years = €152,000/124,000
	cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	Two previous cDMARDs	£24,000-47,000
	Anakinra	Chiou <i>et al.</i> , 2004 ¹⁸⁴	2003	1 year	Unclear	US\$13,000
	IFX + MTX	Nuijten <i>et al.</i> , 2001 ¹⁹⁶	1999	1 year	Two cDMARDs	Dominates
	ETN + MTX and cDMARD strategies	Choi <i>et al.</i> , 2002 ¹⁸⁵	1999	6 months	MTX	Extendedly dominated
						continued

TABLE 51 Cost-effectiveness results for studies in bDMARD-naive patients with RA

Drug	Comparator	Study	Price year	Time horizon	Previous treatments	ICER (per QALY gained)
ETN + MTX	MTX	Bansback <i>et al.</i> , 2005 ¹⁷⁸	2001	Lifetime	Two previous cDMARDs	€36,000
	MTX	Soini <i>et al.,</i> 2012 ¹⁹⁸	2010	Lifetime	At least one cDMARD	€21,000
	MTX	Kobelt <i>et al.</i> , 2005 ¹⁹²	2004	5 years/10 years	cDMARDs other than MTX	5 years/10 years = €55,000/37,000
	cDMARDs	Barton <i>et al.</i> , 2004 ¹⁸⁰	2000	Lifetime	SSZ and MTX	£50,000
	cDMARDs	Brennan <i>et al.</i> , 2004 ¹⁸²	2000	Lifetime	Two cDMARDs	£16,000
	cDMARDs	Jobanputra <i>et al.</i> , 2002 ¹⁷²	2000	Lifetime	SSZ and MTX	£64,000
	cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	Two previous cDMARDs	£24,000-50,000
	Anakinra	Chiou <i>et al.</i> , 2004 ¹⁸⁴	2003	1 year	Unclear	US\$8000
	ADA + MTX	Benucci <i>et al.</i> , 2009 ¹⁸¹	?	2 years	Two cDMARDs	US\$25,000
	ADA + MTX	Wailoo <i>et al.</i> , 2008 ²⁰³	?	Lifetime	No bDMARDs	US\$92,000
	IFX + MTX	Wailoo <i>et al.</i> , 2008 ²⁰³	?	Lifetime	No bDMARDs	Dominates
	IFX + MTX	Barton <i>et al.</i> , 2004 ¹⁸⁰	2000	Lifetime	SSZ and MTX	£28,000
	IFX + MTX	Jobanputra et al., 2002 ¹⁷²	2000	Lifetime	SSZ and MTX	£35,000
	IFX + MTX	Nuijten <i>et al.</i> , 2001 ¹⁹⁶	1999	1 year	Two cDMARDs	Dominates
	ETN	Choi <i>et al.</i> , 2002 ¹⁸⁵	1999	6 months	MTX	US\$43,000 (per ACR20 response), US\$35,000 (per ACR70 response)

TABLE 51 Cost-effectiveness results for studies in bDMARD-naive patients with RA (continued)

Drug	Comparator	Study	Price year	Time horizon	Previous treatments	ICER (per QALY gained)
IFX + MTX	MTX	Bansback <i>et al.</i> , 2005 ¹⁷⁸	2001	Lifetime	Two previous cDMARDs	€48,000
	MTX	Barbieri <i>et al.</i> , 2005 ¹⁷⁹	2000	1 year/lifetime	cDMARDs and resistant to MTX	£34,000 (1 year), £24,000 (lifetime)
	MTX	Kobelt <i>et al.</i> , 2003 ¹⁹⁰	?	10 years	cDMARDs including MTX IR	£22,000
	MTX	Marra <i>et al.</i> , 2007 ¹⁹⁵	2002	10 years	cDMARDs	US\$46,000
	MTX	Wong <i>et al.</i> , 2002 ²⁰⁵	1998	Lifetime	MTX	US\$307,000
	LEF	Rubio-Terrés <i>et al.</i> , 2001 ¹⁹⁷	1999	1 year	cDMARDs (including MTX)	Dominated (CMA)
	cDMARDs	Barton <i>et al.</i> , 2004 ¹⁸⁰	2000	Lifetime	SSZ and MTX	£68,000
	cDMARDs	Jobanputra <i>et al.</i> , 2002 ¹⁷²	2000	Lifetime	SSZ and MTX	£89,000
	cDMARDs	Lekander <i>et al.</i> , 2010 ¹⁹⁴	2007	20 years	No TNF-αs	€23,000
	cDMARDs	Chen <i>et al.</i> , 2006 ¹²³	2004	Lifetime	Two previous cDMARDs	£30,000-140,000
	Anakinra	Chiou <i>et al.</i> , 2004 ¹⁸⁴	2003	1 year	Unclear	Dominated
	ADA + MTX	Wailoo <i>et al.</i> , 2008 ²⁰³	?	Lifetime	No bDMARDs	Dominated
	ETN + MTX	Wailoo <i>et al.</i> , 2008 ²⁰³	?	Lifetime	No bDMARDs	Dominated
TCZ + MTX	ETA + MTX	Diamantopoulos <i>et al.</i> , 2012 ¹⁸⁸	2009	Lifetime	cDMARDs	Dominates
	ADA + MTX	Diamantopoulos <i>et al.</i> , 2012 ¹⁸⁸	2009	Lifetime	cDMARDs	Dominates
	IFX + MTX	Diamantopoulos <i>et al.</i> , 2012 ¹⁸⁸	2009	Lifetime	cDMARDs	€3000
	Add TCZ into first biologic position	Diamantopoulos <i>et al.</i> , 2012 ¹⁸⁸	2009	Lifetime	cDMARDs	€17,000
	MTX	Soini <i>et al.</i> , 2012 ¹⁹⁸	2010	Lifetime	At least one cDMARD	€19,000
Grouped bDMARDs	cDMARD	Brennan <i>et al.</i> , 2007 ¹⁸³	2004	Lifetime	At least two cDMARDs	£24,000
	Previous years' DMARD use	Kobelt <i>et al.</i> , 2004 ¹⁹¹	2002	1 year	Two cDMARDs including MTX IR	€44,000
TNF-α	LEF	Welsing <i>et al.</i> , 2004 ²⁰⁴	?	5 years	cDMARDs	€544,000

TABLE 51 Cost-effectiveness results for studies in bDMARD-naive patients with RA (continued)

?, not stated; CMA, cost-minimisation analysis; ICER, incremental cost-effectiveness ratio; IR, inadequate responder; QALY, quality-adjusted life-year.

Like the DMARD-naive population, it is not possible to provide conclusions regarding the cost-effectiveness of individual treatments in the bDMARD-naive population.

Many bDMARDs have incremental cost-effectiveness ratios (ICERs) close to £30,000 per QALY threshold. No one bDMARD consistently seems to be cost-effective compared with any other bDMARD.

Jobanputra *et al.*,¹⁷² Barton *et al.*¹⁸⁰ and Chen *et al.*¹²³ are HTA reports which informed the development of NICE TA36²⁰⁶ and TA130.²⁰⁷ Taking the most recent HTA report by Chen *et al.*,¹²³ ADA, ADA plus MTX, ETN, ETN plus MTX and IFX plus MTX all have ICERs compared with cDMARDs exceeding £20,000 per QALY, and in many instances above £30,000 per QALY. However, these drugs have since been recommended in certain patient populations. This highlights the sensitivity of cost-effectiveness models to key parameters and modelling assumptions, and careful consideration of all aspects is required to ensure confidence in the final reported ICERs.

Critique of the manufacturers' submissions

The Assessment Group received submissions for seven interventions.^{152,156,159,173,174,208,209} These were from six manufacturers as both GOL and IFX are manufactured by MSD. The submission by Bristol-Myers Squibb evaluated both the i.v. and s.c. formulations of ABT. The length and quality of the submissions varied. For information, *Figure 29* details the number of pages within each manufacturer's submission. In addition, each submission contained a mathematical model.

An initial review of the submissions indicated that there were a multitude of methods employed and that attempting to summarise all seven submissions individually would probably not aid the reader. With this aim, the submissions have been summarised jointly under a number of categories to allow the reader to compare and contrast the methodologies used. This would remove the need for cross-referencing were the reader wanting to know the different assumptions made for a key variable or to quickly compare outputs from the model. Formal evaluation of these models using checklists such as the *British Medical Journal* (BMJ) or Eddy checklists^{210,211} was not possible within the time scales of the assessment; however, clear deviances from recommended methods have been outlined in the critique.

Where appropriate, tables and figures will be taken from the manufacturers' submissions. Minor amendments, such as to the intervention abbreviations, have been made to ensure consistency throughout the report, where possible.

FIGURE 29 The number of pages in each submission (including appendices). BMS, Bristol-Myers Squibb.

The broad headings chosen were the:

- decision problem addressed
- strategies modelled
- model structure/time cycle
- time horizon
- perspective
- discounting
- population characteristics
- the assumed costs of the interventions
- costs of administration and monitoring
- comparative treatment efficacy (NMAs)
- responder criteria
- HAQ/EQ-5D changes in relation to response levels
- HAQ trajectory following initial response
- time to discontinuation of treatment
- rebound post treatment
- assumed NHS costs per HAQ band
- utility related to HAQ
- assumed costs and disutilities associated with AEs
- mortality associated with RA
- cost-effectiveness results
- cost implications within England and Wales.

Decision problem addressed

Table 52 summarises the decision problems addressed within the manufacturers' submissions for those drugs that are licensed as monotherapy and for those that cannot. No detailed information is given in the tables which serve as reference only, with subtleties regarding each analysis provided in later sections. Four interventions (ABT i.v., ABT s.c., CTZ and TCZ) are not licensed before the use of MTX. Four interventions (ABT i.v., ABT s.c., GOL and IFX) are not licensed as monotherapy.

Summary

It is seen that there was considerable variation in the decision problems addressed by the manufacturers with only the submissions by AbbVie and UCB Pharma evaluating all the subgroups within both the scope and the licence of their product.

Strategies modelled

The strategies modelled for each submission have been detailed individually for each manufacturer collated by the analyses numbers provided in *Decision problem addressed*. These are:

- 1. population 3 in combination with MTX
- 2. population 2 in combination with MTX
- 3. population 1 in combination with MTX
- 4. population 3 monotherapy
- 5. population 2 monotherapy
- 6. population 1 monotherapy
- 7. general RA population who can receive MTX
- 8. MTX intolerant or contraindicated RA population.

		According	Manufac	turer					
Analysis	Decision problem	assessment group's interpretation of the scope	AbbVie (ADA)	Bristol-Myers Squibb (ABT)	MSD (GOL)	MSD (IFX)	Pfizer (ETN)	Roche (TCZ)	UCB Pharma (CTZ)
1	Population 2 in combination with MTX	1	1		1	1	1		1
2	Population 3 in combination with MTX	1	1				1		1
3	Population 1 in combination with MTX	1	1				1		
4	Population 2 monotherapy	1	1				1		1
5	Population 3 monotherapy	1	1						1
6	Population 1 monotherapy	1	1						
7	General RA population who can tolerate MTX ^a			1	1	1			
8	MTX intolerant or contraindicated RA population ^b							1	
a In esser b In esser Shaded ce	ice, analyses 1 and 2 c ice, analyses 4 and 5 c lls indicate the interve	combined. combined. ntion is not license	d in this po	opulation.					

TABLE 52 The decision problem addressed within the manufacturers' submission

In summary, most strategies appeared reasonable, although it is noted that there were a few anomalies compared with NICE guidance or intervention licences:

- 1. MSD (GOL and IFX) and UCB Pharma (CTZ) assumed that TCZ would not be used following RTX.
- 2. MSD assumed in one strategy that RTX could be used without a bDMARD having been provided previously.
- 3. Pfizer (ETN) assumed that ABT i.v. would be used third line if TCZ was used first line.
- 4. Roche (TCZ) assumed a standard sequence of care for those intolerant or contraindicated to MTX that included three lines of bDMARDs, and evaluated only one sequence where TCZ was inserted as the first-line treatment to create four lines of bDMARDs.
- 5. Importantly, UCB Pharma did not compare with a cDMARD-only option for analyses 1 and 4.

AbbVie

The strategies employed in the AbbVie submission are contained in *Tables 53–56*. These appear appropriate, although it is noted that 'rescue' treatment was not explicitly defined by the manufacturer.

Bristol-Myers Squibb

The strategies employed in the Bristol-Myers Squibb submission are contained in *Table 57*. These appear appropriate.

The analyses assumed that if a patient had an AE within the first 6 months that a randomly sampled (and previously unused) bDMARD would be used instead.

Treatment	Sequen	ce number						
number		2		4	5		7	8
1	LEF	ADA + MTX	ETN + MTX	IFX + MTX	CTZ + MTX	GOL + MTX	ABT + MTX	TCZ + MTX
2	SSZ	RTX + MTX						
3	CYC	TCZ + MTX	LEF					
4	Rescue	LEF	LEF	LEF	LEF	LEF	LEF	SSZ
5		SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	CYC
6		CYC	CYC	CYC	CYC	CYC	CYC	Rescue
7		Rescue	Rescue	Rescue	Rescue	Rescue	Rescue	
CYC, ciclospo	rin.							

TABLE 53 Strategies modelled by AbbVie for analyses 1 and 2

TABLE 54 Strategies modelled by AbbVie for analysis 3

	Sequence number						
Treatment number		2		4	5		
1	MTX	ADA + MTX	ETN + MTX	IFX + MTX	GOL+MTX	MTX + HCQ	
2	SSZ	RTX + MTX	RTX + MTX	RTX + MTX	RTX + MTX	ADA + MTX	
3	HCQ	TCZ + MTX	TCZ + MTX	TCZ + MTX	TCZ + MTX	RTX + MTX	
4	LEF	LEF	LEF	LEF	LEF	TCZ + MTX	
5	CYC	SSZ	SSZ	SSZ	SSZ	LEF	
6	Rescue	CYC	CYC	CYC	CYC	SSZ	
7		Rescue	Rescue	Rescue	Rescue	CYC	
8						Rescue	
CYC, ciclosporin.							

TABLE 55 Strategies modelled by AbbVie for analyses 4 and 5

	Sequence number					
Treatment number		2		4	5	
1	SSZ + HCQ	ADA	ETN	CTZ	TCZ	
2	LEF	LEF	LEF	LEF	LEF	
3	SSZ	SSZ	SSZ	SSZ	SSZ	
4	CYC	CYC	CYC	CYC	CYC	
5	Rescue	Rescue	Rescue	Rescue	Rescue	
CYC, ciclosporin.						

TABLE 56 Strategies modelled by AbbVie for analysis 6

	Sequence number					
Treatment number		2		4		
1	SSZ + HCQ	ADA	ETN	SSZ + HCQ		
2	LEF	LEF	LEF	ADA		
3	SSZ	SSZ	SSZ	LEF		
4	CYC	CYC	CYC	SSZ		
5	Rescue	Rescue	Rescue	CYC		
6				Rescue		
CYC, ciclosporin.						

TABLE 57 Strategies modelled by Bristol-Myers Squibb for analyses 1 and 7

Se	quence	es							
1	LEF	ABT i.v. + MTX	ABT s.c. + MTX	ADA + MTX	CTZ + MTX	ETN + MTX	GOL + MTX	IFX + MTX	TCZ + MTX
2	GLD	$RTX + MTX^{a}$	$RTX + MTX^{a}$	$RTX + MTX^{a}$	$RTX + MTX^{a}$	$RTX + MTX^{a}$	$RTX + MTX^{a}$	$RTX + MTX^{a}$	$RTX + MTX^{a}$
3	CYC	$TCZ + MTX^{b}$	$TCZ + MTX^{b}$	$TCZ + MTX^{b}$	$TCZ + MTX^{b}$	$TCZ + MTX^{b}$	$TCZ + MTX^{b}$	$TCZ + MTX^{b}$	LEF
4	AZA	LEF	LEF	LEF	LEF	LEF	LEF	GLD	GLD
5	PC	GLD	GLD	GLD	GLD	GLD	GLD	CYC	CYC
6		CYC	CYC	CYC	CYC	CYC	CYC	AZA	AZA
7		AZA	AZA	AZA	AZA	AZA	AZA	PC	PC
8		PC	PC	PC	PC	PC	PC		

AZA, azathioprine; CYC, ciclosporin; PC, palliative care.

a RTX is contradicted; a randomly sampled treatment not previously used was substituted.

b It appears that TCZ + MTX would not be used if there was a DAS28 improvement of 1.2 or greater at 6 months.

If RTX was contraindicated, then a randomly sampled (and previously unused) bDMARD would be used instead.

From the model structure it appears that if there is a good response to RTX then TCZ would not be used as a third-line treatment option.

Merck Sharp & Dohme Corp.

For brevity, the strategies for GOL and IFX have been discussed jointly as they are identical. The strategies employed in the MSD submissions are contained in *Table 58*. It is noted that these do not allow TCZ to be used as a third-line biologic as allowed within NICE guidance. MSD assumes that the first- and second-line treatment options have been used prior to the decision point. The Assessment Group comment that the use of RTX in the MTX arm is outside of licence as a bDMARD must have been provided prior to RTX.

All patients were assumed to have previous lines of MTX and SSZ plus MTX.

The other bDMARDs evaluated were ETN, ADA, CTZ, TCZ, ABT i.v. and ABT s.c.

Treatment number	IFX arm	GOL arm	Other biologic DMARD arm	MTX arm	
1	IFX + MTX	GOL + MTX	Biologic DMARD + MTX	MTX	
2	RTX	RTX	RTX	RTX	
3	LEF	LEF	LEF	LEF	
4	GLD	GLD	GLD	GLD	
5	AZA	AZA	AZA	AZA	
6	CYC	CYC	CYC	CYC	
7	PC	PC	PC	PC	
AZA, azathioprine; CYC, ciclosporin; PC, palliative care.					

TABLE 58 Strategies modelled by MSD for analyses 1 and 7

Pfizer

The strategies employed in the Pfizer submission are contained in *Tables 59* and *60*. It is noted that the strategy with TCZ first does not follow NICE guidance in that ABT i.v. is used as a third-line treatment.

Roche

Roche evaluated a very limited set of sequences, which consisted of inserting TCZ before a standard sequence of care. This is replicated in *Figure 30*. Roche evaluated only a sequence of MTX-intolerant or -contraindicated RA population. It is noted that Roche assumes that the standard of care sequence has three lines of bDMARD treatments (followed by palliative care), which is not in accordance with current NICE guidance. Roche evaluated only one sequence in which TCZ was inserted as the first-line treatment to create four lines of bDMARDs.

TABLE 59 Strategies modelled by Pfizer for analyses 1–3

	Sequences									
Treatment number	1	2	3	4	5	6	7	8	9	10
1	ETN	ABT i.v.	ABT s.c.	CTZ	ADA	IFX	TCZ	GOL	cDMARD	Combination cDMARD
2	RTX	RTX	RTX	RTX	RTX	RTX	RTX	RTX	RTX	RTX
3	TCZ	TCZ	TCZ	TCZ	TCZ	TCZ	ABT i.v.	TCZ	TCZ	TCZ
4	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ
5	LEF	LEF	LEF	LEF	LEF	LEF	LEF	LEF	LEF	LEF
6	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC
Treatment sequences applied by analysis										
Analysis 1	1	✓	1	1	1	1	1	1	1	
Analysis 2	1								1	
Analysis 3	1								1	✓
PC, palliative care.										

TABLE 60 Strategies modelled by Pfizer for analysis 4

	Sequences					
Treatment number		2		4	5	
1	ETN	ADA	TCZ	TCZ	cDMARD	
2	ADA	ETN	ETN	ADA	ETN	
3	SSZ	SSZ	SSZ	SSZ	SSZ	
4	LEF	LEF	LEF	LEF	LEF	
5	PC	PC	PC	PC	PC	
PC, palliative care.						

FIGURE 30 Strategies modelled by Roche for analysis 8. (a) TCZ sequence; and (b) standard of care sequence.

UCB Pharma

The strategies modelled by UCB Pharma are given in *Table 61* and *62*. The Assessment Group notes that in the MTX-experienced populations with DAS> 5.1, the continuing use of cDMARDs was not a comparator strategy, which is a serious deviation from the published scope.

Model structure/time cycle

This section details the model structure employed by each manufacturer. The two submissions from MSD have been assessed jointly as they have the same structure.

Broad summary

Four individual patient models and two cohort models were submitted. Of the four individual patient-level models, three used discrete event simulation (DES) techniques, which do not need time cycles, with the remainder using a 6-month cycle. Of the two cohort models, one used a 6-month time cycle, whereas the other adopted this after the initial year, with either three cycles of 6, 3 and 3 months in the first year, or 3, 4.5 and 4.5 months depending on the user input. Both cohort models used a half-cycle correction.

Four of the models were constructed in Microsoft Excel (Microsoft Corporation, Redmond, WA, USA); one in Arena (©Rockwell Automation, Milwaukee, WI, USA); and one in SIMUL8 (Simul8 Corporation, Boston, MA, USA).

Set-up	Interventions/regimens
Comparators	Combination with MTX
	CTZ
	ADA
	ETN
	GOL
	TCZ
	IFX
	ABT
	Monotherapies
	CTZ
	ADA
	ETN
	TCZ
Follow-on interventions	RTX + MTX
	AZA
	CYC
	GLD
	HCQ
	LEF
	Penicillamine
	Palliation

TABLE 61 Strategies modelled by UCB Pharma for analyses 1 and 4

AZA, azathioprine; CYC, ciclosporin.

TABLE 62 Strategies modelled by UCB Pharma for analyses 2 and 5

Set-up	Parameter
Comparators	CTZ + MTX
	CTZ + cDMARDs
	PBO + MTX
	PBO + cDMARDs
Follow-on interventions	MTX + SSZ
	MTX + SSZ + HCQ
	MTX + HCQ
	MTX + LEF
	SSZ + HCQ
	CYC
	Penicillamine
	Palliation
CYC, ciclosporin.	

AbbVie

The model is an individual-patient simulation based within Arena run for a cohort of 1000 patients, each with specific baseline characteristics, which are sampled from distributions specified in an Excel input shell. One hundred and fifty replications are done for each analysis to create 150,000 patients per treatment sequence. The overview of the model logic is shown in *Figure 31*. The model uses a DES approach; thus, there are no time cycles, although all patients are assumed to stay on treatment for 6 months (unless an AE occurs).

FIGURE 31 The AbbVie model structure.

Bristol-Myers Squibb

Bristol-Myers Squibb reproduced the individual patient model built by Malottki *et al.*¹⁷¹ but added first-line biologics to the beginning of the model. This was implemented in SIMUL8 and does not require time cycles. The model logic is shown in *Figure 32*.

Merck Sharp & Dohme Corp.

A Markov model constructed in Excel was used to estimate the expected costs and QALYs of patients with RA. A time cycle of 6 months was used with half-cycle correction.

The model structure is depicted in Figure 33.

Pfizer

The model was developed in Excel with visual basic for applications and uses a DES approach to model individual patients. As the model uses a DES approach, no time cycles were necessary.

Time on treatment and disease progression are time dependent, whereas modelling the effects of treatment withdrawal and any subsequent rebound effect requires knowledge of patients' disease status prior to treatment.

The model structure is summarised in Figure 34 and is applicable to each decision problem evaluated.

Roche

The manufacturer reports that the design of the economic analysis follows guidelines set by the Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) Economics Working Group.^{212,213}

The economic analysis is based on an individual patient model designed in Excel with the use of Visual Basic applications. The model tracks the characteristics of the individuals and maintains a history in particular of a patient's response to treatment in their assigned drug sequence and change in HAQ score over time.

The model algorithm is presented in Box 2.

The model implements a 6-month cycle length, which is in line with timing of available efficacy evidence (ACR data). Patients transition through the model by sequentially moving on to each treatment. Once patients exhaust all treatments in the sequence, they move into palliative care where they remain until death.

UCB Pharma

The cost-effectiveness model is a Markov (cohort health state transition) structure constructed in Excel.

The first model cycle is either 3 or 6 months (12 or 24 weeks), depending on the definition of response selected in the model and reflective of the published clinical guidance [6 months (24 weeks) is used in the base case]. The model allows for clinical response to be measured by either ACR response criteria (developed by the ACR) or EULAR response criteria (developed by the EULAR).

Two further model cycles in the first year are common to both the severe and moderate disease activity populations. Where the first model cycle has been chosen to be 3 months, the subsequent two time steps are each 4.5 months long. Where the first model cycle has been chosen to be 6 months, the subsequent two time steps are each 3 months long. The maximum time step length in the model is 6 months.

FIGURE 32 The Bristol-Myers Squibb model structure.

FIGURE 33 The MSD model structure.

FIGURE 34 The Pfizer model structure. (AiC information has been removed.)

BOX 2 The individual simulation process reported by Roche

Start the simulation.

For patients i = 1, 2, ..., n, cycles k = 1, 2, ..., n a random number drawn by a continuous uniform distribution $\theta \sim U[0, 1]$, and the relevant risk factor p.

Determine the path of patient *i* through the model by $\theta_{i,k} \leq p_k$

Determine cost c_i and utility u_i for individual *i*.

End the simulation.

Estimate the mean cost and utility *E*[(*C*, *U*)] by

$$\hat{a}_n = \frac{1}{n} \sum_{i=1}^n (C_i, U_i).$$

At the end of the next and following cycles, patients may remain in the same Markov state, discontinue treatment owing to an AE, discontinue treatment owing to lack of efficacy or intolerance, or die. There are no state transitions other than discontinuation of treatment and death. Discontinuation of treatment was assumed to be the same for all comparators, which was deemed to be a conservative assumption. Transition probabilities were calculated to appropriately reflect the varying length of time steps in the first model year. After the first 12 months, the cycle length is 6 months, reflecting the frequency of monitoring recommended by NICE and the British Society of Rheumatology. A half-cycle correction was employed.

The model structure based on ACR response is depicted in *Figure 35* and the model structure based on EULAR response is depicted in *Figure 36*.

Time horizon

The time horizon for each model is detailed below. In summary, all models adopted a lifetime, or approximately lifetime, time horizon.

AbbVie

The AbbVie model used a lifetime horizon.

Bristol-Myers Squibb

The Bristol-Myers Squibb model used a lifetime horizon.

Merck Sharp & Dohme Corp.

The MSD model used a time horizon of 45 years, assuming that patients with moderate to severe RA would die at a maximum 95 years and those with severe RA would die at a maximum age of 96 years. Shorter analysis time frames were used in the sensitivity analyses.

Pfizer

The Pfizer model used a lifetime horizon. Shorter analysis timeframes were used in the sensitivity analyses.

Roche

The Bristol-Myers Squibb model used a lifetime horizon.

UCB Pharma

The time horizon in the base-case analysis was an approximation of the lifetime of a patient. UCB Pharma stated that analysis of BSRBR data has revealed an average age of patients starting on TNF inhibitors of 55 years.²¹⁴ A time frame of 45 years would assume that patients would die at a maximum age of 100 years. Shorter analysis timeframes were used in the sensitivity analyses.

Perspective

The perspectives adopted in the submissions are detailed below. In summary, all submissions used an NHS and Personal Social Services perspective.

AbbVie

The base-case analysis of the economic evaluation was conducted from a NHS and Personal Social Services perspective. AbbVie note that resource use data related to Personal and Social Services for the management of RA in the UK were not available for costing purposes.

FIGURE 35 Markov structure: severe disease activity population; model structure based on ACR response presented by UCB Pharma. (AiC information has been removed.)

FIGURE 36 Markov structure: moderate disease activity population; model structure based on EULAR response presented by UCB Pharma. (AiC information has been removed.)

Bristol-Myers Squibb

Although not explicitly stated, the Bristol-Myers Squibb model adopts a NHS and Personal Social Services perspective.

Merck Sharp & Dohme Corp.

The MSD analysis is conducted from the UK NHS perspective. Direct costs included the drug cost, administration cost and heath-care resource use.

Pfizer

The current analysis was conducted from the perspective of the UK NHS and Personal Social Services.

Roche

The Roche submission used an NHS and Personal Social Services perspective.

UCB Pharma

The model takes a payer perspective (i.e. that of the NHS and Personal Social Services), as per NICE guidance, and includes direct medical costs such as hospital care (inpatient and outpatient), primary care and home visits. Sensitivity analyses were conducted using a societal perspective.

Discounting

The discount rates used within the submissions are shown in *Table 63*. In summary, each submission used the appropriate discount rate in the base-case analysis.

Population characteristics

The population characteristics for each submission are detailed in this section. In summary, the manufacturers often use drug-specific data from the BSRBR, or from the trials related to their intervention. Typically no comment is made regarding the correlation between parameters with the exception of Pfizer's model.

	Base case		Sensitivity analyses	
Manufacturer	Costs	QALYs	Costs	QALYs
AbbVie	3.5%	3.5%	6.0%	1.5%
			1.5%	1.5%
Bristol-Myers Squibb	3.5%	3.5%		
MSD	3.5%	3.5%	0.0%	3.5%
			3.5%	0.0%
			0.0%	0.0%
Pfizer	3.5%	3.5%	6.0%	1.5%
Roche	3.5%	3.5%		
UCB Pharma	3.5%	3.5%	6.0%	1.5%
			1.5%	6.0%
			1.5%	1.5%
			6.0%	6.0%

TABLE 63 The discount rates used per annum within the submissions

AbbVie

The baseline characteristics for patients considered within the AbbVie analyses come from different sources, of which it was stated that wherever possible the source was chosen to reflect the composition of the treated population for RA in the UK. For MTX-experienced patients with moderate disease activity the source was the ReAct study.²¹⁵ Data from the BSRBR for this patient population could not be used, because historically patients in the UK have always required a DAS28 of > 5.1 to receive an antiTNF; as such, any patients in the BSRBR with a DAS28 of < 5.1 who received an antiTNF are very select group of patients with non-normal characteristics. For MTX-experienced patients with severe disease activity the source was the BSRBR data. AbbVie report that analysis was undertaken on BSRBR data for ADA from the raw BSRBR. This analysis was presented as AiC data. For MTX-naive patients with severe disease activity the source was the PREMIER trial.¹⁰⁹ The characteristics of patients for each of those populations are outlined in *Tables 64–66*. No comment is made on the correlation of parameters.

For each subpopulation several sensitivity analyses were conducted, to take into account the effect in the cost-effectiveness estimates of applying the sequences to a fully male or fully female population; a population with average starting age of 55 years or 65 years; a population with average baseline HAQ score of 1.0, 1.5 or 2.0. There is no comment on the correlation assumed between the distributions.

TABLE 64 The baseline patient characteristics for MTX-experienced patients with moderate disease activity assumed by AbbVie

Patient characteristic	Value (SD)			
Sex (% female)	81.4			
Age (years)	54.6			
Baseline HAQ-DI	1.5 (0.65)			
Disease duration (years)	10.65 (8.56)			
All sources: Burmester et al., 2007. ²¹⁵				

TABLE 65 The baseline patient characteristics for MTX-experienced patients with severe disease activity assumed by AbbVie

Patient characteristic	Value (SD)
Sex (% female)	AiC information has been removed
Age (years) (males/females)	AiC information has been removed
Baseline HAQ-DI (males/females)	AiC information has been removed
Disease duration (years)	AiC information has been removed
All sources: AbbVie analysis of BSRBR data.	

TABLE 66 The baseline patient characteristics for MTX-naive patients with severe disease activity assumed by AbbVie

Patient characteristic	Value (SD)
Sex (% female)	75.0
Age (years) (males/females)	60.8/58.0
Baseline HAQ-DI (males/females)	1.38 (0.62)/1.58 (0.65)
Disease duration (years)	11.28 (9.07)
All sources: Breedveld et al., 2006. ¹⁰⁹	

Bristol-Myers Squibb

The Bristol-Myers Squibb patient-level simulation model generates a group of virtual patients, who are assigned individual characteristics, such that each patient has their own sex, age and HAQ score. These values were taken from Chen *et al.*,¹²³ and are reproduced in *Tables 67* and *68*. It is not commented whether or not the age and sex distributions are assumed to be correlated with HAQ distribution.

It is commented that the mean of the assumed duration is a HAQ of 1.22.

Merck Sharp & Dohme Corp.: golimumab

It is reported that the base-case analysis reflects the GO-FORWARD²¹⁶ population and the subgroup analysis reflects the severe patient group (DAS of > 5.1) from GO-FORWARD.⁹² No comment is made on the correlation between parameters.

Merck Sharp & Dohme Corp.: infliximab

It is reported that the base-case analysis reflects the Anti-TNF trial in Rheumatoid Arthritis with Concomitant Therapy (ATTRACT)⁷⁵ population and the subgroup analysis reflects the severe patient group (DAS28 of > 5.1) from ATTRACT. No comment is made on the correlation between parameters.

Pfizer

Patients used in the Pfizer model are subdivided into three groups: severe DMARD-inadequate responders; moderate to severe inadequate responders; and severe naive patients. The following text is taken largely from the Pfizer submission.

Severe disease-modifying antirheumatic drug-inadequate responders

Characteristics of individual patients in the severe DMARD-inadequate responder population were sampled (with replacement) directly from the baseline ETN BSRBR patient cohort (*Table 69*). This method has the advantage of maintaining correlation between variables without reliance on strong distributional assumptions, such as multivariate normality, or complex copula-based processes to specify arbitrary marginal distributions. *Table 69* presents a summary of the population characteristics assumed within the model for all populations.

Moderate to severe disease-modifying antirheumatic drug-inadequate responders

The ETN BSRBR cohort with DAS of \leq 5.1 was not considered sufficiently generalisable to the moderate to severe population. Patient characteristics for the moderate to severe population were simulated using summary statistics from PRESERVE,²¹⁷ with the correlation structure taken from the BSRBR (*n* = 3780). The implicit assumption is that the correlation between variables in these two populations is the same. The population was generated with no restrictions on DAS, and then an acceptance–rejection algorithm was used to redraw characteristics for patients in whom the simulated DAS28 was outside the 3.2–5.1 range or who had a simulated age of < 18 years. This avoided any artificial truncation caused by, for example, assuming all patients simulated with a DAS28 of < 3.2 had a DAS28 = 3.2 and preserved the correlation between variables.

	Age (years)							
Sex	15–24	25–34	35–44	45–54	55–64	65–74	75–84	Total
Male	0.9%	2.5%	5.4%	8.3%	9.0%	6.8%	5.1%	38%
Female	1.5%	4.0%	8.8%	13.7%	14.7%	10.9%	8.4%	62%

TABLE 67 Age and sex distributions of patients in the Bristol-Myers Squibb model

_
de
Ĕ
q
lin
So
ērs
ź
6
rist
В В
Ę
.⊆
nts
tie
pa
of
o
ŭ
trib
dis
ē
SCO
e
nai
o
esti
õ
ť
nei
SSS
VSSE
4 L
ealt
He
89
ш
AB
H.

m	0
2.875	0
2.75	0
2.625	0
2.5	0.1
2.375	0.9
2.25	2.7
2.125	4.7
5	6.2
1.875	6.9
1.75	7.0
1.625	9.9
1.5	6.3
1.375	5.8
1.25	6.7
1.125	5.7
	Э.1 Э.1
0.875	4.8
0.75	4.9
0.625	5.3
0.5	5.8
0.375	6.7
0.25	6.7
0.125	3.1
Starting HAQ-DI score	Patients (%)

TABLE 69 The baseline characteristics of patients sampled in the Pfizer models

	AiC information has	been removed		AiC information has	been removed	AiC information has	been removed
AiC information	AiC information	AiC information	AiC information	AiC information	AiC information	AiC information	AiC information
has been removed)	has been removed	has been removed	has been removed	has been removed	has been removed	has been removed	has been removed
AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC information has been removed	AiC information has been removed			AiC information has been removed		AiC information has been removed	
AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has	AiC information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed

Severe disease-modifying antirheumatic drug-naive patients

Patients within the ETN BSRBR cohort enter the registry within the context of current clinical practice. As current clinical guidance from NICE does not permit the use of bDMARDs before the failure of two conventional DMARDs, the ETN BSRBR cohort does not contain a patient population generalisable to the severe DMARD-naive population. In order to generate this cohort, characteristics were sampled using summary statistics from Combination Of METhotrexate and etabercept in early rheumatoid arthritis (COMET),⁸¹ assuming the correlation structure from the ETN BSRBR cohort. The simulation of patients used acceptance/rejection criteria as described for moderate to severe DMARD-inadequate responders in order to ensure all patients had a DAS28 of > 5.1 and were aged \geq 18 years.

Roche

Roche report that the modelled patient population is consistent with both the drug licence and populations from TCZ and comparator Phase III trials. The population comprises moderate to severe RA patients who have had an inadequate response to one or more cDMARDs, and who are intolerant or contraindicated to MTX.

All baseline characteristics in the model are taken from the Phase IV ADACTA study,⁵⁸ with the exception of the average patient weight. The average patient weight in the ADACTA study⁵⁸ was 77 kg, significantly higher than previous estimates for the UK population.

Therefore, Roche used the 70 kg weight previously accepted in NICE TAs (TA130,²⁰⁷ TA195²⁸ and TA247²⁶). The Assessment Group comment that the assumed lower weight assumed by Roche is likely to underestimate the costs of TCZ, as a person weighing 70 kg requires a 400-mg and a 200-mg vial, whereas a person weighing 77 kg would require an additional 80-mg vial.

A summary of the patient characteristic data assumed by Roche is provided in *Table 70*. No comment is made on the correlation of the parameters.

UCB Pharma

UCB Pharma simulated patients with RA and a moderate or severe disease activity who have had an inadequate response to MTX. The cost-effectiveness of CTZ versus alternative treatments was evaluated separately for the moderate and severe disease activity populations.

Baseline characteristics of the severe RA population and the moderate to severe RA population were based on mean estimates from the CRZ trials, which were assumed to reflect the population eligible for treatment with CTZ in clinical practice (*Table 71*). Baseline characteristics for the severe disease activity population were based on the pooled estimates from the Rheumatoid Arthritis Prevention of structural Damage (RAPID)1,¹³⁵ RAPID2¹³⁶ and FAST4WARD²¹⁸ studies (including both the CTZ and PBO treatment arms). Baseline characteristics for the moderate disease activity population were based on estimates from the CERTAIN⁷⁹ study (including both the CTZ and PBO treatment arms). Some data were presented as AiC. No comment is made on the correlation between parameters.

Parameter	Value	Source
Sex: female, %	79	ADACTA ⁵⁸
Mean age (years)	53.8	ADACTA ⁵⁸
Starting HAQ score	1.65	ADACTA ⁵⁸
Mean weight (kg)	70	Previous NICE appraisals ^{26,28,207}

TABLE 70 The patient characteristic data assumed by Roche

AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed

The assumed costs of the interventions

This section details the costs assumed by each manufacturer; administration and monitoring costs are included in a separate section. In summary, the costs seem appropriate apart from the following points: AbbVie does not consider current PASs; Bristol-Myers Squibb and Roche assume that all patients weigh 70 kg, which is likely to underestimate the costs for weight-based dosages (bar GOL); neither Pfizer nor UCB Pharma includes PASs for TCZ or ABT as these are commercial-in-confidence (CiC); MSD does not include the PAS for ABT.

All manufacturers assumed vial wastage for ABT i.v., TCZ and IFX, although Roche discuss that where the appropriate dose is only marginally above that produced by a combination of vials a clinician may opt not to open a new vial.

Both Roche and UCB Pharma assume that it is possible for treatment to be discontinued after 3 months rather than 6 months through lack of efficacy.

AbbVie

The cost of all drugs used in the AbbVie analyses was calculated based on the recommended dosages and vial prices given in the Monthly Index of Medical Specialties 2013.²¹⁹ Importantly, the impact to the NHS of PASs on the cost of certain drugs was not taken into account in the analysis. AbbVie cited the NICE Methods Guide,²²⁰ which states that PAS are valid until NICE TA review, at which point manufacturers will need to agree a new PAS (even if it remains constant) for the appraisal review. As such, it is not known if all the current PASs in existence will be agreed again by the PAS's Liaison Unit and this is why they have not been included in the analysis. No sensitivity analyses were conducted using existing PASs. This is unfavourable to CTZ, as the initial 10 doses are provided free; ABT and TCZ, for which AiC discounts are provided; and GOL who provide the 100-mg dose of GOL at the same price as the 50-mg dose.

AbbVie provides detailed breakdown of all conventional DMARDs and biologic treatments and does take patient weight into consideration. ABT s.c. is not considered. The cost per dose for biologic treatments assumed by AbbVie is reproduced in *Table 72*.

For interventions that are weight dependent, AbbVie examined the weight distribution of patients enrolled in the BSRBR from the ADA cohort (n = 4364 patients) to determine the most likely average annual drug acquisition cost of TCZ, ABT, INF and GOL in the UK.

Tables 73–76 show the calculations undertaken by AbbVie to establish average cost per dose.

Treatment	Dose regimen	Cost per dose (£)
ADA	40 mg; every other week	352.14
ETN	50 mg; every week	178.75
IFX	3 mg/kg: at 0, 2 and 6 weeks, then every 8 weeks	1133.28
ABT	500 mg if weight is below 60 kg, 750 mg if weight is between 60 kg and 100 kg, 1000 mg if weight is above 100 kg; at 0, 2 and 4 weeks, then every 4 weeks thereafter	856.27
RTX	1000 mg followed by 1000 mg 2 weeks later; repeated every 9 months	1746.30
GOL	50 mg if weight is below 100 kg, 100 mg if weight is above 100 kg, per month	832.09
TCZ	8 mg/kg every 4 weeks	782.67
CTZ	400 mg; repeated 2 weeks and 4 weeks after initial injection	715.00
CTZ	200 mg; repeated every 2 weeks thereafter	357.50

TABLE 72 The costs of bDMARDs assumed by AbbVie

TABLE 73 The calculation undertaken by AbbVie to establish the average expected cost per TCZ treatment

Possible combinations of TCZ vials (mg)	Total dose (mg)	Lower weight (kg)	Upper weight (kg)	Cost per dose (£)	% patients in BSRBR	Annual cost (£)
80 + 80 + 80	240	-	30	307.20	0.05	3993.60
200 + 80	280	31	35	358.40	0.18	4659.20
200 + 80 + 80	360	36	45	460.80	1.67	5990.40
400	400	46	50	512.00	3.94	6656.00
400 + 80	480	51	60	614.40	18.42	7987.20
400 + 80 + 80	560	61	70	716.80	23.97	9318.40
400 + 200	600	71	75	768.00	11.07	9984.00
400 + 200 + 80	680	76	85	870.40	17.42	11,315.20
400 + 200 + 80 + 80	760	86	95	972.80	11.73	12,646.40
400 + 400	800	96	-	1024.00	11.55	13,312.00
Average cost per dose				782.67		
Average cost per year (13 dose	es)					10,174.65

TABLE 74 The calculation undertaken by AbbVie to establish the average expected cost per ABT treatment

Number of vials	Lower weight (kg)	Upper weight (kg)	Cost per dose (£)	% patients in BSRBR	Annual cost (first year) (£)	Annual cost (second year and beyond) (£)
Two	-	60	604.80	24.27	8467.20	7862.40
Three	61	100	907.20	68.31	12,700.80	11,793.60
Four	36	45	1209.60	7.42	16,934.40	15,724.80
Average cost pe	er dose		856.27			
Average cost per year (14 doses in the first year, 13 doses for second year and beyond)					11,987.76	11,131.49

Number of vials	Lower weight (kg)	Upper weight (kg)	Cost per dose (£)	% patients in BSRBR	Annual cost (first year) (£)	Annual cost (second year and beyond) (£)
One	-	33	419.62	0.14	3356.96	2727.53
Two	34	66	839.24	38.13	6713.92	5455.06
Three	67	99	1258.86	54.31	10,070.88	8182.59
Four	100	133	1678.48	6.58	13,427.84	10,910.12
Five	134	166	2098.10	0.64	16,784.80	13,637.65
Six	167	-	2517.72	0.21	20,141.76	16,365.18
Average cost p	er dose		1133.28			
Average cost pe second year an	er year (8 doses ir d beyond)	n the first year, 6.	5 doses on ave	erage for	9066.25	7366.33

TABLE 75 The calculation undertaken by AbbVie to establish the average expected cost per IFX treatment

TABLE 76 The calculation undertaken by AbbVie to establish the average expected cost per GOL treatment

Number of pens	Lower weight (kg)	Upper weight (kg)	Cost per dose (£)	% patients in BSRBR	Annual cost (£)
One	_	100	774.58	92.58	9294.96
Two	101	-	1549.16	7.42	18,589.92
Average cost per dos	se		832.09		
Average cost per yea	ar (12 doses)ª				11,649.23
a This calculation w	as performed by Abb	/ie and does not look	correct. However, this	value was not used in	the model.

Bristol-Myers Squibb

Bristol-Myers Squibb estimates the yearly costs of each intervention and additional costs incurred in the first year due to loading doses. Bristol-Myers Squibb assumes that all patients weigh 70 kg, the lack of uncertainty in this value will likely favour those interventions that are weight based, and in particular TCZ. Bristol-Myers Squibb considers PAS in place at the start of the appraisal, two of which, for TCZ and for both ABT formulations, are CiC. The bDMARDs costs assumed by Bristol-Myers Squibb are replicated in *Table 77*.

Merck Sharp & Dohme Corp.

Merck Sharp & Dohme Corp. has distinguished between the costs in the first 6 months, when loading doses may be needed, and costs in subsequent 6-month cycles. These are replicated in *Table 78*. The PAS for CTZ and GOL have been applied, but neither the TCZ nor the ABT PAS (which are CiC) is used.

The costs for weight-based doses were calculated based on the weight distributions of 2775 IFX patients within the BSRBR database to estimate the average number of *full* vials that are used per patient (or in the case of TCZ the weighted-average cost per patient). These data are shown in *Table 79*. The Assessment Group notes that the TCZ costs are inaccurate, as a patient weighing between 46 kg and 50 kg would be most inexpensively treated with a 400-mg vial alone, an option not considered.

Treatment	Annual cost (£)	Year 1 start-up cost (£)
ABT i.v.	CiC information has been removed	CiC information has been removed
ABT s.c.	CiC information has been removed	(CiC information has been removed)
ADA	9187	0
ETN	9327	0
IFX	8211	1259
TCZ	CiC information has been removed	CiC information has been removed
GOL	9156	0
CTZ	9327	-2503ª
RTX	4817	0
LEF	747	0
GLD	135	225
CYC	1685	0
AZA	98	0
MTX	18	0

TABLE 77 The intervention costs assumed by Bristol-Myers Squibb

AZA, azathioprine; CYC, ciclosporin.

a The year 1 additional cost for CTZ is negative owing to the free doses in the PAS. However, patients receive CTZ for a minimum of 6 months, so the cost is always positive.

TABLE 78 The intervention costs assumed by MSD

Intervention	Cost per dose (£)	Number of doses per first 6 months	Number of doses post 6 months	Treatment cost first 6 months (£)	Treatment cost post 6 months (£)
GOL	762.97	6	6	4577.82	4577.82
ADA	352.14	13	13	4577.82	4577.82
IFX ^a	1133.20	5	3.25	5666.00	3682.90
ETN	89.38	52	52	4647.76	4647.76
TCZ ^b	698.32	7	6.5	4888.24	4539.08
CTZ ^c	357.50	6	13	2145.00	4647.50
LEF	1.88	205	178	385.40	334.64
GLD	13.48	26	26	350.48	350.48
AZA	0.07	547.5	547.5	38.33	38.33
CYC	2.14	365	365	781.10	781.10
MTX	0.05	78	78	3.90	3.90
ABT i.v. ^d	864.92	8	6.5	6919.35	5621.97
ABT s.c. ^e	302.40	26	26	8727.32	7862.40
RTX	1746.30	2	1.3	3492.60	2270.19

AZA, azathioprine; CYC, ciclosporin.

a Average of 2.70 vials with wastage.

b Average cost per infusion was £887.32 with wastage.

d Includes average of 2.86 vials with wastage.

e Includes i.v. loading dose.

c Includes PAS.

Category	0–33 kg	34–59 kg	60–66 kg	67–100 kg	101–133 kg	> 134 kg (maximum weight 174 kg)	Total
Number in each IFX weight group	2	574	465	1546	176	12	2775
Percentage in each group	0.07	20.68	16.76	55.71	6.34	0.43	100
IFX vials per group (3 mg/kg)	-	2	2	m	4	Ũ	I
ABT i.v. vials per group	2	2	£	£	4	4	I
TCZ vials per group (8 mg/kg)	200 mg + 80 mg	400 mg + 80 mg	400 mg + 400 mg + 80 mg	400 mg + 400 mg	400 mg + 400 mg	400 mg + 400 mg	I
Cost per patient per weight group (£)	358.40	614.40	716.80	1024.00	1024.00	1024.00	I
Weighted average IFX vials	per infusion: 2.70						
Weighted average ABT i.v.	vials per infusion: 2.86	10					
Weighted average TCZ cost	t per infusion: £887.33	2					

TABLE 79 The number of vials assumed by MSD for weight based interventions
As an example, the calculation for the weighted-average vials of IFX is as follows:

 $(0.07\% \times 1) + (20.68\% \times 2) + (16.76\% \times 2) + (55.71\% \times 3) + (6.34\% \times 4) + (0.43\% \times 6) = 2.70.$ (16)

Pfizer

Drug costs in the Pfizer submission were taken from publicly available sources, including PASs for CTZ and GOL. PASs which are not in the public domain, such as those for TCZ, ABT i.v. and ABT s.c., were not included.

For therapies administered based on the individual's weight, costs were calculated for each patient individually, and vial wastage was permitted.

Palliative care was assumed to consist of a combination of MTX, LEF and ciclosporin. This was assumed to represent a proxy for the cost of treatment in this line of therapy given the heterogeneous nature of treatments that are likely to be given at this stage, in order to try to control disease progression. Costs at this line of therapy are likely to be extremely heterogeneous and no accurate cost estimate was available; however, given that patients reach palliative care after several lines of therapy, potentially taking many years, the effect of discounting will be to make this assumption less influential.

Where applicable [in, for example, the severe DMARD-inadequate responder (monotherapy) population], the cost of the generic 'cDMARD' therapy was assumed to have the cost of MTX. Again, the cost was intended to act as a proxy for a generic therapy of this class in the absence of a definitive patient pathway. This is likely to be a conservative estimation given that MTX is the one of the cheapest cDMARDs available. A summary of the drug costs with dosing assumptions is provided in *Table 80*.

Roche

The Roche submission considered only the use of TCZ in patients who are intolerant or contraindicated to MTX. It was assumed that all patients weigh 70 kg, although this was altered to 65 kg and 75 kg in sensitivity analyses. *Table 81* presents the costs assumed by Roche, although it is noted that this table does not include the PAS for TCZ that is used within the mathematical model. It is commented that it has been assumed that non-responders would be removed from treatment at 3 months, which may underestimate the acquisition costs of treatments.

UCB Pharma

The costs of drug acquisition were based on the recommended dosing schedules for treatment multiplied by the unit cost of treatment as reported in the *British National Formulary* 64.³⁰ The PASs for CTZ and GOL were included but the CiC PASs for ABT and TCZ were not incorporated.

For i.v. drugs that are administered based on body weight [ATB, INF, TCZ, azathioprine (AZA) and ciclosporin (CYC)], the weight distribution of patients enrolled in either the RAPID1,¹³⁵ RAPID2¹³⁶ and FAST4WARD²¹⁸ trials (severe disease activity population) or the CERTAIN⁷⁹ study (moderate disease activity population) was applied to estimate the number of vials used.

Treatment	Dosing assumptions	Unit cost (£) ^ª	Unit dose (mg)
ABT i.v.	Body weight \leq 60 kg, 500 mg; 61–100 kg, 750 mg; > 100 kg, 100 mg; repeated 2 weeks and 4 weeks after initial infusion, then every 4 weeks	302.40	250
ADA	40 mg every other week	352.14	40
CTZ	400 mg at 0, 2 and 4 weeks then 200 mg every 2 weeks (PAS 10 for free)	357.50	200
CIC	Maximum of 4 mg/kg daily in two divided doses	51.50	3000
ETN	25 mg BIW	89.38	25
ABT s.c.	Loading dose by i.v. initially, then first 125-mg s.c. injection given within a day, followed by 125-mg s.c. OW	302.40 ^b	125
GOL	50 mg every 4 weeks	762.97	50
INF	3 mg/kg at weeks 0, 2 and 6, thereafter every 8 weeks	419.62	100
LEF	Assumed 20 mg OD	61.36	600
MTX	15 mg OW	48.44	1000
PC	Assumed to be additive combination of MTX, LEF, CIC (oral)	N/A	N/A
RTX	1000 mg repeated 2 weeks after initial infusion = one course; each course 9 months apart	873.15	500
SSZ	2000 mg/day	14.83	56,000
TCZ	8 mg/kg every 4 weeks	102.40	80
Combination therapy with cDMARDs	Assumed to be additive combination of MTX and SUL	N/A	N/A

TABLE 80 The intervention costs assumed by Pfizer

BIW, twice weekly; CIC, ciclosporin; N/A, not applicable; OD, once daily; OW, once weekly; PC, palliative care. a *British National Formulary* 64.²²¹

b British National Formulary 2013.222

TABLE 81 The intervention costs assumed by Roche

			Cost for first 6 months (£)		Cost per subsequent cycle (£)
Treatment	Dose regimen ^a	Unit cost ^ь	Non-responders	Responders	Responders
ADA	40 mg every 2 weeks	£352.14 per 40-mg vial	2289	4578	4578
CTZ	200 mg every 2 weeks	£357.50 per 200-mg syringe	0	2324	4646
ETA	50 mg every week	£178.75 per 50-mg syringe	2324	4648	4648
TCZ	8 mg/kg every 4 weeks	£1.28 per mg	2330	4659	4659

a Source for dose regimen: The Electronic Medicines Compendium, 2011.²²³

b Source for unit cost: British National Formulary 2011. (Details not provided by Roche.)

For drugs that require loading doses or irregular administration, various assumptions were made to estimate the dose received by patients during the first and subsequent 6 months of treatment:

- For ABT, it was assumed that, during the first 6 months, treatment was administered at weeks 0, 2, 4, 8, 12, 16, 20 and 24, equating to eight administrations. During the subsequent 6 months, it was assumed that administrations occurred at a frequency of every 4 weeks, equating to 6.5 administrations over a 26-week cycle.
- For INF, similar assumptions were made when estimating dosing, where treatment was administered at weeks 0, 2, 6, 14, and 22 during the first 6 months, and an average of 3.25 administrations during any subsequent 6-month period.
- For CTZ, treatment was administered at weeks 0, 2 and 4 during the first month of treatment, with further doses administered every 2 weeks on a continuous basis until cessation.

A summary of the acquisition costs assumed by UCB Pharma is provided in Table 82.

Administration and monitoring costs

This section details the administration and monitoring costs assumed within the manufacturers' submission. Many submissions provide detailed descriptions with multiple tables to support the monitoring costs used. These have been abridged within this summary for brevity. In summary, the monitoring costs are broadly comparable and are unlikely to have a big impact on the conclusions of the cost-effectiveness analyses. The costs of infusion were typically between £100 and £200 per infusion in the submissions, although AbbVie uses a value of £501 per infusion. Some submissions have costs associated with s.c. injections.

	Acquisition costs (£)		
Treatment	First 6 months	Every 6 months thereafter	
Combination treatments with MTX (severe	disease activity population)		
CTZ + MTX	2163	4666	
ABT i.v. + MTX	7005	5695	
IFX + MTX	5648	3677	
TCZ + MTX	6475	6475	
ADA + MTX	4596	4596	
ETN + MTX	4666	4666	
GOL + MTX	4596	4596	
Monotherapies (severe disease activity po	pulation)		
CTZ	2145	4648	
TCZ	6457	6457	
ADA	4578	4578	
ETN	4648	4648	
Combination treatments (moderate disease	e activity population)		
CTZ + MTX	2163	4666	
CTZ + cDMARDs	2255	4758	
PBO + MTX	18	18	
PBO + cDMARDs	111	111	

TABLE 82 The intervention costs assumed by UCB Pharma

It is commented that in a recent NICE review (TA247²⁶) the Appraisal Committee agreed that the value of £154 per infusion was 'acceptable'. No comment was made on the manufacturer's assumption that 10% of s.c. injections would require administration by a district nurse.

AbbVie

Administration costs of £501.48 were assumed in the AbbVie submission for each i.v. treatment, using data from NHS reference costs²²⁴ and weighting the unit cost per day case admission (91%) and outpatient admission (9%) by activity levels. This assumption is based on the approach used in the NICE guidance for the use of IFX for treatment of adults with psoriasis.²²⁵ An administration cost of £416.12 corresponding to the cost of an outpatient visit was tested in the scenario analysis.²²⁶

Monitoring requirements have been modelled based on UK practice based on share care guidelines and monitoring protocols for rheumatology patients in Bradford teaching hospitals²²⁶ (Table 83) and validated by clinical experts prior to the previous NICE submission. Monitoring costs were not applied for ABT, INF, RTX or TCZ to avoid double-counting as 91% of patients are assumed to be admitted as a day case at each administration and the laboratory tests are included in the tariff. The monitoring requirements are, however, presented in Table 84 for completeness.

		MTX/MTX +				ADA/ETN/CTZ/GOL/ monotherapy or	
Test	Unit cost (£)	HCQ + SSZ	SSZ/LEF	CIC	HCQ	combination with MTX	Rescue
CXR	29.33	1	0	0	0	1	0
FBC	3.39	8	8	9	1	9	0
U&E	6.36	8	8	9	1	9	0
LFT	8.91	8	8	9	1	9	0
CRP	8.49	8	8	9	1	8	0
Urinalysis	7.84	0	0	1	0	1	0
Mantoux test	16.34	0	0	0	0	1	0
Hepatitis serology	7.84	0	0	0	0	1	0
ANA	8.49	0	0	0	0	3	0
DNA	8.49	0	0	0	0	1	0
Uric acid	1.27	0	0	3	0	0	0
Lipids	3.82	0	0	3	0	0	0
GP visit	36.36	3	3	3	0	3	0
Outpatient visit	132.75	5	5	6	1	6	3
Total		1019.36	990.03	1173.04	159.9	1236.75	398.25

TABLE 83 Monitoring costs assumed by AbbVie in the first 6 months

ANA, antinuclear antibody; CIC, ciclosporin; CXR, chest radiography; DNA, deoxyribonucleic acid; FBC, full blood count; GP, general practitioner; LFT, liver function test; U&E, urea and electrolytes.

Sources: Bradford teaching hospitals July 2010, 226 NHS, 2013, 224 NICE, 2013, 227 Curtis, 2011. 228

Test	Unit cost (£)	MTX/LEF, SSZ/MTX + HCQ + SSZ	ADA/ETN/CTZ/GOL/ monotherapy or combination	CIC	НСQ	Rescue
CXR	29.33	0	0	0	0	0
FBC	3.39	4	4	4	2	0
U&E	6.36	4	4	4	2	0
LFT	8.91	4	4	4	2	0
CRP	8.49	4	4	4	2	0
ANA	8.49	0	4	0	0	0
Uric acid	1.27	0	0	4	0	0
Lipids	3.82	0	0	4	0	0
GP visit	36.36	2	2	2	1	0
Outpatient visit	132.75	2	2	2	1	6
Total		446.82	480.78	467.18	223.41	796.5

TABLE 84 Annual monitoring costs assumed by AbbVie after the first 6 months

ANA, antinuclear antibody; CXR, chest X-ray; CIC, ciclosporin; FBC, full blood count; GP, general practitioner; LFT, liver function test; U&E, urea and electrolytes.

Sources: Bradford Teaching Hospitals NHS Trust, 2010,²²⁶ NICE, 2013,²²⁷ Curtis, 2011.²²⁸

Data are shown to the level of accuracy available in the source material.

In the model, costs of monitoring/lab tests required at baseline are applied once the patients start the treatment. Additionally, the scheduled monitoring required in 12 months are applied as a daily cost during the treatment duration.

Monitoring costs at baseline and for the subsequent 12 months are presented in *Tables 83* and *84* respectively.

AbbVie report that:

As per the guidelines it was assumed that any monitoring or lab tests in the first three months would be done by a specialist nurse and a shared care arrangement made with general practitioners (GPs) thereafter with routine clinic follow-up on a regular basis. We assumed that a health-care visit was associated with each sequence of laboratory tests. Monitoring subsequently to the first 3 months was assumed to occur at a primary care setting in 60–70% of cases as advised by experts, with the remainder of monitoring being carried out at a hospital. To calculate the distribution of visits the total number of visits beyond the first 3 months was multiplied by 65% and rounded to the closest integer to obtain the number of GP visits. For annual monitoring beyond 6 months, where the number of health-care visits was calculated to be below four, equal distribution between primary and secondary care settings was used to account for regular clinic attendances.

Protocols were not available for GOL; thus, the same monitoring pattern as for ADA was assumed. For combination therapies the maximum requirement for each test from the respective therapies was assumed.

Monitoring costs are set to zero for rescue therapy, apart from an outpatient visit cost every two months as advised by clinical experts. These experts further advised that patients on rescue therapy would be subject to one inpatient admission of approximately three weeks annually. This was not included as additional resource use to avoid double-counting with HAQ-based inpatient and surgery costs. Rescue therapy refers to medical treatment once all active therapies, including traditional DMARDs and biologic treatments, have failed; and is assumed to consist of MTX.

AbbVie acknowledges that monitoring protocols from the British Society of Rheumatology would be more representative of the population modelled, rather than regional guidelines detailed in the Bradford Primary Care Trust protocols. As monitoring patterns from the British Society of Rheumatology²²⁹ are not detailed for biologic therapies, the Bradford protocols were used in the base case as all relevant comparators were included, thus allowing for consistent costing of monitoring patterns without the requirement of further assumptions. AbbVie demonstrates the total costs of monitoring for DMARDs between the two sources were reasonably comparable with slightly higher estimates obtained using Bradford protocols. Alternative monitoring patterns from the British Society of Rheumatology, assuming the same monitoring pattern as that of MTX for biologic arms, were tested in scenario analysis. In addition, the sensitivity of monitoring costs was tested by increasing the total monitoring costs for each comparator by 50%.

Bristol-Myers Squibb

Infliximab, ABT i.v. and TCZ are administered as infusions, with s.c. treatments assumed to require visits to a nurse specialist in year 1.¹⁷¹ Treatment with GLD is assumed to require a visit to a general practitioner (GP) for each dose. Bristol-Myers Squibb assumes that cDMARDs and TCZ require tests before and during treatment. The annual monitoring costs assumed by Bristol-Myers Squibb are shown in *Table 85*.

Bristol-Myers Squibb presents a combined intervention acquisition, administration and monitoring cost. All of the bDMARDs are coprescribed with MTX, so all include the annual costs for MTX treatment. The additional year 1 costs for MTX are included only once in the model, as it is assumed that patients move straight onto the next biologic treatment and so do not cease and restart treatment with MTX. These values are replicated in *Table 86*.

Merck Sharp & Dohme Corp.

Merck Sharp & Dohme Corp. notes that, although many of the TNF- α inhibitors are administered at home, patients are often initially taught how to administer treatment within a hospital. This is calculated as a one-off administration cost.

	Administration costs (£)		Monitoring costs (£)		
Treatment	Annual cost	Year 1 additional cost	Annual cost	Year 1 additional cost	
ABT i.v.	1777	136	0	0	
ABT s.c.	0	283	0	0	
ADA	0	147	0	0	
ETN	0	147	0	0	
IFX	888	136	0	0	
TCZ	1777	0	557	554	
GOL	0	147	0	0	
CTZ	0	147	0	0	
RTX	188	0	0	0	
LEF	0	0	854	1263	
GLD	516	860	1710	2849	
CYC	0	0	1671	1127	
AZA	0	0	1709	854	
MTX	0	0	1709	570	
Palliative care			545	0	

TABLE 85 The administration costs and monitoring costs assumed by Bristol-Myers Squibb

Treatment	Annual cost (£)	Start-up cost (£)
ABT i.v.	CiC information has been removed	CiC information has been removed
ABT s.c.	CiC information has been removed	CiC information has been removed
ADA	10,913.92	147.00
ETN	11,053.76	147.00
IFX	10,825.87	1395.06
TCZ	CiC information has been removed	CiC information has been removed
GOL	10,882.48	147.00
CTZ	11,053.76	-2355.50ª
RTX	6732.08	0.00
LEF	1601.34	1408.44
GLD	2360.40	4079.56
CYC	3356.35	1275.33
AZA	1806.55	999.75
Palliative care	544.80	0.00
MTX		733.48

TABLE 86 Summarised total and annual costs assumed by Bristol-Myers Squibb

a The year 1 additional cost for CTZ is negative due to drug costs (the free doses in the PAS). However, patients receive CTZ for a minimum of 6 months, so the cost is always positive. All costs include cost of MTX.

Merck Sharp & Dohme Corp. reports that the current clinical management of this condition requires patients to have a regular contact with the specialist rheumatology centres in the UK. This was estimated in consultation with two expert clinicians in the UK. Initial resource use estimates were made based on the assumptions made in the Birmingham Rheumatoid Arthritis Model. These were reviewed and validated or changed by the clinical experts. Recent guidelines from the ACR and the British Society for Rheumatology were also reviewed for consistency with our assumptions.

In order to determine the total treatment cost in the model, routine monitoring costs of patients are aggregated. In the UK patient monitoring includes visits to a rheumatologist after 6 months then every 12 months, GP visits every 6 months and a specialist nurse visit every 6 months.

Resource use costs for the UK were sourced from the NHS reference costs (2010–11)²²⁴ and the Personal Social Services Research Unit (2011).²²⁸ It is common in the UK for patients to regularly visit a specialist rheumatology nurse more frequently than their rheumatologist. *Table 87* presents the unit costs assumed by MSD.

For i.v. drugs (INF, TCZ and ABT i.v.) administration costs are higher and incurred at every administration of treatment. In the UK the cost of infusion is £50 with an additional £59 administration cost. The cost of infusion is assumed equivalent to a visit to a specialist nurse plus an hourly charge for the care of the patient while they are on the ward. MSD assumed that infusion costs can be charged only per whole hour.

In order to account for the difference in cost between initiation of treatment and maintenance treatment, the cost of the first cycle of treatment is aggregated separately to the cost of subsequent cycles of treatment. *Table 88* reports the cost of administration treatment included in the model. As this was combined with intervention acquisition costs, these have been included for completeness.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 TNS, UK.

Health-care resource	Unit cost (£)	Source			
Rheumatologist	132.07	NHS reference costs 2010–11 (Consultant Led: Follow up Attendance Non-Admitted Face to Face 410) ²²⁴			
GP	53.00	Curtis, 2011, p. 149 ²²⁸			
Specialist nurse	50.00	Curtis, 2011, p. 144 ²²⁸			
Nurse practitioner	42.00	Curtis, 2011, p. 146 ²²⁸			
FBC	3.36	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP823) ²²⁴			
ESR	1.26	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP841) ²²⁴			
Biochemistry profile	3.36	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP823) ²²⁴			
CRP	3.36	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP823) ²²⁴			
TB test	1.26	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP841) ²²⁴			
Hepatitis B and hepatitis C	3.36	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP823) ²²⁴			
Urinalysis	1.26	NHS reference costs 2010–11 (NHS Trusts Direct Access: Pathology Services DAP841) ²²⁴			
Chest X-ray	29.04	NHS reference costs 2010–11 (NHS Trusts Outpatient DAPF) ²²⁴			
FBC, full blood count; TB, tuberculosis.					

TABLE 87 The unit costs of monitoring assumed by MSD

TABLE 88 The assumed administration, monitoring and drug acquisition costs assumed by MSD

Intervention	Cost per dose (£)	Number of doses per first 6 months	Number of doses post 6 months	Treatment cost first 6 months (£)	Treatment cost post 6 months (£)	Cost per administration first 6 months (£)	Total cost first 6 months (£)	Total cost post 6 months (£)
GOL	762.97	6	6	4577.82	4577.82	59.00	4636.82	4577.82
ADA	352.14	13	13	4577.82	4577.82	59.00	4636.82	4577.82
IFX ^a	1133.20	5	3.25	5666.00	3682.90	109.00	6211.00	4037.15
ETN	89.38	52	52	4647.76	4647.76	59.00	4706.76	4647.76
TCZ ^b	698.32	7	6.5	4888.24	4539.08	109.00	5651.24	5247.58
CTZ ^c	357.50	6	13	2145.00	4647.50	59.00	2204.00	4647.50
LEF	1.88	205	178	385.40	334.64	0.00	385.40	334.64
GLD	13.48	26	26	350.48	350.48	0.00	350.48	350.48
AZA	0.07	547.5	547.5	38.33	38.33	0.00	38.33	38.33
CYC	2.14	365	365	781.10	781.10	0.00	781.10	781.10
MTX	0.05	78	78	3.90	3.90	0.00	3.90	3.90
ABT i.v. ^d	864.92	8	6.5	6919.35	5621.97	109.00	7791.35	6330.47
ABT s.c. ^e	302.40	26	26	8727.32	7862.40	59.00	8895.32	7862.40
RTX	1746.30	2	1.3	3492.60	2270.19	109.00	3710.60	2411.89

a Average of 2.70 vials with wastage.

b Average cost per infusion: £887.32 with wastage.

c Includes PAS.

d Includes PAS and average of 2.86 vials with wastage.

e Includes i.v. loading dose and associated administration cost.

Pfizer

Pfizer reported that the costs associated with pre-treatment monitoring were in accordance with the previous evidence review group models and recent manufacturer's submission to NICE. These were reported to be then validated at an advisory board. In addition to the costs of tests, an outpatient rheumatology contact (service code 410) was assumed, at a cost of £137.²³⁰ *Table 89* provides the unit costs of pre-treatment test while *Table 90* summarises the estimated total cost per intervention. Monitoring costs were assumed to be included in the general costs per HAQ band and were thus not included.

TABLE 89 Unit costs of pre-treatment tests assumed by Pfizer

AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	

TABLE 90 Pre-treatment costs per intervention assumed by Pfizer

AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed

The costs of infusion were uplifted by Pfizer from costs presented by Roche in TA198²³¹ to 2011/12 prices using Curtis.²³²

The summary of acquisition costs, monitoring and administration costs provided by MSD is replicated in *Table 91*.

Roche

Table 92 presents administration costs for all the treatments. The model assumes a district nurse will administer 10% of the s.c. injection treatments.

The economic model assumes the same schedule of monitoring for all biologics as in the previous NICE submission for TCZ.²³¹ The cost of TCZ monitoring is assumed to be included in the administration cost: £171.33 per i.v. infusion¹⁸⁰ updated to 2009/10 prices.²³³

The monitoring cost of ADA, CTZ and ETN is assumed to follow the schedule presented in *Table 93*. Palliative care is assumed to have only monitoring costs, but a greater number of outpatient follow-up visits in the first cycle and greater resource use in subsequent cycles, resulting in costs of £2589 and subsequent costs of £1287.

Roche provide a summary table of acquisition, monitoring and administration costs. This is replicated in *Table 94*.

UCB Pharma

The monitoring schedule assumed by UCB Pharma is replicated in *Table 95*. UCB Pharma presents unit costs, but for brevity only the summarised monitoring data, together with drug acquisition costs, are provided in *Tables 95* and *96*, respectively.

Comparative treatment efficacy (network meta-analysis)

This section contains the analyses regarding comparative efficacies undertaken by each manufacturer. For consistency, the term NMA has been used even when a manufacturer has denoted the analysis to be a mixed-treatment comparison.

The level of detail in the analyses and in the reporting was very diverse, ranging from the submission by AbbVie, which included a 378-page appendix, to the submission by Roche that consisted of one-page concerning the NMA. The Assessment Group has attempted to capture all key points made by the manufacturer but has had, for brevity reasons, to abridge some analyses. Detailed discussions on the methods used, goodness of fits, consistency checking and convergence have not been incorporated. Similarly, replications of the list of studies that have been used in the NMA by the manufacturers have not been undertaken.

AbbVie

The trials included in AbbVie's base-case NMA are depicted in *Figure 37*, which has been reproduced directly from the AbbVie submission. The numbers on the line have been included by AbbVie without a reference, but are believed to represent codes for RCTs; thus, six numbers would indicate six trials informing the direct comparison. Furthermore, AbbVie used different abbreviations from those used in by the Assessment Group. It is commented that there is no cDMARD node, which is assumed to be subsumed within the PBO arm.

		Administration costs (£		costs (£)		
Treatment	Dosing assumptions	Unit cost (£)ª	Unit dose (mg)	First administration	Subsequent administration	Assume vial wastage?
ABT i.v.	Body weight \leq 60 kg, 500 mg; 61–100 kg, 750 mg; > 100 kg, 100 mg; repeated 2 weeks and 4 weeks after initial infusion, then every 4 weeks	302.40	250	151.95 ^b	151.95 ^b	Yes
ADA	40 mg every other week	352.14	40	49.00 ^c	0.00	N/A
CTZ	400 mg at 0, 2 and 4 weeks then 200 mg every 2 weeks (PAS 10 for free)	357.50	200	49.00 ^c	0.00	N/A
CYC	Maximum of 4 mg/kg daily in two divided doses	51.50	3000	0.00	0.00	N/A
ETN	25 mg BIW	89.38	25	49.00 ^c	0.00	N/A
ABT s.c.	Loading dose by i.v. initially, then first 125 mg s.c. injection given within a day, followed by 125 mg s.c. OW	302.40 ^d	125	49.00 (of s.c. first administration) ^e	0.00	N/A
GOL	50 mg every 4 weeks	762.97	50	49.00 ^c	0.00	N/A
IFX	3 mg/kg at weeks 0, 2 and 6, thereafter every 8 weeks	419.62	100	151.95 ^b	£151.95 ^b	Yes
LEF	Assumed 20 mg OD	61.36	600	0.00	0.00	N/A
MTX	15 mg OW	48.44	1000	0.00	0.00	N/A
PC	Assumed to be additive combination of MTX, LEF, CIC (oral)	N/A	N/A	0.00	0.00	N/A
RTX	1000 mg repeated 2 weeks after initial infusion = one course; each course 9 months apart	873.15	500	441.00 ^f	441.00 ^f	N/A ^g
SSZ	2000 mg/day	14.83	56,000	0.00	0.00	N/A
TCZ	8 mg/kg every 4 weeks	102.40	80	151.95 ^b	151.95⁵	Yes
Combination therapy with cDMARD	Assumed to be additive combination of MTX and SUL	N/A	N/A	0.00	0.00	N/A

TABLE 91 The assumed acquisition and administration costs assumed by Pfizer

BIW, twice weekly; CIC, ciclosporin; N/A, not applicable; OD, once daily; OW, once weekly; PC, palliative care;

SUL, sulfasalazine.

a BNF 64.22

b Uplifted from costs presented by Roche in TA198²³¹ to 2011/12 prices using Curtis, 2012.²³²

c One-hour community nurse time from Curtis, 2012.²³²

d British National Formulary, 2013.222

e Model includes cost of i.v. loading dose: assumed to be the same as first administration of ABT and applied at the start of the strategy.

f 2 × day case cost for HD23C Inflammatory Spine, Joint or Connective Tissue Disorders, without CC.²³⁰

g Because the dose for RTX is 1000 mg and unit size is 500 mg, there was no vial wastage.

Treatment	Total cost of administration first 6 months and subsequent cycles (responders) (£)	Assumptions	Source (cost)
ADA	35.10	10% of injections are given by district nurse; cost of district nurse £27.00	Curtis <i>et al.</i> , 2010 ²³³
CTZ	35.10	10% of injections are given by district nurse; cost of district nurse £27.00	Curtis <i>et al.</i> , 2010 ²³³
ETA	70.20	10% of injections are given by district nurse; cost of district nurse £27.00	Curtis <i>et al.</i> , 2010 ²³³
TCZ	1113.63	Cost of £171.33 for each infusion given in a cycle (inflated 2000 to 2010)	Barton <i>et al.</i> , 2004 ¹⁸⁰

TABLE 92 The administration costs assumed by Roche

TABLE 93 The monitoring costs assumed by Roche for ADA, CTZ and ETN

Resource or test	Unit cost (£)	Monitoring frequency per 6 months (first cycle)	Total cost (first cycle: responder) (£)	Frequency of monitoring per 6 months (subsequent cycles)	Total cost (subsequent cycles) (£)	Source
Outpatient visit first attendance	214.00	1	214.00	0	0.00	Department of Health, 2011 ²³⁴
Outpatient visit follow-up visit	126.00	6	756.00	3	378.00	Department of Health, 2011 ²³⁴
GP visit	53.00	4	212.00	3	159.00	Department of Health, 2011 ²³⁴
FBC	3.00	14	42.00	3	9.00	Department of Health, 2011 ²³⁴
ESR and CRP	15.41	14	215.68	3	46.22	Barton <i>et al.</i> , 2004 ¹⁸⁰
Liver function test	8.55	14	119.74	3	25.66	Barton <i>et al.</i> , 2004 ¹⁸⁰
Urea, electrolytes and creatinine	8.55	14	119.74	3	25.66	Barton <i>et al.</i> , 2004 ¹⁸⁰
Chest radiography	27.63	1	27.63	0	0.00	Barton <i>et al.</i> , 2004 ¹⁸⁰
Total			1706.79		643.53	
FBC, full blood co	ount.					

Treatment	Total cost: bi-annual (first cycle on treatment, non-responder) (£)	Total cost: bi-annual (first cycle on treatment, responder) (£)	Total cost: bi-annual (subsequent cycles on treatment, responder) (£)
ADA	3159.85	6319.71	5256.45
CTZ	870.94	4065.64	5326.13
ETN	3212.24	6424.49	5361.23
TCZ	2886.42	5772.83	5772.83
Palliative care	2588.79	2588.79	1287.07

TABLE 94 The total costs of treatment assumed by Roche

TABLE 95 Drug monitoring schedule: visits during first 6 months and every 6 months thereafter assumed by UCB Pharma

	AiC information has be	een removed	AiC information has be	en removed
	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed

continued

	AiC information has b	een removed	AiC information has b	een removed
	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed

TABLE 95 Drug monitoring schedule: visits during first 6 months and every 6 months thereafter assumed byUCB Pharma (continued)

TABLE 96 Summ	ary of drug acquis	ition, administrati	on and monitorin <u>c</u>	g costs for each tr	eatment compara	tor in the UCB Ph	arma model		
	AiC information	has been remove	5		AiC information	has been remove	σ		AiC information has been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information	information	information	information	information	information	information	information	information	information
has been	has been	has been	has been	has been	has been	has been	has been	has been	has been
removed	removed	removed	removed	removed	removed	removed	removed	removed	removed
AiC information	has been remove	p							
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information has	information has	information has	information has	information has	information has	information has	information has	information has	information has
been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed	been removed
									continued

0
a.
ž
2.
h
õ
J
5
ð
2
Ja
E
Jai
۲ ۲
ω
2
<u>ر</u>
e
Ŧ
.⊆
۲
Ĕ
Ľ0
g
Ĕ
2
Ũ
ц
Эſ
t
ġ
E.
Ę
Ð
ea
Ē.
ę
S
S
8
ō
⊒.
orin
litorin
onitorin
monitorin
d monitorin
nd monitorin
and monitorin
on and monitorin
tion and monitorin
ration and monitorin
stration and monitorin
nistration and monitorin
ninistration and monitorin
dministration and monitorin
administration and monitorin
n, administration and monitorin
ion, administration and monitorin
sition, administration and monitorin
uisition, administration and monitorin
quisition, administration and monitorin:
acquisition, administration and monitorin
g acquisition, administration and monitorin
rug acquisition, administration and monitorin
drug acquisition, administration and monitorin
of drug acquisition, administration and monitorin
y of drug acquisition, administration and monitorin
ary of drug acquisition, administration and monitorin
mary of drug acquisition, administration and monitorin
mmary of drug acquisition, administration and monitorin
Summary of drug acquisition, administration and monitorin
Summary of drug acquisition, administration and monitorin
96 Summary of drug acquisition, administration and monitorin
E 96 Summary of drug acquisition, administration and monitorin
3LE 96 Summary of drug acquisition, administration and monitorin
ABLE 96 Summary of drug acquisition, administration and monitorin

	AiC information	has been remove	7		AiC information	has been remove	G		AiC information has been removed
AiC									
information									
has been									
removed									
AiC information	has been remove	þ							
AiC									
information has									
been removed									
AiC									
information has									
been removed									
AiC									
information has									
been removed									
AiC									
information has									
been removed	been removed)	been removed							
AiC information	has been remove	pa							
AiC									
information has									
been removed									
AiC									
information has									
been removed									
AiC									
information has									
been removed									
AiC									
information has									
been removed									

FIGURE 37 The evidence network in AbbVie's base case. OTT, oral triple therapy.

AbbVie incorporated hurdles within the analyses to eliminate illogical results such as the possibility that a patient may be simulated an ACR50 response, but not an ACR20 response. This was achieved by using parameters such as, of those who have gained an ACR20 response, what proportion achieved an ACR50 response. Within the base case, AbbVie adjusted for baseline risk, prior MTX exposure, prior bDMARD exposure and concomitant standard DMARD. AbbVie report that additional sensitivity analysis controlling for differences in baseline HAQ-DI and disease duration slightly worsened model fit assessed by the deviance information criterion and had little effect on overall results.

AbbVie presents posterior simulated ACR responses for four main groups:

- 1. MTX-experienced patients who can receive cDMARDs (Figure 38)
- 2. MTX-experienced patients who receive bDMARD monotherapy (Figure 39)
- 3. MTX-naive patients who can receive cDMARDs (Figure 40)
- 4. MTX-naive patients who receive bDMARD monotherapy (Figure 41).

Further analyses (not shown in the Assessment Group summary) investigated a number of sensitivity analyses. These included:

- The efficacy of TCZ and RTX compared with MTX when used after a bDMARD. These results indicated that the efficacy of TCZ was lower following an initial bDMARD than in people who were bDMARD naive.
- The inclusion of Asian studies which were shown to favour TCZ monotherapy and slightly favour CTZ.
- Limiting the data to a 3-month data set. AbbVie comments that, as one would expect, there are lower
 estimated median response probabilities at higher levels of response, particularly for ACR70, for most
 treatments including ADA, CTZ, ETN, GOL and TCZ, compared with the '6-month' estimates. The only
 exceptions are ABT and INF in the MTX-experienced, combination therapy scenario.

FIGURE 38 Posterior simulated ACR response for combination therapy in a MTX-experienced population presented by AbbVie.

FIGURE 39 Posterior simulated ACR response for monotherapy in a MTX-experienced population presented by AbbVie.

FIGURE 40 Posterior simulated ACR response for combination therapy in a MTX-naive population presented by AbbVie.

AbbVie's interpretation of the network meta-analysis data

AbbVie states that:

... for the MTX-experienced patient population, biologics in combination with MTX or other DMARDs, median posterior simulated ACR20 responses for the 6 month estimates are highest for etanercept and lowest for golimumab. The interquartile ranges are tighter for the three older anti-TNFs, adalimumab, etanercept and infliximab, as well as abatacept than for golimumab and certolizumab. Median posterior simulated ACR50 responses are highest for etanercept and lowest for infliximab, while ACR70 responses are highest for adalimumab and certolizumab and lowest for abatacept and infliximab. Estimated responses get tighter the higher the level of ACR response.

Bristol-Myers Squibb

The inclusion and exclusion criteria for selecting the RCTs to be evaluated in the NMA were not well reported; nor were the time points at which data were extracted, the methods used within the NMA, the assumed properties of the frequentist and Bayesian analyses. Bristol-Myers Squibb provides NMAs of HAQ scores and of DASs. Bristol-Myers Squibb did not report whether or not the frequentist or Bayesian values were used within the analyses. The network for the HAQ scores is shown in *Figure 42*.

The mean change in HAQ is shown in Figure 43 and absolute mean change is shown in Figure 44.

The probability of being the most efficacious treatment is detailed in *Figure 45*, although the Assessment Group notes that, strictly, it is impossible to quantify the probability of being most efficacious using a frequentist approach.

The analysis of DAS by Bristol-Myers Squibb used a linear regression to estimate DASs from HAQ scores where these data were not provided. The assumed relationship is shown in *Figure 46*. No comment was made on the relationship between change in DAS and change in HAQ scores.

FIGURE 42 The network of evidence for HAQ scores as supplied by Bristol-Myers Squibb.

FIGURE 43 The mean change in HAQ scores relative to PBO as estimated by Bristol-Myers Squibb.

FIGURE 44 The mean absolute change in HAQ scores as estimated by Bristol-Myers Squibb.

FIGURE 45 The probability of being the most efficacious treatment (on HAQ score) as estimated by Bristol-Myers Squibb.

FIGURE 46 The relationship assumed by Bristol-Myers Squibb between HAQ scores and DASs.

The network assumed in the DAS analyses therefore replicates that for the HAQ analyses (see *Figure 43*). As with the HAQ analyses, mean changes in DASs, absolute mean changes in DAS and the probability of being the most efficacious treatment are provided. These are shown in *Figures 47* and *48*.

The probability of being the most efficacious treatment is detailed in *Figure 49*, although the Assessment Group notes that, strictly, it is impossible to quantify the probability of being most efficacious using a frequentist approach.

Bristol-Myers Squibb's interpretation of the network meta-analysis data

Bristol-Myers Squibb states that:

... certolizumab + MTX seems to be the best treatment at reducing both HAQ and DAS scores ... golimumab + MTX also appears to be an effective treatment in improving QoL, along with etanercept + MTX and s.c. abatacept + MTX

and

Infliximab + MTX and etanercept alone are expected to yield the smallest negative changes in both HAQ and DAS scores other than placebo + MTX.

Merck Sharp & Dohme Corp.

The data used in the NMA conducted by MSD are contained in *Tables 16–18* of both the IFX and the GOL submission with the network reproduced in *Figure 50*. No steps were taken to ensure legitimacy (e.g. that the ACR50 value was lower than the ACR20 example).

Merck Sharp & Dohme Corp. presents results in terms of the drug that is the focus of the submission (i.e. GOL or IFX). The ACR results for GOL are shown in *Figures 51–53*, while those for IFX are shown in *Figures 54–56*.

FIGURE 50 The network for DMARD-experienced patients as supplied by MSD.

FIGURE 52 American College of Rheumatology 50: DMARD-experienced patients at 24 weeks estimated by MSD in the GOL submission.

FIGURE 54 American College of Rheumatology 20: DMARD-experienced patients at 24 weeks estimated by MSD in the IFX submission.

FIGURE 55 American College of Rheumatology 50: DMARD-experienced patients at 24 weeks estimated by MSD in the IFX submission.

FIGURE 56 American College of Rheumatology 70: DMARD-experienced patients at 24 weeks estimated by MSD in the IFX submission.

Merck Sharp & Dohme Corp. conducted sensitivity analyses excluding open-label studies as these may have a higher potential for bias. This did not materially affect the ACR20 or ACR50 results, but had a larger (although non-patterned) impact at ACR70.

A second sensitivity analysis was conducted where Asian studies were included (*Figure 57* reproduces a figure supplied by MSD and indicates lower background MTX use in these studies): golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis (GO-FORTH),⁹¹ Study of Active controlled Monotherapy Used for Rheumatoid Arthritis, an IL-6 Inhibitor (SAMURAI),¹¹⁵ Abe *et al.*⁵⁶ and Kim *et al.*⁹⁹

The exclusion of non-Asian studies did not markedly alter the odds ratios which remain with wide Crls.

Merck Sharp & Dohme Corp.'s interpretation of the results

Merck Sharp & Dohme Corp. summarises the results of the NMA for GOL and IFX as follows:

- ACR20: no significant differences were observed between GOL/IFX and other bDMARDs, with the exception of ADA monotherapy and TCZ monotherapy.
- ACR50: no significant differences were observed between GOL/IFX and other bDMARDs, with the exception of ADA monotherapy, TCZ monotherapy and ETN monotherapy.
- ACR70: no significant differences were observed between GOL/IFX and other bDMARDs, with the exception of ADA monotherapy, TCZ monotherapy and ETN monotherapy.

In each of the exceptions listed above, GOL and IFX were assumed to be statistically significantly better than the named intervention.

Pfizer

Pfizer undertook three separate NMAs: ACR20/50/70 responses for a severe cDMARD-experienced population; HAQ changes for a severe cDMARD-experienced population; and ACR20/50/70 responses for a severe cDMARD-experienced population who were treated with bDMARD monotherapy. The networks for these NMAs are reproduced in *Figures 58–60*.

The results produced by each of these analyses in the base case are provided in Tables 97–99.

No steps were taken to ensure legitimacy (e.g. that the ACR50 value was lower than the ACR20 example).

FIGURE 57 Comparison of MTX usage (average mg/week) in East Asian vs. non-East Asian studies supplied by MSD. Reference details were not supplied by MSD; therefore, no reference numbers are included.

FIGURE 58 The network diagram for combination therapy, ACR responses in severe DMARD-experienced patients as produced by Pfizer. (AiC information has been removed.)

FIGURE 59 The network diagram for combination therapy, HAQ changes in severe DMARD-experienced patients as produced by Pfizer. (AiC information has been removed.)

FIGURE 60 The network diagram for monotherapy, ACR responses in severe DMARD-experienced patients as produced by Pfizer. (AiC information has been removed.)

TABLE 97 The base-case NMA results for patients as produced by Pfizer	or combination therapy, ACR responses	in severe DMARD-experienced
AiC information has been removed	AiC information has been removed	AiC information has been removed

Ale information has been removed	Ale information has been removed	Ale information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed)
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed

TABLE 98 The base-case NMA results for combination thera	by, HAQ changes in severe DMARD-experienced
patients, ETN vs. other bDMARDs as produced by Pfizer	

AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed

TABLE 99 The base-case NMA results for monotherapy, ACR responses in severe DMARD-experienced patients as produced by Pfizer

AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed		
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed

Pfizer's interpretation of the network meta-analysis results

Pfizer states that for combination therapy in cDMARD-experienced severe RA patients:

ETN was consistently significantly better than ABT IV, ADA and INF for ACR20/50/70 outcomes. Furthermore, with regards to ACR20/70 outcomes ETN was shown to be significantly better than ABT (s.c.), otherwise was similar in efficacy to CZP, GOL, and TOC.

For combination therapy in cDMARD-experienced severe RA patients Pfizer states that:

... though all bDMARDs had significantly lower HAQ compared with DMARD control at follow-up, none of the bDMARDs had significantly lower HAQ compared with each other.

For cDMARD-experienced severe RA patients who are treated with monotherapy Pfizer states that:

... based on the random-effects network meta-analysis; adalimumab, etanercept and tocilizumab have significantly higher odds of ACR 70 than placebo and etanercept and tocilizumab have significantly higher odds of ACR 50 than placebo but none of the bDMARDs are significantly better than another.

The conclusion made by Pfizer in the executive summary is that:

... the network meta-analysis in this submission demonstrated that etanercept is significantly better than adalimumab and infliximab for ACR20/50/70 outcomes. Furthermore, etanercept was shown to be significantly better than abatacept i.v. with regards to ACR20/50/70 outcomes and abatacept subcutaneous for ACR20/70.

Roche

Roche reports that:

... the proportion of patients who fall within each response category was informed by a network meta-analysis, performed within a Bayesian framework. This meta-analysis was undertaken to allow indirect comparison of tocilizumab monotherapy with biologics currently recommended by NICE for use as monotherapy in the DMARD-IR [inadequate responder] setting.

Figure 61 reproduces the model setup supplied by Roche. The number of trials informing each 'link' in the meta-analysis is indicated next to each line.

The ACR outcomes adjusted within the framework of the NMAs used within the economic model by Roche are presented in *Table 100.*²³⁵ Unadjusted ACR rates are provided for comparison. The forest plot in *Figure 62* was produced by Roche and gives an overview of the uncertainty about each estimate after adjustment in the meta-analysis.^{124,218,236}

FIGURE 61 The network of studies included in the meta-analysis undertaken by Roche.

TABLE 100	American College of	of Rheumatology	response by	/ treatment: una	djusted and	adjusted
	, and the second go a					

Treatment	ACR20, %	ACR50, %	ACR70, %
Adjusted values (from NMA)			
ADA	44	22	10
CTZ	44	24	8
ETN	53	35	11
TCZ	61	40	19
Unadjusted values			
ADA	49	28	18
CTZ	44	23	7
ETN	59	40	15
TCZ	65	47	33

FIGURE 62 Biologic monotherapy ACR responses used in the model submitted by Roche. Figure shows adjusted percentage responses from the NMA with 95% confidence intervals (CIs).

Roche's interpretation of the network meta-analysis results

Roche state that:

... results from the analysis suggest that tocilizumab monotherapy was associated with superior outcomes on ACR20, ACR50 and ACR70 response measures, compared with adalimumab, certolizumab pegol and etanercept monotherapy.

UCB Pharma

UCB Pharma undertook NMAs at both 12 and 24 weeks for each ACR response, and also for DAS28 (ESR) remission and low disease activity (24-week data only). These analyses were undertaken for both bDMARDs in combination with MTX and bDMARD monotherapy [with the exception of DAS28 (ESR) low disease activity]. The results have, however, been marked as AiC.

The results for combination therapy are shown in *Figures* 63–66. The results for monotherapy are shown in *Figures* 67–70.

FIGURE 63 Academic-in-confidence information has been removed.

FIGURE 64 Academic-in-confidence information has been removed.

FIGURE 65 Academic-in-confidence information has been removed.

FIGURE 66 Academic-in-confidence information has been removed.

FIGURE 67 Academic-in-confidence information has been removed.

FIGURE 68 Academic-in-confidence information has been removed.

FIGURE 69 Academic-in-confidence information has been removed.

FIGURE 70 Academic-in-confidence information has been removed.

UCB Pharma's interpretation of the results from the network meta-analysis In the circumstance where a patient can receive MTX, UCB Pharma states that:

The [NMA] conducted showed that certolizumab pegol plus MTX is at least as effective to the other comparators considered in the vast majority of cases. The RR of that certolizumab pegol plus MTX vs. comparators in combination with MTX was greater than one for all outcomes investigated for the majority of cases, which indicated better outcomes in favour of that certolizumab pegol plus MTX. The wide credible intervals noted in most of these cases reflect the minimal differences in relative clinical effect between certolizumab pegol and the comparators considered.

In the circumstance where bDMARD monotherapy is used UCB Pharma states that:

The [NMA] showed that certolizumab pegol was at least as effective to the other monotherapies considered. In the majority of cases, the RR [relative risk] of certolizumab pegol compared to the other monotherapies considered was greater than one, however, no differences were statistically significant.

Responder criteria

This section details the criteria to be designated a responder within the submissions. In summary, five submissions used ACR response as a measure of a responder. Three of these assumed that ACR20 measured at 24 weeks/6 months was the minimal response, one (AbbVie) assumed that an ACR50 response was required, with one (UCB Pharma) allowing an evaluation of ACR20 at either 3 or 6 months. The UCB Pharma submission used a EULAR response of moderate or good (at either 3 or 6 months) in those with moderate to severe disease. The Bristol-Myers Squibb submission assumed a DAS28 reduction of 1.2 at 6 months to designate a responder.

AbbVie

The minimal response required for continuation of treatment after the initial 6-month period is ACR50. The Assessment Group note that the comparative results for AbbVie's intervention (ADA) appears to perform relatively better using ACR50 than by using ACR20.

Bristol-Myers Squibb

Inadequate treatment is determined by the change in DAS28 – in the base case defined as DAS28 not improved by at least 1.2 by month 6. Patients who discontinue within the first 6 months would then try another first-line biologic.

Merck Sharp & Dohme Corp.

Response is defined as at least an ACR20 response at 24 weeks.

Pfizer

Patients were assumed to discontinue therapy if response (defined as at least an ACR20 response) was not achieved citing previous NICE submissions.^{231,237,238}

Roche

Response is defined as at least an ACR20 response at 24 weeks.

UCB Pharma

The responder definition in the submission from UCB Pharma is variable owing to the flexibility of the model. For the severe disease activity population a response of at least ACR20 is required to continue treatment. For the moderate disease activity population at least a moderate EULAR response was required. The time at which response was measured could be varied between 3 and 6 months.

Health Assessment Questionnaire/European Quality of Life-5 Dimensions changes in relation to response levels

This section details how the submissions transformed response levels (ACR20, ACR50 and ACR70, and good, moderate and no EULAR response) to changes in HAQ or EQ-5D. In summary, the majority of submissions assessed the associated HAQ score change with response levels from their own data and then assumed that this was applicable to all bDMARDs. All submissions showed that a greater response was associated with a greater HAQ score reduction. UCB Pharma used EQ-5D data recorded within their trials to model the improvement post response. There was not a consistent approach to modelling how the response was assumed to be accumulated. In some cases the response at 6 months was assumed to be experienced throughout the 6-month response period; in others, it was assumed that responses developed linearly or the full effect was applied but a one-off reduction was modelled to assume that the HAQ improvement would not be observed immediately.

AbbVie

AbbVie assumed that the HAQ change by ACR response for all bDMARDs would be the same as for ADA, whereas the changes associated with cDMARDs would be the same as for MTX.

Health Assessment Questionnaire changes are divided into the initial response period (defined as either 12 or 24 weeks) and then from the response period until 52 weeks. The base case assumes a 24-week response period.

Health Assessment Questionnaire changes are assumed to be linear until the response period and linearly between the response period and week 52.

Inputs for the MTX-naive patients were based on the DE013¹⁰⁹ trial (AbbVie, data on file) and those for MTX-experienced patients were from the Efficacy and Safety of Adalimumab in Patients With Active Rheumatoid Arthritis Treated Concomitantly With Methotrexate (DE019⁸⁴) trial (AbbVie, data on file). AbbVie reports that data specific for monotherapy were not available in DE019 trial thus an assumption was made that the relative HAQ changes for monotherapy in MTX-experienced patients were similar to those observed in the MTX-naive patients (i.e. DE013). As sample sizes were deemed insufficient for analysis of relative changes in HAQ by stage or RA (moderate or severe), data were pooled for moderate and severe patients.

Tables 101–103 reproduce the data supplied by AbbVie.

	ADA + MTX			МТХ		
ACR response	Mean % change	SD		Mean % change	SD	
Baseline to 24 wee	eks					
ACR < 20	-13.7	72.5	41	-5.6	57.6	88
ACR20 to < 50	-38.6	33.0	52	-31.5	33.6	41
ACR50 to < 70	-55.7	30.1	42	-55.5	30.3	14
ACR70 to 100	-80.0	22.5	38	-74.0	31.7	6
24–52 weeks						
ACR < 20	4.7	45.4	32	-3.2	44.2	74
ACR20 to < 50	-2.1	73.5	41	5.5	45.7	34
ACR50 to < 70	-12.8	51.7	33	2.8	32.1	11
ACR70 to 100	-40.0	48.6	17	-22.9	14.7	2
Source: DE019 pooled data for moderate $(3.2 < DAS28 < 5.1)$ and severe $(DAS28 > 5.1)$ disease activity.						

TABLE 101 The relative change reported by AbbVie in HAQ score by ACR response by treatment: moderate and severe RA, MTX experienced for bDMARD + MTX

TABLE 102 The relative change reported by AbbVie in HAQ score by ACR response by treatment: severe RA, MTX naive for bDMARD + MTX

	ADA + MTX			мтх		
ACR response	Mean % change	SD		Mean % change	SD	n
Baseline to 24 weeks						
ACR < 20	-30.4	43.0	36	-27.9	36.2	48
ACR20 to < 50	-53.1	38.5	41	-43.3	45.2	53
ACR50 to < 70	-61.8	31.9	51	-53.7	44.2	52
ACR70 to 100	-83.6	24.0	108	-82.9	22.7	62
24–52 weeks						
ACR < 20	-25.2	28.5	26	10.7	104.2	35
ACR20 to < 50	-12.1	40.9	24	-4.6	58.2	42
ACR50 to < 70	-28.8	62.5	34	-11.4	47.9	43
ACR70 to 100	-14.5	80.2	50	-24.6	60.3	28

Source: DE013 (PREMIER¹⁰⁹) pooled data for moderate and severe (AbbVie data on file).

	ADA			мтх		
ACR response	Mean % change	SD		Mean % change	SD	
Baseline to 24 week	35					
ACR < 20	-18.7	43.6	70	-27.9	36.2	48
ACR20 to < 50	-45.8	33.8	50	-43.3	45.2	53
ACR50 to < 70	-68.0	26.8	48	-53.7	44.2	52
ACR70 to 100	-83.2	23.7	52	-82.9	22.7	62
24–52 weeks						
ACR < 20	-10.1	41.9	50	10.7	104.2	35
ACR20 to < 50	22.2	112.3	38	-4.6	58.2	42
ACR50 to < 70	31.1	135.8	35	-11.4	47.9	43
ACR70 to 100	54.0	199.7	22	-24.6	60.3	28
Source: DE013 (AbbVie data on file) pooled data for moderate and severe						

TABLE 103 The relative change reported by AbbVie in HAQ score by ACR response by treatment: moderate and severe RA, MTX experienced or naive for bDMARD monotherapy

Bristol-Myers Squibb

Bristol-Myers Squibb provides a table that details the assumed reduction in HAQ. This is reproduced in *Table 104*. The Assessment Group comments that it has been assumed that the HAQ reduction for cDMARDs used after bDMARDs was halved; however, the data for bDMARDs used after an initial bDMARD appear to generally perform better than the same bDMARD used first line.

Bristol-Myers Squibb reports that as the improvement in HAQ-DI score on starting each treatment would actually be more gradual than a sudden decrease, 'start and end effects' are applied as a one-off deduction in QALYs on starting and ending each treatment. This deduction is equal to 20% of the increase in quality of life. No justification for this value was provided.

Merck Sharp & Dohme Corp.

Merck Sharp & Dohme Corp. presents EQ-5D data for patients dependent on their health state (non-responder; ACR20; ACR50; ACR70). These values have been calculated with the HAQ score being transformed to a utility using the equation of Hurst *et al.*²⁴¹ Substantially different values are provided for the GOL submission and for the IFX submission, with these data being assumed to apply to all interventions in the relevant submission. MSD does not comment on this discrepancy.

Golimumab data

Table 105 provides data on the assumed utility for each health state. These data have been taken from GO-FORWARD²¹⁶ and GO-FORTH⁹¹ for the DMARD-experienced population and from GO-FORWARD²¹⁶ for the severe subgroup. These values have been calculated by the HAQ score being used within the Hurst *et al.* mapping.²⁴¹

Infliximab data

Table 106 provides data on the assumed utility for each health state. These data have been taken from START¹¹⁸ and ATTRACT⁷⁵ for the DMARD-experienced population and from ATTRACT⁷⁵ for the severe subgroup. These values have been calculated by the HAQ score being used within the Hurst *et al.* mapping.²⁴¹

Treatment	HAQ (reduction) change from baseline, mean	HAQ change from baseline, SE	Source
First-line biologics			
ABT i.v.	0.344	0.063	Bristol-Myers Squibb NMA (2013) ²⁰⁸
ABT s.c.	0.332	0.112	
ADA	0.326	0.077	
ETN	0.279	0.097	
IFX	0.199	0.063	
TCZ	0.213	0.100	
GOL	0.333	0.112	
CTZ	0.386	0.069	
Second-line biolog	gics		
ABT i.v.	0.5	0.05	Malottki <i>et al.</i> , 2011 ¹⁷¹
ADA	0.48	0.048	Malottki <i>et al.</i> , 2011 ¹⁷¹
ETN	0.35	0.035	Malottki <i>et al.</i> , 2011 ¹⁷¹
IFX	0.35	0.035	Malottki <i>et al.</i> , 2011 ¹⁷¹
TCZ	0.39	0.039	Strand <i>et al.</i> , 2012 ²³⁹
GOL	0.25	0.025	Smolen <i>et al.</i> , 2009 ²⁴⁰
RTX	0.4	0.04	Malottki <i>et al.</i> , 2011 ¹⁷¹
DMARDs			
LEF	0.24	0.024	Chen <i>et al.</i> , 2006 ¹²³ – halved
GLD	0.2	0.02	Chen <i>et al.</i> , 2006 ¹²³ – halved
CYC	0.2	0.02	Chen <i>et al.</i> , 2006 ¹²³ – halved
AZA	0.1	0.01	Chen <i>et al.</i> , 2006 ¹²³ – halved

TABLE 104 The assumed reduction in HAQ detailed by Bristol-Myers Squibb

SE, standard error.

For second-line biologics and DMARDs, the SD is assumed to be 10% of the mean. Malottki *et al.*¹⁷¹ assumed halved the change in HAQ-DI from Chen *et al.*¹²³ as this was for an earlier line indication. Data are shown to the level of accuracy available in the source material.

TABLE 105 Utility assumed by health state by MSD in the GOL submission

Health state	DMARD experienced	DMARD-experienced severe subgroup (DAS \geq 5.1) (GO-FORWARD ²¹⁶)
Baseline	0.401	0.355
GOL-treated non-responder	0.461	0.362
GOL-treated ACR20	0.581	0.636
GOL-treated ACR50	0.638	0.689
GOL-treated ACR70	0.787	0.790
Health state	DMARD experienced	DMARD-experienced severe subgroup (DAS28 > 5.1) (ATTRACT ⁷⁵)
---------------------------	-------------------	---
Baseline	0.282	0.271
IFX-treated non-responder	0.307	0.290
IFX-treated ACR20	0.462	0.452
IFX-treated ACR50	0.568	0.554
IFX-treated ACR70	0.684	0.660

TABLE 106 Utility assumed by health state by MSD in the IFX submission

Pfizer

Pfizer presents the HAQ improvement associated with each of four response levels: no ACR response; ACR20; ACR50; and ACR70. Pfizer states that following a systematic review only one reference allowed separate estimates to be made for cDMARD-inadequate responders and bDMARD-inadequate responders.²³¹

This source permitted the estimation of HAQ change associated with each ACR response category separately for both cDMARD-inadequate responders (first line within a treatment sequence) and bDMARD-inadequate responders (second and subsequent lines within a treatment sequence). *Table 107* presents the estimates of HAQ improvement used in cDMARD-inadequate responders and bDMARD-inadequate responders. Pfizer notes that this approach may lead to further uncertainty in the model due to the extra mapping function, so a comparison using available HAQ data from the NMA was undertaken as a sensitivity analysis.

Roche

The Roche analysis assumes that response to treatment has an impact on disease severity (as measured by individual HAQ score). Data from ADACTA²³⁶ were analysed to estimate the relationship between ACR response and individual HAQ score for the first 24 weeks. The data from the first 24 weeks of the study suggest that the higher the observed ACR response the greater the drop in HAQ score. *Table 108* presents the individual HAQ score drop per ACR response and the corresponding standard errors (SEs).

For every response to a new treatment, the model applies the corresponding HAQ score reduction to every simulated individual during the first cycle on treatment (first 6 months). The relationship between ACR response and initial HAQ drop is assumed to be conditional only to ACR response; it is applied universally to all interventions.

TABLE 107 The HAQ improvement by ACR response category reported by Pfizer

	cDMARD-IR		bDMARD-IR	
ACR response	Mean	SE	Mean	SE
No response	0.136	0.017	0.098	0.022
ACR20	0.443	0.018	0.405	0.034
ACR50	0.668	0.026	0.670	0.058
ACR70	0.923	0.032	0.949	0.064
IR, inadequate responder; SE, standard error.				

AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed	AiC information has been removed	
AiC information has been removed	AiC information has been removed	AiC information has been removed	
AiC information has been removed	AiC information has been removed	AiC information has been removed	

TABLE 108 Improvement in HAQ score associated with ACR response assumed by Roche

UCB Pharma

UCB Pharma recorded EQ-5D data within the RAPID trials^{135,136} which were used for patients with severe RA and within the CERTAIN⁷⁹ study for those will moderate to severe RA. These are detailed in *Table 109*, although the data for CERTAIN⁷⁹ were marked as AiC.

The data for the severe population were calculated using a regression analysis of EQ-5D versus ACR in RAPID trials;^{135,136} no further information was provided.

The data for the severe population were calculated using a regression analysis of (AiC information has been removed).

Health Assessment Questionnaire trajectory following initial response

This section details the HAQ trajectory post the initial response. In summary, the majority of submissions use data from previous NICE appraisals although the Assessment Group comments that the evidence base for these values is very limited. Given that HAQ progression is linked in the majority of models to utility, disease costs and mortality, any inaccuracies in the projected HAQ trajectories could have a marked impact on the results.

AbbVie

AbbVie reports that, in line with current NICE guidance on the use of ADA, ETN and IFX for the treatment of RA,²⁰⁷ the model assumes different levels of HAQ progression for patients receiving antiTNF therapy, cDMARD therapy and non-responders after 1 year. The assumption on long-term HAQ-DI progression while on biological therapy is based on the results of a variety of long-term studies on ADA and ETN.^{110,242,243} Two sensitivity analyses were undertaken changing the HAQ progression while on bDMARDs to 0.030 and the HAQ progression on cDMARDs to 0.030. These data are shown in *Table 110*.

Severe RA population		Moderate to severe RA population	
No response	0.062	AiC information has been removed	AiC information has been removed
ACR20	0.173		
ACR50	0.238		
ACR70	0.358		

TABLE 109 The EQ-5D data reported by UCB Pharma associated with response level

		HAQ-DI progression	
Intervention	Base case	Scenario 1	Scenario 2
Biologic therapy	0.000	0.030	0.000
cDMARD	0.045	0.045	0.030
Non-responders	0.060	0.060	0.060

TABLE 110 Absolute annual HAQ-DI progression assumed by AbbVie

Bristol-Myers Squibb

Bristol-Myers Squibb assumes that the HAQ score increases (clinically worsens) gradually over time while the patient is receiving treatment with DMARDs or palliative care. This is modelled as an increase of 0.125 every 2.7 years on DMARDs and of 0.125 every 2 years on palliative care. It is assumed that patients on bDMARDs have a constant HAQ. These assumptions are based on Malottki *et al.*¹⁷¹

Merck Sharp & Dohme Corp.

In the MSD model the HAQ score declines at a rate of 0.045 per year if a patient is receiving cDMARDs. Patients receiving palliative care have an assumed HAQ progression of 0.06 per year. The model assumes that bDMARD treatment halts disease progression and thus the HAQ progression per year is 0.00. This assumption is aligned with comments from the NICE TA TA130,²⁰⁷ which states that it is 'appropriate to primarily examine the estimates of cost-effectiveness based on the assumption of no HAQ progression while on TNF- α inhibitor therapy, while acknowledging the effects on the estimates of incorporating different assumptions of HAQ progression' and assumes the same holds true for the other bDMARDs.

Pfizer

Pfizer assumes an annual HAQ progression rate of 0.00 for bDMARDs, 0.046 for cDMARDs and 0.06 per year for palliative care, citing that these values have been used in previous NICE appraisals.

Different rates of HAQ progression were explored as sensitivity analyses in both moderate to severe and severe naive populations.

Scenario analysis within the moderate to severe population uses rates of progression observed within PRESERVE²¹⁷ period 2, weeks 36–88. Rates of progression in period 2 of PRESERVE²¹⁷ were greater for MTX than those used in previous economic evaluations. Rates of HAQ for ETN plus MTX initially increase in the first 4 weeks after randomisation, but then stabilise from week 40 to week 88, suggesting little or no further HAQ progression over this period. HAQ change from weeks 36, 40 and 56 to week 88 for both ETN plus MTX and MTX alone has been included in the sensitivity analyses.

Scenario analysis within the severe naive population uses rates of progression from period 2 of COMET⁸¹ (weeks 52–104). (CiC information has been removed.)

A further scenario analysis within the all populations uses rates of progression (0.031 for cDMARDs and 0.0102 for bDMARDs) observed by Scott *et al.*²⁴⁴

Roche

Roche reports that there is a dearth of evidence on the changes a patient's condition undergoes while on treatment. Moreover, there are no available data from the Roche clinical trials (ACT-RAY²¹³ and ADACTA^{57,236}) following the first 24 weeks (first cycle).

For these reasons Roche states that its model uses evidence in previous submissions to NICE. The model assumes no HAQ score progression for all treatments while patients continue responding. For patients in palliative care, a per-cycle HAQ score progression (worsening) of 0.03 is assumed. These data are shown in *Table 111*.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Treatment	HAQ score change per 6-month cycle	Source
bDMARDs	0.00	NICE TA130 ²⁰⁷
Palliative care	0.03	NICE TA130 ²⁰⁷

TABLE 111 Health Assessment Questionnaire progression while on treatment after the initial 24-week period assumed by Roche

UCB Pharma

In the UCB Pharma model it was assumed that HAQ would decrease at a rate of 0.1913 per annum while on treatment, but increase by 0.048 per annum when a second-line bDMARD was used. However, it appears that there are typographical errors within the model as the 6-month response on bDMARDs was half that of the 3-month response, and the changes at 3 months and 6 months for follow-up biologics were equal. For patients on palliative care or cDMARDs, HAQ progression was assumed to be 0.06 per annum. UCB Pharma cites previous NICE guidance for these figures, except the HAQ change on first-line treatment, which was calculated from data on file.

Time to discontinuation of treatment

This section details the methods used by the manufacturers to determine when a patient discontinued treatment. In summary, a multitude of methods were used by the manufacturers.

AbbVie

Time-to-treatment discontinuation curves from Edwards *et al.*²⁴⁵ (based on General Practice Research Database data) were used to model overall withdrawal (due to any reasons) while on cDMARDs. AbbVie states that these curves, although somewhat dated, have been judged as representative of withdrawal patterns from non-bDMARDs today by a practising UK rheumatologist, although it was indicated that withdrawal due to HCQ was not expected to be so low. Assumptions were made for combination DMARDs not examined by Edwards *et al.*²⁴⁵ that time on treatment would be similar to time on treatment with MTX.

The digitised curves (reading in 90+ points from each curve) were used to create mock patient-level data, following the method of Hoyle and Henley²⁴⁶ when number of patients at risk was available (antiTNFs), and Tierney *et al.*²⁴⁷ when number of patients at risk is unavailable (DMARDs). Parametric survival models were estimated using SAS (SAS Institute Inc., Cary, NC, USA) [and Stata (StataCorp LP, College Station, TX, USA) for Gompertz], and provided parameter estimates and variance–covariance matrices. For the time-to-treatment discontinuation data the exponential, Weibull, Gompertz, log-normal, log-logistic and gamma survival models were estimated by AbbVie cannot generate samples from it. The fits of the curves were compared visually, as well as using the Akaike information criterion and Bayesian information criterion.

Curves for MTX, SSZ and HCQ in the Edwards *et al.*²⁴⁵ study were fitted best by the log-normal function and these were, therefore, used for modelling time on treatment. The fitted curves to the data are shown in *Table 112*. The correlation between the parameters was not provided in the report.

AbbVie states that:

... for anti-TNFs, separate withdrawal curves by reason either through adverse or lack of efficacy are presented in the published literature. Modelling these two reasons separately allows more flexibility in modelling the time on treatment and corresponds to the new treat to target paradigm; for patients on non-biologic DMARDs, they would be evaluated monthly and could start dropping off immediately, while for those on biologics, patients would have to stay on the drug for at least three to six months for the assessment of response.²⁴⁸

	Lambda		Gamma	
Treatment	Mean	SE	Mean	SE
MTX	2.1163	0.0531	2.8986	0.0472
MTX + HCQ ^a	2.1163	0.0531	2.8986	0.0472
SSZ + HCQ ^a	2.1163	0.0531	2.8986	0.0472
LEF ^a	2.1163	0.0531	2.8986	0.0472
HCQ	0.4165	0.0802	2.1706	0.0674
SSZ	0.6336	0.0303	2.4548	0.0259
CYC ^b	0.6336	0.0303	2.4548	0.0259
CYC, ciclosporin.				

TABLE 112 The estimated log-normal curve	for cDMARD withdrawa	l rate calculated by AbbVie
--	----------------------	-----------------------------

a Assume similar time on treatment as MTX.

b Assume similar time on treatment as SSZ.

Patients on biologics are subjected to risk of withdrawal due to AEs immediately after start of therapy based on analysis of BSRBR data presented in Soliman *et al.*²⁴⁹ The same withdrawal pattern was assumed applicable for all biologic therapies including antiTNFs due to lack of data on the newer biologics not included in BSRBR, the lack of recent comparative data across antiTNFs in BSRBR, and conflicting comparative withdrawal evidence about the antiTNFs in the international literature.^{250,251} Biologic monotherapy was assumed to have a higher withdrawal rate due to AEs (evidenced by a recent BSRBR-based analysis, Soliman *et al.*²⁴⁹).

AbbVie comments that although the Cochrane review found evidence of differences among clinical trials of biologics, various design elements (e.g. mandatory and optional early escape in some but not all trials) make it difficult to compare withdrawal and to generalise trial results for long-term withdrawal patterns.

The Gompertz model fitted best in the AbbVie analyses for the AE-specific withdrawal data from BSRBR for all antiTNFs presented by Soliman *et al.*²⁴⁹ It assumes that after approximately 9 years on biologic treatment, there would be no further withdrawals due specifically to AEs (i.e. all long-term withdrawals are due to lack of efficacy). This was consistent with the experience of a UK practising clinician consulted by AbbVie. AbbVie stated that since the Gompertz survival model is a proportional hazard model, published reason-specific adjusted hazard ratios (HRs) in the same study for the antiTNF monotherapy versus antiTNF combination therapy with MTX have been applied to obtain monotherapy withdrawal curves.²⁴⁹ The paper did not present reason-specific Kaplan–Meier curves for antiTNFs as monotherapy versus antiTNF plus MTX specifically. The assumption used was that overall the antiTNF AE withdrawal curve is identical to the combination therapy AE withdrawal curve. This assumption is supported by data from the study in which similar proportions of patients discontinued the treatment due to AEs at year 5, this was shown between those receiving antiTNFs in combination with MTX and the overall antiTNF cohort (28% vs. 29%, see *Table 2* in Soliman *et al.*²⁴⁹). In addition, the Kaplan–Meier curves of the observed overall persistence between these two groups run very close to each other (*Figure 71*). Parameter estimates for modelling of withdrawals due to AEs for biologics are shown in Soliman *et al.*²⁴⁹

Table 113 provides data on withdrawals from bDMARD therapy due to AEs. The correlation between the parameters was not provided in the report.

Data on withdrawal due to lack of efficacy have been presented for overall antiTNF groups by the same study.²⁴⁹ This curve starts sloping downwards at around 3 months, and the slope is very flat (i.e. there is no evidence of a stopping rule being applied despite clinical guidance on stopping patients on biologic therapy if adequate response is not observed at 6 months).²⁴⁸

FIGURE 71 Kaplan–Meier estimates of the observed persistence with all antiTNFs and with the combination therapy of antiTNFs and MTX in BSRBR.

 TABLE 113 Parameter estimates for biologic treatment withdrawal due to AEs (Gompertz function) calculated by AbbVie

	Lambda		Gamma	
Treatment	Mean	SE	Mean	SE
Combination with MTX	-1.5164	0.0308	-0.6247	-0.0005
Monotherapy	-1.1311ª	0.0308	-0.6247	-0.0005
a Estimated by applying the published adjusted HR of 1.47 to the lambda parameter of the combination therapy. ²⁴				

In the AbbVie base case, the model applies a stopping rule based on response rates; all those without an ACR50 or ACR20 (in a sensitivity analysis) response would be stopped at a given time (i.e. 12 or 24 weeks). AbbVie state:

... therefore, the initial part of the withdrawal curve due to lack of efficacy from BSRBR is ignored. The differences in response rates would result in differential withdrawal due to lack of efficacy on biologics, including monotherapy versus combination therapy (i.e., with MTX); no additional adjustment would be applied. Beyond the time point of response assessment, the lack of efficacy curves from BSRBR would be applied to allow for further drop out due to lack of efficacy. In other words, the model predicts a time to withdrawal due to lack of efficacy for all patients in the simulation when each treatment is initiated. If the time predicted is earlier than the stopping rule (i.e., 12 or 24 weeks), it is ignored. If it is later than the stopping rule, and the patient is a responder not stopping treatment at e.g., 12 or 24 weeks, they would be withdrawn at that time.

For withdrawal beyond the non-responder withdrawal (i.e. at 12 or 24 weeks), the same curve is applied across all biologics.

Because the flat initial part of the withdrawal due to loss of efficacy curve is flat, AbbVie report that no survival model provided a good fit to the overall data. However, the fit was much improved when the flat part of the curve for the initial 3.337 months was removed from the data. The best fit for the truncated data was provided by the log-normal function. Time to withdrawal due to lack of efficacy predicted from these parameters was added back by 3.337 months in the simulation. *Table 114* provides the parameter estimates given by AbbVie. The correlation between the parameters was not provided in the report.

	Lambda	Lambda		Gamma	
Treatment	Mean	SE	Mean	SE	
Biologics	3.1171	0.0643	3.0225	0.0512	

TABLE 114 Parameter estimates for biologics treatment withdrawal due to loss of efficacy (log-normal function) provided by AbbVie

Bristol-Myers Squibb

The probabilities of AEs assumed by Bristol-Myers Squibb are shown in *Table 115*. The source for these data appears to be a NMA of AEs undertaken within the Bristol-Myers Squibb submission. As with the NMA for comparative efficacy the reporting of the NMA assumptions is lacking.

For all first-line biologic treatments, if an AE had not been simulated then time on treatment is sampled from a Weibull distribution with shape parameter 0.71 and scale parameter 7.06, giving a mean time on treatment 4.21 years (Bristol-Myers Squibb's submission document to NICE for TA234³⁸).

Bristol-Myers Squibb assumes that the probability of having an AE on RTX is 3.54%, as 17 of 480 patients discontinued due to AEs in the REFLEX study.²⁵² If the patient does not discontinue treatment with RTX at 6 months, their long-term time on RTX is sampled from a Weibull distribution with shape 0.474 and scale 5.1.¹⁷¹

Malottki *et al.*¹⁷¹ considered i.v. ABT, ADA, ETN, IFX and RTX, so Bristol-Myers Squibb state that it was necessary to find inputs for s.c. ABT, GOL and TCZ. s.c. ABT was assumed to have the same efficacy and safety profile as i.v. ABT. The early withdrawal inputs for GOL and TCZ came from the GO-AFTER study²⁵³ and the RADIATE study²⁵⁴ respectively. GOL is an antiTNF, so the long-term time on treatment is assumed to be the same as that of the other antiTNFs (ADA, ETN and IFX) as reported by Malottki *et al.*¹⁷¹ TCZ is not an antiTNF, but, in the absence of data, the long-term time on treatment is assumed to be the same as that of the antiTNFs. Inputs for short- and long-term time on treatment are shown in *Tables 116* and *117* respectively.

Third-line TCZ use was assumed to have the same rate of AEs and time to withdrawal as second-line TCZ treatment.

Treatment	At month 6/week 24: probability of AE
ABT i.v.	0.023
ABT s.c.	0.016
ADA	0.041
ETN	0.030
IFX	0.086
TCZ	0.041
GOL	0.020
CTZ	0.096

TABLE 115 The probability of AE for first-line biologics assumed by Bristol-Myers Squibb

Treatment	Parameter	Point estimate (%)
ADA	Probability of withdrawal at 12 weeks	9.9
	Proportion of the discontinuations at 12 weeks that are due to ineffectiveness	56.2
ETN	Probability of withdrawal at 13 weeks	5.2
	Proportion of the discontinuations at 13 weeks that are due to ineffectiveness	16.7
IFX	Probability of withdrawal at 16 weeks	23
	Proportion of the discontinuations at 16 weeks that are due to ineffectiveness	66.7
ABT	Probability of withdrawal at 24 weeks	13.6
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	25.7
TCZ	Probability of withdrawal at 24 weeks	14.7
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	64.5
GOL	Probability of withdrawal at 24 weeks	12.4
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	72.0

TABLE 116 The probability of early discontinuation on second-line biologics as estimated by Bristol-Myers Squibb

TABLE 117 The long-term time on second-line biologics as estimated by Bristol-Myers Squibb

Treatment	Weibull shape parameter	Weibull scale parameter	Mean (years)		
ADA	0.701	3.21	4.06		
ETN	0.701	3.21	4.06		
IFX	0.701	3.21	4.06		
ABT	0.81	5.49	6.17		
TCZ	0.701	3.21	4.06		
GOL	0.701	3.21	4.06		
Data are shown to the level of accuracy available in the source material.					

For cDMARDs, Bristol-Myers Squibb used data reported by Malottki *et al.*¹⁷¹ These data are reproduced in *Tables 118* and *119*.

Merck Sharp & Dohme Corp.

Merck Sharp & Dohme Corp. states that no studies with sufficient follow-up were identified for GOL, ADA, CTZ, TCZ or ABT and thus these were all set equivalent to IFX. This is stated to be a very conservative assumption for GOL given that the drop-out rate after 52 weeks of GOL (50 mg) is very low in the GO-FORWARD clinical trial,²¹⁶ only 6% at week 52. The long-term drop-out rates for the other bDMARDs from clinical trials were stated to be more aligned with the evidence available for IFX. Keystone *et al.*⁸⁴ report comparable drop-out rates at week 52 with those observed in a 52-week trial for IFX.

A summary of the probability of discontinuation due to long-term loss of efficacy parameters used by MSD is shown in *Table 120*. The probability of remaining on treatment at a given month (x) was estimated from *Equation 17*:

P(remaining on treatment) = exp $(-\lambda \times x^{\gamma})$.

(17)

Treatment	Parameter	Point estimate (%)
LEF	Probability of withdrawal at 6 weeks	13
	Probability of withdrawal at 6–24 weeks	30
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	33.2
GLD	Probability of withdrawal at 6 weeks	14
	Probability of withdrawal at 6–24 weeks	27.1
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	66.7
CYC	Probability of withdrawal at 6 weeks	8
	Probability of withdrawal at 6–24 weeks	24
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	50
AZA	Probability of withdrawal at 6 weeks	15
	Probability of withdrawal at 6–24 weeks	25
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	50

TABLE 118 The probability of early discontinuation cDMARDs as assumed by Bristol-Myers Squibb

TABLE 119 Long-term time on cDMARDs as assumed by Bristol-Myers Squibb

Treatment	Alpha Weibull parameter	Beta Weibull parameter	Mean (years)	
LEF	1	5.98	5.98	
GLD	0.48	1.81	3.91	
CYC	0.5	4.35	8.70	
AZA	0.39	4.35	15.53	
Data are shown to the level of accuracy available in the source material.				

TABLE 120 Time-to-treatment withdrawal assumed by MSD

Long-term discontinuation due to loss of efficacy						
Treatment	Lamda	Gamma	Mean (years)			
GOL	0.103	0.532	9			
ADA	0.103	0.532	9			
IFX	0.103	0.532	9			
ETN	0.027	0.738	12			
CTZ	0.103	0.532	9			
TCZ	0.103	0.532	9			
ABT i.v.	0.103	0.532	9			
ABT s.c.	0.103	0.532	9			
MTX	0.091	0.438	20			

Pfizer

Pfizer used 5-year data from the ETN cohort of the BSRBR to estimate treatment cessation. This was selected because it represented the most appropriate long-term evidence available. Calculations in the ETN cohort were made separately for combination and monotherapy patients. Severe disease status (relative to moderate to severe disease status) was included within the analysis as a covariate, allowing separate estimates of treatment cessation for both severe and moderate to severe populations.

Although Pfizer acknowledges the limitations of the use of the ETN BSRBR cohort in the moderate to severe population, in the absence of any long-term data in this population these estimates were considered the best available. It is hypothesised that such patients may be at greater risk of progression than a more representative moderate to severe population, and therefore treatment cessation may be overestimated within this cohort. In the absence of data in the severe DMARD-naive patient population, treatment discontinuation was assumed to be equivalent to that of the severe DMARD-inadequate responder combination therapy population.

Parametric survival curves were fitted to the data with the log-logistic distribution found to provide the best fit to data based on the AIC.²⁵⁵ *Figure 72* presents the estimated cumulative hazard of treatment cessation versus the observed treatment cessation for the ETN BSRBR cohort, both combination and monotherapy, although these are marked as CiC.

Data for treatment discontinuation were not accessible for comparator therapies from the BSRBR. Therefore, an observational study by Hetland *et al.*²⁵⁰ was selected that presented Kaplan–Meier curves for all-cause treatment cessation for ETN, IFX and ADA from the DANBIO registry,²⁵⁶ which was considered the most similar to the UK population from registries identified in a Pfizer systematic review. Curves were digitised using Engauge Digitizer and a pseudo-patient-level data set was created for all three therapies.^{246,257,258} These data sets were used to fit log-logistic parametric survival models that provided relative treatment effects for both IFX and ADA versus ETN (*Figure 73*).

These relative effects were applied to the baseline estimates for ETN from the BSRBR in order to generate time-on-treatment estimates for IFX and ADA.

In the absence of long-term data for other therapies, the relative effect for ADA was assumed by Pfizer to apply to CTZ and GOL, on the basis that they are also monoclonal antibodies. TCZ, i.v. ABT, s.c. ABT and RTX were conservatively assumed to share the same time on treatment as ETN. A scenario analysis was performed by Pfizer in which there was assumed to be no difference in treatment cessation between bDMARDs.

A cDMARD curve was also generated from the BSRBR control cohort, and this was used for all cDMARDs. Severe disease status (relative to moderate to severe disease status) was also included within the analysis as a covariate. *Figure 74* presents the time on treatment assumptions graphically for the severe DMARD-inadequate responder combination therapy population.

FIGURE 72 Commercial-in-confidence information has been removed.

FIGURE 73 The fitted log-logistic survival distributions estimated by Pfizer. (AiC information has been removed.)

FIGURE 74 Commercial-in-confidence information has been removed.

As Pfizer believes it is difficult to appreciate differences in treatment cessation across all therapies within *Figure 74*, the same data are presented as a conditional inference tree in *Figure 75*. A conditional inference tree performs univariate partitioning of the simulated times to treatment cessation by using a significance test procedure in order to identify differences between time on treatment by therapy. Differences in treatment cessation are identified where partitioning occurs. There are four resulting patterns of 'times' based on the assumptions described previously: IFX; cDMARD; those based on that of ADA (CTZ and GOL); and those based on that of ETN (ABT i.v., ABT s.c., TCZ and RTX).

The resulting treatment cessation curves for the model first-line therapy were adjusted by Pfizer to reflect the increased risk of cessation in subsequent lines of therapy. The (log) time ratio for second- versus first-line therapy was estimated as –0.365 using the same methodology of patient-level data set generation as described above, with data taken from DANBIO.²⁵⁶ This effect was applied in all subsequent lines of therapy and to all therapies (including cDMARDs). *Figure 75* presents a comparison of original data and model output. Note that the model output here does not include the effects of the treatment discontinuation rule. The model by default actually models time to start of next therapy (rather than end of current therapy); in order to provide a representative comparison, the time between cessation of RTX therapy and the start of the next therapy was ignored in the generation of *Figure 76*. The model was able to recreate the effects of second- and subsequent-line treatment cessation accurately.

Treatment cessation data used in the model are presented in *Table 121*. Times were generated stochastically for each patient using a random number combined with the inverse survival distributions.¹⁸⁰

Roche

The Roche model assumes that all patients receive each treatment for a minimum of one cycle, until response is evaluated. This is consistent both with previous evidence submissions and with the available efficacy evidence. At 6 months, patients will continue on their first therapy, providing they achieved a response greater than or equal to ACR20. Therapy is stopped for a non-responding patient and they move on to the next drug.

Soliman *et al.*²⁴⁹ published an analysis of treatment duration using BSRBR data (large cohort with n = 10,396). A proportion of these patients do not receive any concomitant DMARD treatment (32.1%, n = 3339) and this fact was used in the economic analysis as a basis for estimating the withdrawal risk of patients receiving biologic monotherapy.

Roche provided a Kaplan–Meier curve showing treatment persistence with antiTNF. A Weibull and an exponential model were explored to derive a discontinuation rate from the Kaplan–Meier curve. Both models appear to overestimate discontinuation. Roche assumed that the steep rate of discontinuation in the first 2 years reflects the 'non-responders', whereas the flat rate after 2.5 years reflects the 'good responders'. Roche fitted an exponential distribution to the Kaplan–Meier curve after the first 2.5 years and used that as the probability of discontinuation from treatment for patients with initial response: annual rate of 0.098 ($R^2 = 0.99$), 6-month probability of 0.05. The figure provided by Roche illustrating the fits is reproduced in *Figure 77*.

FIGURE 75 Conditional inference tree of first-line treatment cessation, showing patterns of treatment cessation within the economic model, (left to right) shortest to longest times presented by Pfizer. (AiC information has been removed.)

FIGURE 76 Treatment cessation in second and subsequent lines estimated by Pfizer. (AiC information has been removed.)

CiC information has be	een removed					
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has be	een removed					
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has be	een removed					
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed	CiC information has been removed		
Relative treatment eff	ects from log-logistic su	urvival model (vs. ETN)ª				
Parameter	Coefficient					
ADA vs. ETN	-0.412 ^b					
IFX vs. ETN	-0.905					
Relative treatment eff	Relative treatment effects from log-logistic survival model (vs. ETN)					
Parameter	Coefficient					
Subsequent lines vs. first-line use	–0.365					

TABLE 121 Log-logistic survival models for all-cause treatment cessation as estimated by Pfizer

a Unless specified, the relative treatment effect was assumed to be 0.000. b Also used for CTZ and GOL.

FIGURE 77 The Weibull and exponential model fitted by Roche to data from Soliman et al.249

An adjustment to these curves is based on data from Anderson *et al.*,²⁵⁹ a study that explores predicting factors of response to treatment in RA. The study suggests that disease duration is one of the most important factors predicting response. Anderson analysed data from randomised control trials of drugs or devices in RA and found that the disease duration effect on odds of response was 0.98 per extra year of disease duration. This is not included in the base case but has been tested in the sensitivity analysis.

UCB Pharma

UCB Pharma presents data on the risk of treatment discontinuation due to AEs explicitly and due to all causes. The discontinuation due to AEs was denoted AiC.

(Academic-in-confidence information has been removed.)

For all discontinuations the time spent on treatment was based on values from a study including over 2300 patients treated with a TNF- α inhibitor over 9 years.²⁵¹ Results from this study showed that the median time on treatment with a TNF- α inhibitor was 37 months (3.08 years). The same treatment duration was assumed for all biologics.

Rebound post treatment

All interventions

Following the cessation of treatment a patient's HAQ score is updated to reflect the loss of HAQ improvement on the previous line of therapy. MSD, Pfizer, Roche and UCB Pharma conduct sensitivity analyses around this assumption. UCB Pharma assumes that the loss of efficacy from the previous treatment and the gain in efficacy from the subsequent treatment happen simultaneously.

Assumed NHS costs per Health Assessment Questionnaire band

The hospital costs assumed to be associated with HAQ score in each model are reported in this section. In summary, a number of different sources are used (the data have been graphed in *Figure 78*). The data from MSD have been omitted as these are based on a more complex formula incorporating factors such as age, disease duration and previous number of DMARDs and cannot be easily summarised. Pfizer and UCB Pharma purport to use the same source and the reason for the slight discrepancy is unclear.

AbbVie

AbbVie reports that patients with more severe symptoms of joint disease are more likely to be hospitalised and may require surgical procedures such as joint replacement. Disease-related hospital costs were estimated based on the Norfolk Arthritis Register (NOAR) database²⁶⁰ and multiplied by NHS reference costs.²⁶¹ The resource use for HAQ costs assumed by AbbVie are given in *Table 122*.

TABLE 122 The hospital costs by HAQ band assumed by AbbVie

HAQ band	Total cost (£)
0.0 to < 0.5	167.41
0.5 to < 1.0	102.54
1.0 to < 1.5	364.68
1.5 to <2.0	523.68
2.0 to < 2.5	1246.26
2.5 to < 3.0	2687.97

Bristol-Myers Squibb

Bristol-Myers Squibb assumes a cost per unit HAQ score, to incorporate costs for hospitalisation and joint replacement based on Malottki *et al.*¹⁷¹ This was inflated to £1245 per HAQ unit score to reflect 2011/12 prices.²³²

Merck Sharp & Dohme Corp.

Data from Brennan *et al.*¹⁸³ were used to estimate the number of hospitalisations within the UK for every cycle of the model dependent on a number of characteristics, including TNF- α inhibitor treatment, which is used as a proxy for bDMARD treatment. The coefficients reported in Brennan *et al.*¹⁸³ are reproduced in *Table 123*. Costs of an inpatient day were estimated from NHS reference costs 2010–11 (non-elective inpatient PA34B) with a mean of £517.²⁶¹

TABLE 123 Multivariate regression used by MSD to estimate the number of days of hospital stay

Independent variable	Coefficient
Intercept	0.2351
Utility at baseline	-0.5467
Age (years)	0.0078
Disease duration	0.0075
Previous number of DMARDs	0.0648
AntiTNF	-0.062
Data are shown to the level of accuracy available in the source material.	

Pfizer

Direct annual costs of medical resource use, stratified by HAQ score, were uplifted²³² to 2011/12 prices from estimates provided by Kobelt *et al.*²⁶² derived from a UK observational database [the Early Rheumatoid Arthritis Study (ERAS)²⁶³]. Pfizer considered these data to be the most appropriate because it involved a multifaceted approach from the perspective of the NHS. Approaches to estimating costs in other identified sources were more restrictive in the items included. For example, Brennan *et al.*¹⁸³ included only inpatient and monitoring costs. The costs assumed by Pfizer are provided in *Table 124*.

These costs encompassed a broad range of resource use including hospitalisations, surgical interventions, outpatient visits, medication and drug monitoring. The analysis did not include the costs of lost productivity, which have been used previously,²²⁸ which do not meet the NICE reference case.²²⁵ Alternative cost scenarios were considered in scenario analysis, including those used by Malottki *et al.*¹⁷¹

Roche

It is assumed that patients often require inpatient care associated with RA in addition to the NHS resources utilised for drug administration and routine patient monitoring. Inpatient costs were calculated using the NOAR database. Inpatient hospitalisation was grouped by six HAQ score bands and is shown in *Table 125*.

The method to incorporate resource utilisation in this analysis follows Kobelt et al.^{264,265}

TABLE 124 The assumed annual costs of RA associated with HAQ score assumed by Pfizer

AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed
AiC information has been removed	AiC information has been removed

TABLE 125 The inpatients visit by HAQ score assumed by Roche

		Patients with inpatient stay		Number of days in hospital in the following 12 months			
HAQ band at registration	Patients in band, <i>n</i>			Mean	Median	IQR	Range
0.0 < HAQ score < 0.5	326	7	0.02	0.26	0	0–0	0–26
0.6 < HAQ score < 1.0	800	16	0.02	0.13	0	0–0	0–21
1.1 < HAQ score < 1.5	386	11	0.03	0.51	0	0–0	0–83
1.6 < HAQ score < 2.0	229	12	0.05	0.72	0	0–0	0–25
2.1 < HAQ score < 2.6	127	25	0.13	1.86	0	0–0	0–48
2.6 < HAQ score < 3.0	148	31	0.21	4.16	0	0–0	0–50
IQR, interquartile range.							

Each HAQ score category was assigned an inpatient cost of £240.00 per day which is multiplied with the utilisation factor corresponding to each HAQ score category. The resulting inpatient resource utilisation values used in the analysis is summarised in *Table 126*. Note, the Assessment Group has altered a typographical error in the last column (which read £62.40) and has changed the term per cycle (which is 6 months in the Roche model) to annual costs.

UCB Pharma

Additional costs by HAQ-DI category, used by UCB Pharma, were taken from a study by Kobelt *et al.*²⁶² In this study, a cohort of 916 patients in the UK were followed up for a mean of 7.8 years. Costs included the use of health-care resources (direct) and loss of work capacity (indirect). Regression analyses were performed according to patients' HAQ-DI categories. Values were stated to be converted to British pounds (£), although it is unclear why this was necessary given a UK cohort and inflated to a cost year of 2012.²³² The costs are applied at each cycle within the model, based on the HAQ score of each health state at each time point. Only direct costs were included in the base-case analysis, although the indirect costs were taken into account in a sensitivity analysis. The Assessment Group noted a slight discrepancy between the numbers reported by UCB Pharma and those used in the model. These are reported in *Table 127*.

Utility related to the Health Assessment Questionnaire

This section details the utility values used in the models and a summary of the studies used in the submissions. *Figure 79* provides a graphical estimation of the relationship between HAQ and utility assumed in the manufacturers' models. Data from UCB Pharma are not shown, as UCB Pharma uses EQ-5D data collected in the trial for ACR and EULAR categories and base utility around response categories.

AbbVie

The utility values used in the base-case analysis by AbbVie were calculated using an equation reported within a poster²⁶⁶ that maps between HAQ and EQ-5D, according to the UK-specific EQ-5D tariff derived by Dolan.²⁶⁷

Both linear and non-linear equations for mapping HAQ to EQ-5D were presented. Using the linear utility mapping equation it is not possible for patients to achieve a negative utility, whereas the non-linear utility mapping equation relates a HAQ-DI score greater than approximately 2.7 to an EQ-5D score of < 0.

HAQ scores	0<0.5	0.6<1	1.1<1.5	1.6<2.0	2.1<2.5	2.6<3.0
Inpatient cost per year (£)	62.40	31.20	122.40	172.80	446.40	998.40

TABLE 126 The inpatient costs assumed by HAQ score by Roche

TABLE 127 Costs by HAQ-DI category

HAQ category	Direct costs (used in base case) (£)	Direct values used in the model (£)	Total costs including indirect costs (used in sensitivity analyses) (£)
< 0.6	1102	1082	1212
0.6–1.1	2827	2777	5000
1.1–1.6	1876	1842	4902
1.6–2.1	2769	2719	7388
2.1–2.6	3051	2996	10,105
≥2.6	2419	2376	9781

FIGURE 79 The relationship between HAQ and utility assumed in the manufacturers' models.

Several studies examining quality of life in patients with RA indicate that severe RA health states can be associated with negative utility values, indicating that the non-linear mapping equation more accurately represents the relationship between HAQ and quality of life in patients with very severe RA and functional impairment.^{268–271} This is supported by Ducournau *et al.*,²⁶⁶ who report that the inclusion of a non-linear term resulted in an improved fit, and that the non-linear term was a significant coefficient. Previous analyses have also suggested a non-linear relationship between HAQ-DI and utility in RA patients.²⁷²

The main report provides no details whatsoever on issues required to judge the appropriateness or otherwise of the statistical models. No details of how uncertainty in the estimates was propagated in the model, if at all, are provided. No details are provided either on the data used to estimate the relationship, or the performance of the models in that data set. The appendix reports an additional model from the same data set that also includes age as a covariate, though the coefficient is quite small. No details are given as to why this was not used.

The provided poster of the Ducournau *et al.* reference²⁶⁶ gives little additional detail. The overall numbers of patients reported in the trials are reported but no details on the numbers of observations used in the statistical analyses are provided.

The quadratic mapping equation was therefore selected for the base-case analysis whereas the linear mapping equation was examined in sensitivity analyses.

The model used to calculate utility values in the base-case analysis is:

 $EQ-5D = 0.804 - 0.203 \times HAQ - 0.045 \times HAQ^2$.

In order to investigate the impact of the quadratic term on the results of the cost-effectiveness analysis, a sensitivity analysis was conducted using the linear regression model reported by Ducournau *et al.*²⁶⁶

The linear regression model used in the sensitivity analysis was:

 $EQ-5D = 0.89 - 0.28 \times HAQ-DI.$

(18)

(19)

Bristol-Myers Squibb

The HAQ score is converted into a utility value using the mapping algorithm used by Malottki *et al.*¹⁷¹ (see *Equation 18*).

The report does not state whether or not the parameter uncertainty in this regression was taken into account (e.g. by using the variances/covariances) or if the error terms were also included in order to reflect the additional heterogeneity in the patient-level sample. Bristol-Myers Squibb consider a sensitivity analysis that uses an alternative linear regression from Malottki *et al.*,¹⁷¹ which excludes the quadratic term.

Malottki *et al.*¹⁷¹ report this regression as 'Birmingham analysis of data set from Hurst'.²⁴¹ Only CIs on the coefficients are reported, not the covariances. Hurst *et al.*²⁴¹ is a study from 1997 of 233 RA patients. Note that in their regression work they also find that both pain and HAQ score are significant predictors of EQ-5D. No detail of model fit is provided.

Merck Sharp & Dohme Corp.

The quality-of-life equations used in the MSD submission are provided in *Table 128* with reference to Chen *et al.*¹²³ It is not clear if the uncertainty, and covariance in the estimated coefficients, was considered in sensitivity analysis.

Pfizer

The primary analysis in all populations used the algorithm derived by Malottki et al.¹⁷¹ (see Equation 18).

Pfizer undertook a systematic review of mapping studies in RA (section 2.3.3.2.2). Many studies were discarded because the studies were conducted using patients from a non-UK patient population.

The Assessment Group comment that there is no requirement in the NICE methods guide (either version 2008²⁷³ or 2013²⁷⁴) for patients to be selected from the UK, nor is there any obvious theoretical reason why this should be the case. The guide requires that the valuations of health states described by these patients are drawn from the UK, and in RA this would be appropriately achieved by using the UK tariff of the EQ-5D instrument.

The use of this criterion in their selection of studies is therefore misguided.

Three studies remain in Pfizer's table 50: Hurst *et al.*²⁴¹ (and the subsequent fitting of a quadratic equation to the same data in Malottki *et al.*¹⁷¹), Bansback *et al.*²⁷⁵ and Hernandez-Alava *et al.*²⁷⁶ The submission uses the Malottki *et al.*¹⁷¹ equation as the base case and the original Hurst *et al.*²⁴¹ regression in scenario analysis. Pfizer's table 50 provides their rationale for discarding the Bansback *et al.*²⁷⁵ and Hernandez-Alava *et al.*²⁷⁶ studies. Further details are given for each of these studies below but some key points require addressing here:

TABLE 128	The quality-of-life	equations	used in	the MSD	submission
------------------	---------------------	-----------	---------	---------	------------

Parameter	Regression estimate	SE				
Constant	0.862	0.034				
Coefficient for HAQ score	-0.327	0.0201				
Data are shown to the level of accuracy available in the source material.						

The reporting of the characteristics of these three studies is misleading:

- Bansback *et al.*²⁷⁵ is discarded on the basis that it includes both UK and Canadian patients. However, it is clearly stated that the UK tariff is applied to the EQ-5D analysis and therefore the criticism is misguided.
- Hurst *et al.*²⁴¹ is claimed to have 'Relevant summary statistics reported' whereas Hernandez-Alava *et al.*²⁷⁶ is 'The sample of the statistical analysis is not clearly stated'. In fact, the sample of patients is fully described in the accompanying clinical trial paper referred to in the manuscript. Critical to the selection of an appropriate statistical model is the distributional characteristics of the dependent variable this is not reported in Hurst *et al.*²⁴¹
- Doubt is cast on the Hernandez-Alava et al.²⁷⁶ results as the patients are defined as having early RA at baseline which may not be generalisable to more established disease. However, Hurst et al.²⁴¹ comprises a mixed population of both early- and late-stage disease, there is a clear relationship between patient degree of functional severity and disease duration (table I), but there is no statistically significant relationship between duration and EQ-5D (table V) and nor does it feature in any of the regression analyses (though the study may be too small to detect any effect). It is therefore difficult to see how the same criticism of the relevance of the Hernandez-Alava et al.²⁷⁶ paper to the current decision problem does not also apply to the Hurst et al.²⁴¹ analysis.
- The most important issue is stated as VAS pain is not estimated over time, therefore not supporting the current model approach. For clarity, the Hernandez-Alava *et al.*²⁷⁶ work did include pain score as a separate covariate alongside HAQ because a much more powerful model results (this was also found by Hurst *et al.*²⁴¹). It is the Pfizer cost-effectiveness model that does not consider pain and therefore was considered incapable of using the results, though, of course, a HAQ based model could be adapted to also include the assessment of pain.

Roche

The method to assign utility weights to simulated patients and to derive QALY outcomes in the model is the same as used in our TCZ and MTX combination therapy NICE submission.²³¹ The analysis uses a mechanism of mapping utility from patient HAQ score. This technique is also similar to previously published cost–utility studies and reimbursement submissions of biologic treatments in RA.^{178,182} A description of the methods is presented in the appendix.

The base-case analysis uses a quadratic equation to map HAQ to utility:

$$EQ-5D = 0.82 - 0.11 \times HAQ - 0.07 \times HAQ^2$$
 (p-value < 0.0001; for both coefficients). (20)

The estimates come from two Phase III trials [tOcilimumab Pivotal Trial In methotrexate inadequate respONders (OPTION)¹³² and tocilizumab safety and the prevention of structural joint damage methotrexate and sulfasalazine combination trial (LITHE)¹³⁰]. The numbers within the analyses are not reported, nor is any information on the distribution of the data. Only *p*-values are given for the estimated coefficients: no SEs or Cls. There is no information that allows one to judge the fit of the model to the actual data. Roche compared HAQ and HAQ² models, and one with age (not age²). Roche found that the age coefficient was very small (surprisingly and not consistent with most other findings that EQ-5D is strongly related to age) so dropped these analyses.

The model with HAQ² is selected because it has a better fit, but this is not assessed using any kind of penalised likelihood test. In fact, their chi-squared test is equivalent to the *p*-value on the HAQ² coefficient and not appropriate for comparing models. This is important because adding an additional covariate will improve fit, but it is not good practice to simply improve fit by adding covariates: this risks losing generalisability.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 TNS, UK.

In the sensitivity analysis three alternatives are tested, though it is not reported where they have come from, except the last which is based on Hernandez-Alava *et al.*;²⁷⁶ however, the uncertainty in the coefficients was not used.

UCB Pharma

UCB Pharma has a different model structure from the others in that they are basing it predominantly around response categories within a Markov framework.

This is done in several steps.

Critically, in the severe disease population:

- Initial response is defined in terms of ACR category and a mean EQ-5D improvement estimated from a linear regression using trial data from the RAPID RCTs.^{135,136} No information on key statistics such as model fit or the data sample was provided, making it impossible to judge appropriateness or otherwise. It was unclear how probabilistic sensitivity analysis (PSA) implemented nor how additional covariates were selected or used.
- 2. Continued improvement in HAQ is converted to EQ-5D score from Bansback et al.²⁷⁷

In the moderate disease population:

- 1. Initial response is defined in terms of EULAR category. Regression analysis is used to estimate EQ-5D change by EULAR category based on data from the CERTAIN study.⁷⁹ No details are given. Different estimates are made according to the treatment strategy (i.e. this is not assumed to be a relationship that is independent of treatment).
- 2. The same Bansback et al.²⁷⁷ estimate is then used for other elements of the model.

Summary of studies used in submissions

Hurst *et al.*²⁴¹ and Malottki *et al.*¹⁷¹ are used as the base case by Bristol-Myers Squibb, MSD and Pfizer, and used in sensitivity analysis by TCZ.

Hurst *et al.*²⁴¹ recruited 233 patients with RA from Scottish RA outpatient departments. They also aimed to recruit more severe patients from inpatients and via GPs and residential care. They failed to recruit the desired numbers of patients into functional severity class 4. The paper reports 3-month follow-up data and compares them with baseline data. There is no combined analysis.

The paper does not display the distribution of HAQ or EQ-5D tariff score.

Linear regression was used to estimate EQ-5D as a function of HAQ and other covariates, with stepwise regression used to select variables.

The reported model for EQ-5D at 3 months includes HAQ, HAQ mood score, pain VAS, disease activity and ESR.

The simple linear model that uses only HAQ as an explanatory variable is not reported in the Hurst *et al.*²⁴¹ paper but is reported in Chen *et al.*,¹²³ who were supplied with the Hurst *et al.*²⁴¹ data set. They report no details about the sample used (whether or not this was identical to that reported in the paper), its spread, how repeated observations were dealt with, the distribution of the explanatory variable and its range, how the model performed in terms of fit, bias, predictions outside the feasible range. No details of the uncertainty in the estimated coefficients are provided by Chen *et al.*¹²³ Malottki *et al.*¹⁷¹ is an update from the same group and they similarly report no details on any relevant information required to make a judgement as to the appropriateness or otherwise of the statistical model. The only change made is the addition of a quadratic term.

The assumed costs and disutilities associated with adverse events

The assumptions regarding AEs within each submission are detailed in this section. In summary, only two of the six manufacturers explicitly included the costs of serous AEs within the submission. These were AbbVie (£4568 per episode) and Pfizer (£1497 per episode), with Pfizer only examining this within a sensitivity analysis.

Only Pfizer included disutility associated with a serious AE, assuming a disutility of 0.156 for a period of 28 days, equating to approximately a 0.012 QALY loss.

Data on the rates of AEs are summarised in Time to discontinuation of treatment.

AbbVie

AbbVie takes into account serious infections within its model, citing the important consequences arising in terms of resource utilisation following serious infection. It was assumed that mild or moderate AEs had minimal impact on a patient's quality of life and have minimal cost implications. The baseline annual risk of serious infections under treatment with non-bDMARDs was extracted from a prospective observational study using BSRBR²⁷⁸ data and assumed to be the same for all non-bDMARDs.

Baseline values for cDMARDs were extracted from BSRBR data, the risk of serious infections for biologic treatments being adjusted through risk parameters derived from a meta-analysis of safety parameters from clinical studies of biologics used in majority in RA.

Risk of serious infections under treatment with biologics was derived using odds ratios of serious infections of biologics versus control treatment derived from a systematic review and meta-analysis of 160 randomised clinical trials by the Cochrane collaboration (erroneously referenced as Hetland *et al.*²⁵⁰). Although the meta-analysis includes trials of biologics in indications other than RA (but excluding human immunodeficiency virus), the majority of trials have been conducted in RA, and AEs are considered to happen irrespective of indication.

To calculate the risks of serious infections under treatment of biologics, the baseline risk for DMARDs was converted to odds, the odds for each respective biologic were calculated using the odds ratios, which were subsequently converted to risks. Serious infection risks employed in the base-case analyses as well as odds ratios employed to estimate these are displayed in *Table 129*. The Assessment Group comment that the odds ratios shown in *Table 129* do not match *Figure 4* in the most recent version of Singh *et al.*¹⁶⁵

Treatment	Risk	Odds ratio ^ª
DMARDs (MTX, MTX + HCQ, SSZ + HCQ, LEF, SSZ, CYC, HCQ)	0.031493 ^b	Reference treatment
ABA (± MTX)	0.018198	0.57
ADA (±MTX)	0.035140	1.12
ETA (± MTX)	0.033320	1.08
INF $(\pm MTX)$	0.045027	3.51
RTX (± MTX)	0.030578	1.06
GOL (± MTX)	0.040259	1.29
TCZ (± MTX)	0.048867	1.45
CTZ (± MTX)	0.102444	0.97
a Singh <i>et al.</i> ¹⁶⁵ b Galloway <i>et al.</i> ²⁷⁸		

TABLE 129 The risk of serious infections assumed in the AbbVie model

A sensitivity analysis was conducted setting the risk of AEs for ETN, ADA and IFX to 0.03767, 0.04075 and 0.04075, respectively (higher), based on the Galloway *et al.* BSRBR data.²⁷⁸ Data are not available for other biologics from this BSRBR analysis.

The cost of serious infections was assumed to be equal to NHS reference cost HD23A (Inflammatory Spine, Joint or Connective Tissue Disorders, with Major CC) and was assumed to be £4568.38 per episode of care corresponding to the elective spell tariff of inflammatory spine, joint or connective tissue disorders with major complications. The mean length of stay corresponding to the elective spell tariff was 8.2 days, which was comparable with the median of 7 days suggested by Galloway *et al.*²⁷⁸ used to derive baseline AE risks. Despite commenting on the effect on patients on serious infections no disutility associated with serious AEs were used.

Bristol-Myers Squibb

The probabilities of AEs used within the Bristol-Myers Squibb model are shown in *Table 130*. The source for these data was not provided in the submission. AEs only result in discontinuation of present treatment. There are no cost implications, nor explicit utility implications.

Merck Sharp & Dohme Corp.

Adverse events are incorporated into the model based on the proportion of patients who discontinue treatment due to AEs in the first 24 weeks (*Figure 80*).

Adverse events are assumed to be class related; therefore, the costs and utility outcomes are assumed to be equivalent between the bDMARDs. This rate does not appear to be tabulated in the submission. No costs or disutility associated with AEs are included in the MSD model, although MSD comments that it is possible that AE disutility associated with RA treatment was already incorporated into the mapping equation from HAQ to utility.

Pfizer

Pfizer's base case did not model AEs, with the manufacturer noting that several manufacturers' submissions for NICE appraisals (for RA) have not modelled AEs.^{231,237,238}

A scenario analysis including serious infections was performed. The medical resource use estimates derived from data presented by Kobelt *et al.*²⁶² contain costs of hospitalisations, and therefore AEs were not concluded within the primary analysis in order to avoid any 'double counting' of these costs.²²⁶ Serious infections were selected for the model as opposed to, for example, serious AEs, as health-related quality of life consequences associated with infection in alternative populations have been well documented.²⁷⁹ Following a serious infection, the Summary of Product Characteristics for all bDMARDs stipulates treatment

Treatment	At month 6/week 24: probability of AE
ABT i.v.	0.023
ABT s.c.	0.016
ADA	0.041
ETN	0.030
IFX	0.086
TCZ	0.041
GOL	0.020
CTZ	0.096

TABLE 130 The assumed probability of AEs used in the Bristol-Myers Squibb models

FIGURE 80 Odds ratio of discontinuations due to AEs in cDMARD-experienced patients assumed by MSD.

cessation, which is not the case for other serious AEs. Pfizer argues that the treatment of other AEs is unlikely to utilise a significant amount of medical resources or costs to the NHS.

Pfizer performed a NMA to estimate HRs of serious infection versus cDMARDs. These HRs were applied to the risk of serious infection for MTX,²⁸⁰ estimated from NMA, to provide the cumulative probability of serious infection and are replicated in *Table 131*. GOL and IFX were assumed to have the same rate of serious infection as ADA as all have a similar mode of action. RTX was assumed to have the same rate of serious infection as TCZ as both are intravenously administered treatments.

Cost of adverse events

Within the AEs scenario analysis, the cost of serious infection was assumed to be £1497 based on relevant NHS costs, weighted by inpatient activity.²³⁰ Relevant Healthcare Resource Group codes were identified based on Lekander *et al.*¹⁹⁴ Conservatively, the without complications and contraindications Healthcare Resource Group costs were used. The costs of serious infection assumed by Pfizer in a sensitivity analysis are provided in *Table 132*.

Serious infections were assumed to persist for 28 days and confer a disutility of 0.156 during that time.²⁷⁹

Roche

The economic model does not assume a difference in AEs between biologic treatments and assumes that neither associated costs nor utility decreases associated with AEs.

UCB Pharma

The costs and outcomes associated with AEs were not included within the UCB Pharma model as it was assumed that all biologic therapies had similar safety profiles.

UCB Pharma comments on the robustness of Cochrane collaboration review of the AEs of biologics regarding the AEs of CTZ.²⁸¹ This comment is marked AiC.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

	AiC information has been removed					
	AiC information has been rem	noved				
	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed			

TABLE 131 Hazard ratio of serious infection vs. cDMARDs presented by Pfizer

AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has
been removed	been removed	been removed	been removed
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has	AiC information has	AiC information has	AiC information has been removed
been removed	been removed	been removed	
AiC information has been remov	ed		AiC information has been removed

TABLE 132 Costs of serious infection (using in scenario analysis only)

(Academic-in-confidence information has been removed.)

Mortality associated with rheumatoid arthritis

The assumptions regarding the effect of RA (and HAQ score) on mortality are detailed for each submission.

In summary, there is no consensus of the most appropriate approach, although four submissions assume that the relative risk of mortality per HAQ score can be determined from a paper by Wolfe *et al.*²⁸²

These data (as will be detailed in the methodology used by the Assessment Group) are dated and have been superseded. Furthermore, these data do not indicate whether or not the mortality risk is reversible following treatment that reduces a patient's HAQ.

Two submissions have assumed standardised mortality rate for patients with RA that is assumed independent of HAQ. Pfizer has commented that the impact of mortality on cost-effectiveness ratios has been shown to be marginal owing to discounting.

AbbVie

The submitted model includes general population mortality rates based on UK life tables. However, mortality rates are assumed to be affected by HAQ score. The effect of HAQ on mortality was expressed as a HR of 1.33 per unit increase in HAQ score for both males and females taken from Wolfe *et al.*²⁸² Sensitivity analysis varied the HR using values 1.00 and 1.88.

To implement this, general population mortality risks (2009) were derived by fitting a Gompertz function to the data from sex-specific UK life tables. The Gompertz function describes the exponential increase in mortality rates with increasing age in the absence of high rates of age-independent mortality.

$$S_i = e^{\left[\frac{(e^{\gamma}-1)e^{\lambda}}{\gamma}\right]}.$$

(21)

Table 133 provides the assumed Gompertz fit to standard mortality data.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Sex	Mean	SE	Correlation
Females			
Lamda	-10.688847	0.05353145	-0.92256954
Gamma	0.0951409	0.00077774	
Males			
Lamda	-9.6568365	0.05960999	-0.92256954
Gamma	0.08567803	0.00086605	

TABLE 133 The assumed Gompertz fit to standard mortality data within the AbbVie model

The effect of HAQ on mortality was expressed as a HR of 1.33 per unit increase in HAQ score for males and females.¹⁹ Two major assumptions are made:

- 1. the HR was assumed to be linear in the HAQ
- 2. a change in the HAQ has an immediate effect on the expected mortality (i.e. not only the baseline HAQ).

AbbVie presents illustrative curves for mortality dependent on HAQ scores, which are reproduced in *Figures 81* and *82*.

The Assessment Group comments that no goodness-of-fit values for the Gompertz model compared with the life table data were presented.

Bristol-Myers Squibb

The expected age at which a patient dies is based on age, sex and HAQ score, and is recalculated every time the HAQ score changes. Once the age of the patient exceeds their assigned 'age at death', the patient dies. The age at death is calculated using conditional probabilities, as follows, replicating the methodology used by Barton *et al.*¹⁸⁰

Let *a* and *b* be the sex-specific survival probabilities for ages *x* and *y*, respectively, for a member of the general population. The probability *p* that a patient of age *x* will survive to the age *y* is $p = \frac{b}{a}$.

However, it is assumed that there is an increased risk of death for patients with RA, modelled as a HAQ mortality ratio of 1.33 per unit HAQ.²⁸² Therefore, the probability *p* that a patient of age *x* will survive to the age *y* is $p = (\frac{b}{a})^{1.33 \times HAQ}$. This can be rearranged to give $b = a \times p^{\frac{1}{1.33 \times HAQ}}$.

The model looks up the survival probability for the current age of the patient for *a* and uses a random number between 0 and 1 for *p*. The age at death is then calculated by looking up the age with the corresponding survival probability closest to *b*.

Merck Sharp & Dohme Corp.

National life tables for the UK²⁸³ were used to obtain age-dependent mortality rates. Furthermore, the proportions of males and females recruited in the IFX trials were used to estimate a weighted-average mortality risk by sex. The mortality rates taken from national life tables were annual rates. They were adjusted to the model cycle length rate using *Equation 22*:

$$r = -\left[\ln\left(1 - P\right)\right]/t.$$
(22)

The cycle rates were transformed into transition probabilities using Equation 23:

$$\rho = 1 - \exp\{-rt\}. \tag{23}$$

A standardised mortality ratio of 1.65 is used in the model, although not referenced in the report. This value is not HAQ dependent.

Pfizer

Pfizer identifies a number of economic evaluations that have assumed either a general risk of mortality associated with RA that is independent of disease severity measures^{183,192,194,202,238,284,285} or have expressed mortality as dependent on functional status (typically as expressed by HAQ).^{171,180,193,198,231,237,286,287}

The Pfizer model adopts the former approach, assuming an age–sex-specific standardised mortality ratio from Brennan *et al.*,¹⁸³ who report age- and sex-specific standardised mortality ratios for a UK population.

This approach avoids the implicit assumption that mortality rates would differ between treatment sequences, but Pfizer reports that evidence suggests that this approach may be conservative.^{288,289}

However, Pfizer also notes that assumptions on mortality have little impact on the cost-effectiveness ratios owing to discounting citing both NICE TA130²⁰⁷ and Vera-Llonch *et al.*²⁰²

Pfizer comments that the original data used to estimate the function relating HAQ to mortality are now nearly 20 years old and from a non-UK population.²⁸² Therefore, the standardised mortality ratios used by Brennan *et al.*¹⁸³ were applied to life tables for England and Wales.²⁸³ These values are replicated in *Table 134*.

TABLE 134	The assumed	standardised	mortality ratios	assumed by Pfizer
-----------	-------------	--------------	------------------	-------------------

Age (years)	Male	Female
0–24	2.0	2.0
25–64	1.6	1.8
65–101	1.3	1.5

Roche

The probability of death used within the Roche model is based on an adjusted life table provided by the Office for National Statistics.²⁹⁰ A RA risk multiplier related to each simulated individual's HAQ score is applied at each cycle based on work by Wolfe *et al.*,²⁸² who studied the relationship between HAQ score and early mortality. Wolfe *et al.*²⁸² concluded that a relative risk of 1.33 (95% CI 1.099 to 1.610) was associated with each HAQ score point increase. The formula for converting this finding into an adjusted mortality risk (1.33 HAQ) was derived from Barton *et al.*¹⁸⁰

UCB Pharma

The probability of all-cause mortality was derived from age- and sex-specific mortality rates for the general population from the Government Actuary Department, adjusted by HAQ-DI score. The base-case estimate of relative risk of death of 1.330 per HAQ-DI unit (95% CI 1.099 to 1.610) was taken from a 35-year cohort study of 3501 RA patients in Canada.²⁸² The starting mortality rate in cycle 1 was adjusted to the age and sex distribution of the model population and further adjustment was made in each model cycle to represent the increased risk of death as patients became older.

Examination of the UCB Pharma model suggests that an exponential distribution is fitted to the life table data and then a relative risk is applied. The exponential fits performed by the Assessment Group are shown in *Figure 83* for females and *Figure 84* for males. It is seen that the R^2 value is in excess of 0.99.

Cost-effectiveness results within the manufacturers' submission

This section details the cost-effectiveness results reported by the manufacturers within their base cases for each of the analyses undertaken. Typically a large number of sensitivity analyses and descriptive features, such as cost-effectiveness acceptability curves (CEACs), cost-effectiveness planes and scatterplots are presented by the manufacturers. The Assessment Group has selected and reported the key information for brevity reasons, but has endeavoured to report the salient conclusions.

FIGURE 83 The general mortality rate for females assumed by UCB Pharma, with an exponential fit to these data points. (AiC information has been removed.)

Within the section the following terminology has been used to aid understanding (analyses 1–6 represent the decision problems within the NICE scope):

- analysis 1: population 2 in combination with MTX
- analysis 2: population 3 in combination with MTX
- analysis 3: population 1 in combination with MTX
- analysis 4: population 2 monotherapy
- analysis 5: population 3 monotherapy
- analysis 6: population 1 monotherapy
- analysis 7: general RA population who can receive MTX
- analysis 8: MTX-intolerant or -contraindicated RA population.

Table 135 provides a summary of each manufacturer's interpretation of the cost-effectiveness analyses for their product. Where a manufacturer did not undertake an analysis the cell is blank; otherwise the Assessment Group's conclusion of the manufacturers' interpretation of the cost-effectiveness is shown. Three manufacturers (AbbVie, Bristol-Myers Squibb and MSD) have stated that the bDMARDs have similar cost-effectiveness ratios and should be analysed jointly; Pfizer and UCB Pharma make preferential statements about their interventions, whereas Roche has conducted an analysis that consists only of adding TCZ as a monotherapy as first line before a non-NICE-recommended sequence. There are few clear patterns exhibited in *Table 135*, except that all manufacturers believe their product is cost-effective in analysis 1 and all bar UCB Pharma believe their interventions are cost-effective in analysis 2. It is commented that the analysis 1 undertaken by UCB Pharma omitted a comparison against a cDMARD-only strategy. Given that the remaining manufacturers often commented that the ICERs between populations 2 and 3 were similar, it is possible that UCB Pharma would have estimated bDMARDs not to be cost-effective in population 3 were the correct comparison to be made.

These results will be affected by the consideration (or not) of PASs, which are in place for ABT i.v., ABT s.c., CTZ, GOL and TCZ. AbbVie does not consider current PASs. None of MSD, Pfizer and UCB Pharma include PASs for TCZ or ABT as these are CiC. Bristol-Myers Squibb and Roche use PASs for all relevant drugs in their analyses.

Data have been reproduced from a manufacturer's submission. In some cases it was not possible to align the abbreviations used with those used by the Assessment Group.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 TNS, UK.

TABLE 135	5 A summary of each manufacturer's inte	erpretatior	n of the cost-eff	ectiveness analyses for the	ir product assur	ning a cost per	QALY thresh	old of £30,00	
			Manufacture						
Analysis	Decision problem	Scope	AbbVie (ADA)	Bristol-Myers Squibb (ABT i.v.; ABT s.c.)	(109) dsm	MSD (IFX)	Pfizer (ETN)	Roche (TCZ)	UCB Pharma (CTZ)
1	Population 2 in combination with MTX	>	CE (group)		CE (group)	CE (group)	Most CE		Most CE
2	Population 3 in combination with MTX	>	CE (group)				CE (sole)		Not CE
m	Population 1 in combination with MTX	>	Not CE				Not CE		
4	Population 2 monotherapy	>	Not CE				Most CE		Most CE
Ŀ	Population 3 monotherapy	>	Not CE						Not CE
9	Population 1 monotherapy	>	Not CE						
7	General RA population who can tolerate MTX ^a			CE (group)	CE (group)	CE (group)			
Ø	MTX-intolerant or -contraindicated RA population ^b							CE (sole)	
CE, cost-e a In esser b In esser Notes Shaded ce CE (group) CE (sole) d Most CE d	ffective. Ince, analyses 1 and 2 combined. Ince, analyses 4 and 5 combined. Is indicate the intervention is not licensed in the notes the manufacturer is stating that the lenotes the manufacturer is stating that the ienotes the manufacturer is stating that the manufacturer is stating that the ienotes the manufacturer is stating that the manufacturer is stating t	n this popul a bDMARD other bDMA	lation; blank cells s have similar IC RDs within the a	indicate an analyses was no ERs and that all are cost-effen nalyses. st-effective bDMARD and the	conducted. tive compared w t it is cost-effecti	ith cDMARDs al	one. th cDMARDs al	one.	
Not CE de	notes the manufacturer does not claim the	interventior	n is cost-effective	compared with cDMARDs.					

AbbVie

The Assessment Group notes that ABT s.c. has not been included in the Abbvie submission, that the responder criterion is ACR50 and that the PASs in place for some interventions have not been included.

Despite performing PSAs, AbbVie presents deterministic results in the base-case tables. The sequence numbers shown in the AbbVie results are aligned with those reported in AbbVie.

The incremental cost-effectiveness analyses are shown in *Table 136* for analysis 1 and *Table 137* for analysis 2. CEACs from the probabilistic analyses are provided in *Figure 85* for analysis 1 and *Figure 86* for analysis 2.

The incremental cost-effectiveness analyses for analysis 3 are shown in *Table 138* with the CEACs from the probabilistic analyses provided in *Figure 87*.

The incremental cost-effectiveness analyses are shown in *Table 139* for analysis 4 and *Table 140* for analysis 5. CEACs from the probabilistic analyses are provided in *Figure 88* for analysis 4 and *Figure 89* for analysis 5.

The incremental cost-effectiveness analyses for analysis 6 are shown in *Table 141* with the CEACs from the probabilistic analyses provided in *Figure 90*.

		Total	Total Incremental		ICER		
Sequence	Technology	Costs (£)	QALYs	Costs (£)	QALYs	vs. DMARDs (£)	Incremental (£)
1	cDMARDs	36,636	1.747				
8	TCZ + MTX	94,128	4.433	57,492	2.686	21,405	Extendedly dominated
4	IFX + MTX	97,366	4.981	60,731	3.234	18,781	Dominated
7	ABT + MTX	116,143	5.036	79,508	3.289	24,172	Dominated
6	GOL + MTX	95,754	5.107	59,118	3.360	17,594	Dominated
2	ADA + MTX	94,618	5.230	57,983	3.483	16,650	Extendedly dominated
5	CTZ + MTX	97,091	5.288	60,455	3.541	17,071	Dominated
3	ETN + MTX	96,785	5.377	60,149	3.630	16,571	16,571

TABLE 136 Incremental cost-effectiveness ratios for analysis 1 as reported by AbbVie

TABLE 137 Incremental cost-effectiveness ratios for analysis 2 as reported by AbbVie

		Total		Incremental		ICER	
Sequence	Technology	Costs (£)	QALYs	Costs (£)	QALYs	vs. DMARDs (£)	Incremental (£)
1	cDMARDs	36,521	3.510				
8	TCZ + MTX	99,402	6.128	62,882	2.619	24,014	Extendedly dominated
4	IFX + MTX	103,092	6.680	66,571	3.170	21,000	Dominated
7	ABT + MTX	123,455	6.735	86,935	3.226	26,952	Dominated
6	GOL + MTX	101,605	6.799	65,084	3.290	19,784	Dominated
2	ADA + MTX	100,495	6.914	63,974	3.404	18,792	Extendedly dominated
5	CTZ + MTX	103,093	6.974	66,572	3.464	19,217	Dominated
3	ETN + MTX	103,015	7.061	66,494	3.552	18,721	18,721

FIGURE 86 Cost-effectiveness acceptability curve for analysis 2 provided by AbbVie.

		Total		Incrementa	l	ICER	
Sequence	Technology	Costs (£)	QALYs	Costs (£)	QALYs	vs. DMARDs (£)	Incremental (£)
1	MTX	27,076	5.104				
6	MTX + HCQ	64,908	7.162	37,832	2.058	18,381	18,381
5	GOL + MTX	107,556	7.539	80,479	2.436	33,044	Dominated
3	ETN + MTX	107,172	7.709	80,096	2.605	30,742	Dominated
4	IFX + MTX	113,598	7.721	86,522	2.618	33,055	Dominated
2	ADA + MTX	107,097	7.765	80,021	2.661	30,071	69,971

TABLE 138 Incremental cost-effectiveness ratios for analysis 3 as reported by AbbVie

FIGURE 87 Cost-effectiveness acceptability curve for analysis 3 provided by AbbVie.

		Total		Incremental		ICER	
Sequence	Technology	Costs (£)	QALYs	Costs (£)	QALYs	vs. DMARDs (£)	Incremental (£)
1	cDMARDs	29,905	2.686				
2	ADA	51,019	3.278	21,114	0.592	35,641	Extendedly dominated
5	TCZ	75,098	3.573	45,193	0.887	50,972	Dominated
4	CTZ	57,245	3.579	27,341	0.893	30,609	Dominated
3	ETN	56,556	3.594	26,651	0.908	29,338	29,338

TABLE 139 Incremental cost-effectiveness ratios for analysis 4 as reported by AbbVie

FIGURE 88 Cost-effectiveness acceptability curve for analysis 4 provided by AbbVie.

		Total		Incremental		ICER	
Sequence	Technology	Costs (£)	QALYs	Costs (£)	QALYs	vs. DMARDs (£)	Incremental (£)
1	cDMARDs	30,113	4.319				
2	ADA	53,107	4.907	22,994	0.588	39,083	Extendedly dominated
5	TCZ	79,158	5.197	49,045	0.878	55,844	Dominated
4	CTZ	59,905	5.200	29,792	0.882	33,791	Dominated

FIGURE 89 Cost-effectiveness acceptability curve for analysis 5 provided by AbbVie.

TABLE 141 Incremental cost-effectiveness ratios for analysis 6 as reported by AbbVie

		Total		Incremental		ICER	
Sequence	Technology	Costs (£)	QALYs	Costs (£)	QALYs	vs. DMARDs (£)	Incremental (£)
1	cDMARDs	29,629	5.122				
2	ADA	60,778	5.156	31,149	0.034	918,015	Dominated
3	ETN	63,859	5.293	34,230	0.170	201,097	Dominated
4	SSZ + HCQ (followed by ADA)	41,703	5.774	12,074	0.651	18,540	18,540

FIGURE 90 Cost-effectiveness acceptability curve for analysis 6 provided by AbbVie.

AbbVie's interpretation of its cost-effectiveness results

AbbVie states that:

The main results from the cost-utility model are:

- In the MTX-experienced patient population with severe disease activity (DAS28 > 5.1), ADA in combination with MTX is considered cost-effective, with a lifetime incremental cost per quality-adjusted life year (QALY) gained with respect to conventional DMARDs of £16,650. This is very similar to the estimated cost per QALY of ETN (£16,571) and certolizumab (£17,071), both taken in combination with MTX.
- In the MTX-experienced patient population with moderate disease activity (3.2 < DAS28 ≤ 5.1), ADA in combination with MTX is considered cost-effective, with a lifetime incremental cost per quality-adjusted life year (QALY) gained with respect to conventional DMARDs of £18,792. This is very similar to the estimated cost per QALY of ETN (£18,721) certolizumab (£19,217) and GOL (£19,784), all taken in combination with MTX.

AbbVies conclude that its 'submission demonstrates that ADA in combination with MTX represents a clinical and cost-effective option for the treatment of RA patients with moderate and severe disease activity, for the NHS in the UK'.

Bristol-Myers Squibb

The submission by Bristol-Myers Squibb evaluated the use of bDMARDs only in combination with MTX. The submission did not distinguish between patients with severe and moderate to severe RA, but evaluated these groups together. This did not meet the requirements of the scope and has been denoted as analysis 7.

Bristol-Myers Squibb presents the disaggregated incremental costs and QALYs for the deterministic scenario, but not for the probabilistic values where only the ICER (and CI around the ICER) are provided. The Assessment Group notes that the ICERs are lower for the probabilistic analyses than for the deterministic analyses.

The probabilistic ICERs detailed by Bristol-Myers Squibb are shown in *Table 142*. These data are marked CiC. *Figure 91* shows the CEAC generated by Bristol-Myers Squibb.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

	ICER vs. DMARDs						
Initial treatment	Mean	95% Cl lower bound	95% Cl upper bound				
ABT i.v. + MTX	CiC information has	CiC information has	CiC information has				
	been removed	been removed	been removed				
ABT s.c. + MTX	CiC information has	CiC information has	CiC information has				
	been removed	been removed	been removed				
ADA + MTX	CiC information has	CiC information has	CiC information has				
	been removed	been removed	been removed				
ETN + MTX	CiC information has	CiC information has	CiC information has				
	been removed	been removed	been removed				
IFX + MTX	CiC information has	CiC information has	CiC information has				
	been removed	been removed	been removed				
TCZ + MTX	CiC information has	CiC information has	CiC information has				
	been removed	been removed	been removed				
GOL + MTX	CiC information has been removed	CiC information has been removed	CiC information has been removed				
CTZ + MTX	CiC information has been removed	CiC information has been removed	CiC information has been removed				

TABLE 142 The probabilistic ICERs for analysis 7 provided by Bristol-Myers Squibb

FIGURE 91 Commercial-in-confidence information has been removed.

Bristol-Myers Squibb's interpretation of its cost-effectiveness results

Bristol-Myers Squibb concludes that:

... the results demonstrate that all of the biologics have similar ICERs when compared to DMARDs. The ICERs remain similar in scenario analyses (except when PASs are not considered). This, coupled with the overlap in the probabilistic sensitivity analysis demonstrates considerable uncertainty as to which treatment is the most cost-effective option.

Merck Sharp & Dohme Corp.

The two submissions (one for GOL and one for IFX) from MSD will be detailed individually in terms of the cost-effectiveness results. It is commented that for both submissions only analyses 1 and 7 were undertaken. Analysis 7 does not meet the NICE scope as it combines RA patients with moderate to severe and severe disease.

The Assessment Group notes that MSD makes no comment on the discrepant absolute QALY values in the submission (in the region of 8 for the GOL submission and in the region of 6 for the IFX report).

Golimumab

The incremental analysis for analysis 1 within the GOL submission is reproduced in *Table 143*. Note that an additional column has been added to correctly calculate the incremental analysis.

The incremental analysis for analysis 7 within the GOL submission is reproduced in *Table 144*. Note that an additional column has been added to correctly calculate the incremental analysis. The CEAC for analysis 7 is shown in *Figure 92*.
TABLE 143 Incremental cost-effectiveness results (DMARD-experienced severe RA patient population subgroup) provided by MSD in the GOL submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYs	ICER (£) vs. baseline (MTX)	MSD's incremental analysis (£)	Assessment Group's incremental analysis (£)	
MTX	56,036	6.425	-	-	_	-	-	
GOL + MTX	89,270	8.007	33,234	1.582	21,013	N/A	21,013	
N/A, not applicable.								

TABLE 144 Incremental cost-effectiveness results (DMARD-experienced RA patient population) provided by MSD in the GOL submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYs	ICER (£) vs. baseline (MTX)	MSD's incremental analysis (£)	Assessment Group's incremental analysis (£)
MTX	56,382	6.706	-	-	-	-	-
IFX + MTX	88,326	8.207	31,944	1.501	21,278	21,278	Extendedly dominated
ETN + MTX	91,025	8.068	2699	-0.139	25,429	Dominated	Dominated
GOL + MTX	92,130	8.307	1105	0.238	22,331	4631	Extendedly dominated
ADA + MTX	93,892	8.512	1762	0.205	20,769	8589	Extendedly dominated
CTZ + MTX	97,469	8.890	3577	0.377	18,817	9476	18,817
TCZ + MTX	100,702	8.495	3233	-0.395	24,774	Dominated	Dominated
ABT i.v. + MTX	105,102	8.100	4400	-0.395	34,953	Dominated	Dominated
ABT s.c. + MTX	118,036	8.100	12,934	0.000	44,232	Dominated	Dominated

FIGURE 92 Cost-effectiveness acceptability curve for all bDMARDs for analysis 7 within the MSD GOL submission.

Infliximab

The incremental analysis for analysis 1 within the IFX submission is reproduced in *Table 145*. Note that an additional column has been added to correctly calculate the incremental analysis.

The incremental analysis for analysis 7 within the IFX submission is reproduced in *Table 146*. Note that an additional column has been added to correctly calculate the incremental analysis. The CEAC for analysis 7 is shown in *Figure 93*.

Merck Sharp & Dohme Corp.'s interpretation of the cost-effectiveness results in both its golimumab and infliximab submissions

Merck Sharp & Dohme Corp. states:

These results indicate that golimumab/infliximab is a cost-effective treatment option for patients with moderate to severe RA who have had an inadequate response to conventional DMARDs. Due to differences in trial populations and design, using ICERs to 'rank' technologies should be approached with caution and we believe that the indirect comparison results indicate a class effect as no significant differences were identified between technologies. A casing [sic] point for this would be the placebo arm dropout in the certolizumab trials which would have acted to inflate the efficacy results for this technology.

TABLE 145 Incremental cost-effectiveness results (DMARD-experienced severe RA patient population subgroup) provided by MSD in the IFX submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYs	ICER (£) vs. baseline (MTX)	MSD's incremental analysis (£)	Assessment Group's incremental analysis	
MTX	58,181	4.504	-	-	-	-	-	
IFX + MTX	84,007	5.539	25,827	1.034	24,968	N/A	24,968	
N/A, not applicable.								

TABLE 146 Incremental cost-effectiveness results (DMARD-experienced RA patient population) provided by MSD in the IFX submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYs	ICER (£) vs. baseline (MTX)	Incremental analysis (£)	Assessment Group's incremental analysis
MTX	57,376	4.791	-	-	-	-	-
IFX + MTX	83,887	5.845	26,511	1.054	25,144	25,144	Extendedly dominated
ETN + MTX	84,947	5.678	1059	-0.167	31,065	Dominated	Dominated
GOL + MTX	87,027	5.909	2080	0.231	26,512	9010	Extendedly dominated
ADA + MTX	88,750	6.117	1723	0.207	23,663	8305	Extendedly dominated
CTZ + MTX	93,696	6.519	4946	0.403	21,011	12,281	21,011
TCZ + MTX	94,777	6.065	1080	-0.454	29,339	Dominated	Dominated
ABT i.v. + MTX	97,346	5.710	2570	-0.355	43,455	Dominated	Dominated
ABT s.c. + MTX	108,181	5.710	10,834	0.000	55,234	Dominated	Dominated

FIGURE 93 Cost-effectiveness acceptability curve for all bDMARDs for analysis 7 within the MSD IFX submission.

Merck Sharp & Dohme Corp. additionally states that:

Compared to other published studies in literature our DMARD experienced results indicate similar ICERs for $TNF\alpha$ inhibitors compared to palliation. Our model derives many assumptions from the Birmingham Rheumatoid Arthritis Model and thus the ICERs are in a similar range of those approved in recent NICE appraisals.

It can be seen that the ICER for GOL/IFX in the severe only subgroup (DAS > 5.1) is similar to the ICER derived for the moderate–severe population and as such GOL/IFX can be considered cost-effective in both populations and should not be limited only to the treatment of patients with severe disease.'

Pfizer

Pfizer sent an addendum to the Assessment Group after detecting minor errors within their mathematical model. These errors affected only scenarios where patients were ineligible for RTX plus MTX, which are not summarised in this section.

Pfizer undertook analyses 1–4. The results from these analyses are reproduced in *Tables 147–150*, with the CEACs reproduced in *Figures 94–97*.

			vs. cDMARD		vs. next less costly		
Strategy	Costs (£)	QALYs	Incremental costs (£)	Incremental QALYs	Incremental costs (£)	Incremental QALYs	ICER (£)
cDMARDs	111,612	2.638					
IFX + MTX	130,090	3.240	18,478	0.602	18,478	0.602	Extendedly dominated
ADA + MTX	133,121	3.395	21,509	0.756	3031	0.154	Extendedly dominated
CTZ + MTX	135,304	3.768	23,692	1.130	2183	0.374	Extendedly dominated
GOL + MTX	136,452	3.470	24,840	0.832	1148	-0.298	Dominated
ETN + MTX	140,686	4.055	29,074	1.417	4233	0.585	20,520
ABT i.v. + MTX	151,963	3.513	40,351	0.875	11,277	-0.542	Dominated
TCZ + MTX	153,442	3.704	41,830	1.066	1479	0.191	Dominated
ABT s.c. + MTX	162,064	3.530	50,452	0.891	8622	-0.174	Dominated

TABLE 147	Severe DMARD-inadeq	uate responder	r combination the	rapy increment	al analysis	presented by	y Pfizer
				1.2	,		/

			vs. cDMARD		vs. next less costly			
Strategy	Costs (£)	QALYs	Incremental costs (£)	Incremental QALYs	Incremental costs (£)	Incremental QALYs	ICER (£)	
cDMARD	128,305	8.493						
ETN + MTX	159,730	9.764	31,425	1.271	31,425	1.271	24,727	

TABLE 148 Moderate to severe population combination therapy incremental analysis presented by Pfizer

TABLE 149 Severe naive population combination therapy incremental analysis presented by Pfizer

			vs. comb cDMARD		vs. next less costly		
Strategy	Costs (£)	QALYs	Incremental costs (£)	Incremental QALYs	Incremental costs (£)	Incremental QALYs	ICER (£)
cDMARD ^a	108,488	4.754					
cDMARD	112,462	4.615	3974	-0.139	3974	-0.139	Dominated
ETN + MTX	150,095	5.965	41,607	1.210	37,633	1.350	34,373
a Combinatio	n cDMARD.						

TABLE 150 Severe DMARD-inadequate responder monotherapy incremental analysis presented by Pfizer

			vs. ADA		vs. next less co	ostly	
Strategy	Costs (£)	QALYs	Incremental costs (£)	Incremental QALYs	Incremental costs (£)	Incremental QALYs	ICER (£)
cDMARD	79,837	1.570					
ADA	95,474	2.083	15,637	0.513	15,637	0.513	Dominated
ETN	98,143	2.265	18,306	0.695	2669	0.182	26,335
TCZ2	115,782	2.642	35,945	1.071	17,639	0.376	Extendedly dominated
TCZ1ª	122,013	2.963	42,176	1.393	6231	0.321	34,227
a In TCZ1 ETI	V was used as	the next bio	ologic; this was Al	DA in TCZ2.			

FIGURE 94 Cost-effectiveness acceptability curve for analysis 1 within the Pfizer submission. (AiC information has been removed.)

FIGURE 95 Cost-effectiveness acceptability curve for analysis 2 within the Pfizer submission. (AiC information has been removed.)

FIGURE 96 Cost-effectiveness acceptability curve for analysis 3 within the Pfizer submission. (AiC information has been removed.)

FIGURE 97 Cost-effectiveness acceptability curve for analysis 4 within the Pfizer submission. (AiC information has been removed.)

Pfizer's interpretation of its cost-effectiveness results

Pfizer states that:

... the primary analysis demonstrated that, based on current NICE sequential guidance and comparisons made within the analysis, a strategy in which ETN is provided after the failure of two conventional DMARDs is the most cost-effective treatment strategy at a cost-effectiveness threshold of £30,000 per QALY in the Severe DMARD-IR [inadequate responder] combination therapy, Severe DMARD-IR monotherapy and Moderate to Severe populations. The results in a Severe-DMARD-IR population appear to be consistent with previously economic evaluations conducted from a UK perspective identified in the economic SR, when limited or no HAQ progression has been assumed for bDMARDs.

In the Severe Naïve population, the ETN strategy had an ICER of £34,373 versus combination DMARD strategy. This result appears to be different from a previous economic evaluation conducted from a UK perspective, which suggested ETN + MTX may be cost effective at a £30,000 threshold when no HAQ progression is assumed for ETN + MTX.¹²³ Difference in the economic evaluations results are likely to be partially explained by difference in discount rates used, as if the alternative discount rates used in Chen et al, 2006¹²³ are implemented, then ETN + MTX does becomes a cost effective strategy at £30,000.

Pfizer reports that the secondary analyses, which were not shown in this summary, that used strategies with alternative second-line therapies and additional comparator strategies were:

... unable to change the conclusions of the primary analyses. The exception was the inclusion of an alternative 2nd line therapy in the Severe DMARD-IR [inadequate responder] combination therapy population; in this analysis ETN became the optimal strategy at a cost-effectiveness threshold of £20,000 per QALY.

Roche

The Roche submission evaluated a subpopulation not defined in the scope as a MTX-intolerant or -contraindicated RA population, which was in essence analyses 4 and 5 analysed jointly. This was denoted analysis 8.

Roche's base case evaluated only adding TCZ as the first-line treatment to an existing sequence. The Assessment Group comments that the existing sequence is not recommended by NICE, as three bDMARDs were assumed, and also that sequences of treatment should have been evaluated. For these reasons the results presented by Roche should be treated with caution.

The probabilistic results are shown in *Table 151*. The CEAC is shown in *Figure 98*.

Model output	Standard of care	TCZ strategy	Incremental results	ICER (£ per QALY)				
Total QALYs	8.477	9.328	0.8503					
Total cost (£)	123,390	135,736	12,346	14,520				
Data are shown to the level of accuracy available in the source material.								

TABLE 151 The probabilistic sensitivity results supplied by Roche for analysis 8

FIGURE 98 The CEAC produced by Roche for analysis 8.

Roche's interpretation of its cost-effectiveness evidence

Roche states that:

... the cost-effectiveness analysis results suggest that the use of first line tocilizumab for DMARD-IR [inadequate responder] RA patients who are intolerant or unsuited to MTX represents a cost-effective use of resources within the NHS. Overall, the results are robust to changes in cost and clinical parameters within the economic model, and moreover the ICERs remain cost-effective across a range of alternative methods of comparison (comparing sequences, comparing individual biologics with one another, comparing biologics to palliation alone).

UCB Pharma

UCB Pharma presented analyses for the populations in the scope for which CTZ was licensed. These are analyses 1, 2, 4 and 5. The Assessment Group comments that this analysis omits a fundamental comparison, which is that of bDMARDs versus cDMARDs. It is unclear whether or not the model submitted by UCB Pharma would estimate whether or not bDMARDs are cost-effective given that the remaining submissions comment that the ICER for population 2 is generally similar to that for population 3, and that UCB Pharma estimates that CYZ is not cost-effective in population 3.

The base-case results for analysis 1 are given in Table 152, with the CEAC reproduced in Figure 99.

The results for analyses 2 and 5 were combined in Table 153. No CEACs for these analyses were provided.

UCB Pharma's base-case results for analysis 4 are provided in *Table 154*, with the CEAC shown in *Figure 100*.

UCB Pharma's interpretation of its cost-effectiveness evidence

UCB Pharma states that:

... the base case analysis of the severe disease activity population indicated that certolizumab pegol has the highest probability of being cost-effective of all the combination therapies and monotherapies considered, at all willingness-to-pay thresholds between £10,000 and £100,000 per QALY. At £20,000 per QALY, CZP in combination with MTX or as monotherapy is the most cost-effective treatment with a probability of 100%.

Therapy	Mean costs (£)	Difference in costs (CTZ vs. treatment) (£)	Mean QALYs	Difference in QALYs (CTZ vs. treatment)	ICER (CTZ vs. treatment) (£)	Incremental values	Probability of cost-effectiveness at WTP of £20,000/QALY (%)
Combination the	erapies						
GOL + MTX	126,900	929	7.092	0.193	£4,822	Optimal at WTP threshold < £4822	0
CTZ + MTX	127,829	_	7.284	_	_	Optimal at WTP threshold > £4822	100
ADA + MTX	128,267	-437	7.175	0.109	CTZ dominates	CTZ dominates	0
IFX + MTX	128,542	-713	7.024	0.260	CTZ dominates	CTZ dominates	0
ETN + MTX	128,623	-793	7.184	0.100	CTZ dominates	CTZ dominates	0
TCZ + MTX	139,532	-11,703	7.106	0.179	CTZ dominates	CTZ dominates	0
ABT + MTX	143,982	-16,152	7.008	0.276	CTZ dominates	CTZ dominates	0
WTP, willingnes	s to pay.						

TABLE 152 Base-case results for combination treatments (severe disease activity population) provided by UCB Pharma

FIGURE 99 Base-case CEAC for analysis 1 produced by UCB Pharma. (AiC information has been removed.)

 TABLE 153
 Base-case results for combination treatments (moderate disease activity population) provided by

 UCB
 Pharma

Therapy	Mean costs (£)	Difference in costs (CTZ vs. PBO) (£)	Mean QALYs	Difference in QALYs (CTZ vs. PBO)	ICER (CTZ vs. PBO) (£)	Probability of cost-effectiveness at WTP of £20,000/QALY (%)			
Combination cDMARDs therapies: analysis 2									
PBO + cDMARD	90,241	-	8.760	-	-	100			
CTZ + cDMARD	120,217	29,976	9.387	0.627	47,821	0			
Combination MTX th	erapies: anal	ysis 5							
PBO + MTX	89,801	-	8.726	-	-	100			
CTZ + MTX	116,603	26,802	9.270	0.544	49,226	0			
WTP, willingness to p	bay.								

Therapy	Mean costs (£)	Difference in costs (CTZ vs. treatment) (£)	Mean QALYs	Difference in QALYs (CTZ vs. treatment)	ICER (CTZ vs. treatment) (£)	Incremental values	Probability of cost-effectiveness at WTP of £20,000/QALY (%)
Monother	apies						
ADA	121,595	3019	6.846	0.315	9587	Optimal at WTP threshold < £9587	0
CTZ	124,614	_	7.161	-	-	Optimal at WTP threshold > £9587 and < £962,778	100
ETN	127,185	-2571	7.163	-0.003	£962,778 (ETN vs. CZP)	Optimal at WTP threshold > £962,778	0
TCZ	138,971	-14,357	7.086	0.075	CTZ dominates	Extended dominance by CTZ and ADA	0
WTP, willin	ngness to p	ay.					

TABLE 154 Base-case results for monotherapy treatments (severe disease activity population) provided by UCB Pharma

FIGURE 100 Base-case CEAC for analysis 4 produced by UCB Pharma. (AiC information has been removed.)

Budget impact

This section details the budget impact analyses undertaken by the manufacturers. No comment will be made on the Bristol-Myers Squibb, MSD or Roche submissions as these did not include budget impact analyses. For brevity, only summary figures for the base case will be provided rather than the methods used in the calculations. In summary, each submission predicted that the expenditure on RA interventions would probably increase owing to the increased population that would be eligible if a positive recommendation was issued for the moderate to severe RA population.

AbbVie

Table 155 reproduces the budget impact estimated by AbbVie assuming ADA was used for all eligible patients. The initial year is inflated owing to treating all incident cases.

Pfizer

Pfizer's summarised results of the number of patients requiring treatment each year is reproduced in *Table 156*.

TABLE 155 The incremental budget impact for ADA when used for eligible RA patients with moderate and severe disease activity over the next 5 years in England and Wales as estimated by AbbVie

Parameter	2013	2014	2015	2016	2017
Incremental annual budget impact for RA patients with moderate and severe disease activity (f)	258,556,867	149,487,523	153,870,726	158,282,136	162,723,747

Category	2014	2015	2016
Prevalence	58,050	58,526	58,993
Incidence	1714	1729	1742
Total	59,764	60,254ª	60,735
a Rounded.			

TABLE 156 The number of patients requiring treatment each year as estimated by Pfizer

UCB Pharma

UCB Pharma states that:

It was estimated that the current use of the recommended biological therapy for the severe disease activity population would result in a budget impact of £225 million in 2013, rising to £234 million in 2017. A sensitivity analysis assuming an increased CZP use compared to the base case led to budgetary savings of £2.6 million over 5 years.

Independent economic assessment

Description of the Assessment Group's model

None of the models submitted by the manufacturers replicated the clinical reality within England and Wales to the satisfaction of the Assessment Group. Primarily, this is because the majority of models assumed that the efficacy of the intervention was based on improvements in ACR, whereas NICE guidance has defined stopping rules where an intervention is stopped unless a DAS28 reduction of 1.2 points²² is achieved. The criterion of achieving a 1.2-point reduction in DAS is associated with a good or moderate EULAR response.

Furthermore, clinicians in the UK predominantly measure EULAR, rather than ACR responses. The use of EULAR is recommended by the British Society for Rheumatology and British Health Professionals in Rheumatology, which consider the EULAR response to be an evidence-based and validated measure of response to treatment.²⁹¹

For these reasons the Assessment Group constructed a model in which the assessment of treatment response was based on EULAR response at 6 months. This also alleviates the need for assumptions to be made by decision-makers regarding the proportion of patients who remain on treatment following each category of ACR response.

Two of the submissions, those by Bristol-Myers Squibb²⁸⁶ and UCB Pharma,²³⁷ did attempt to model reductions in DAS28; however, neither was considered fully appropriate. The model by Bristol-Myers Squibb did not assess all of the questions within the decision problem, had minimal information on the NMA performed and additionally was written in SIMUL8 (a DES software which is not included in the list of current NICE-recommended packages and thus this platform could not be used by the AG). The model by UCB Pharma was a Markov cohort model that treated all patients as homogenous and would not have the flexibility desired for employing patient-level covariates to represent the heterogeneity of patient outcomes.

The description of the Assessment Group's model is conducted using the same heading as employed when describing the manufacturers' models, bar the cost-effectiveness results and cost implications headings that form separate sections of this report. Where appropriate, reasons why the Assessment Group has taken a different approach to the manufacturers will be provided.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

The Assessment Group was granted access to data provided by the BSRBR and also from the ERAS and the US National Data Bank for Rheumatic Diseases (NDB), which were used to assess key model parameters and correlations. Specific systematic reviews were undertaken for specific parameters and when these produced relevant information the papers identified are discussed. Contact was also made with key researchers in the field to identify pertinent and/or ongoing research with preliminary findings in the public domain.

The decision problem addressed

The Assessment Group has undertaken evaluations of all the subpopulations defined in the scope, which equate to the defined analyses 1–6. The Assessment Group deviated from the scope for population 1; this was deemed necessary as the defined populations were not exhaustive and did not specify into which population a patient who had received cDMARDs but not MTX would fall. On clinical advice such patients were assumed to be MTX naive. The decision problem addressed by the Assessment Group matches that undertaken by AbbVie and UCB Pharma (for the populations for whom CTZ is licensed).

The strategies modelled

This Assessment Group model considers strategies of sequencing treatments but acknowledges that, owing to the scope, NICE can make recommendations only on the first-line use of bDMARDs. Therefore, this report will assume that NICE guidance after the first biologic treatment is routinely followed. This means that RTX with MTX will be used after failure of the first bDMARD should a patient be able to take MTX and following this a patient receives TCZ and MTX if not previously received.

For simplicity, it was assumed that it would be known whether or not a patient required monotherapy at the time of the first bDMARD initiation based on their experience of cDMARDs and also that any patient who could tolerate MTX could also receive RTX. This would not be correct when analysing population 1, adults with severe active RA not previously treated with cDMARDs, but is likely to be of limited impact as (1) it would be apparent only if bDMARDs were recommended in advance of intensive cDMARDs, and (2) the effect would be dampened as each treatment sequence would have to replace RTX with a bDMARD that is licenced for use in monotherapy and any impact would be relatively equal across all strategies.

Although the Assessment Group model can incorporate sequences of up to seven treatments, for simplicity it was decided that modelling large number of cDMARDs would not be overly informative. The rationale for this is that there are insufficient data on the effectiveness of cDMARDs after either bDMARDs or multiple cDMARDs. For this reason, once a patient had received intensive cDMARD therapy and/or the allotted bDMARDs within the sequence, patients were assumed to have one further cDMARD (typically MTX, but an alternative cDMARD if MTX was not suitable) before moving to 'non-biologic therapy' (NBT), which was a term defined to encompass a selection of treatments that clinicians may feel is appropriate for individual patients. It was assumed that NBT would be associated with no initial EULAR response, unlike MTX where the results from the NMA indicated that MTX had a significant EULAR response.

This description is in line with the data on HAQ progression that were presented by Norton *et al.*^{292,293} Given that this assumption applies to all strategies, the contraction of a cDMARD sequence to NBT is unlikely to influence the results and should allow an easier interpretation of the results.

For populations 2 and 3, it was assumed that all patients would have previously received intensive cDMARD therapy prior to the first bDMARD and thus this intervention was not explicitly modelled.

It is acknowledged that these represent simplified pathways and that for individuals there may be alternative strategies, but the Assessment Group and their clinical advisors feel that these are fairly representative and these are also relatively in line with the typical strategies presented by the manufacturers.

Population	Strategy
1	$MTX \rightarrow intensive \ cDMARDs \rightarrow NBT$
	$MTX \rightarrow intensive \ cDMARDs \rightarrow bDMARD^a + MTX \rightarrow RTX + MTX \rightarrow TCZ + MTX \rightarrow MTX \rightarrow NBT$
	$MTX \rightarrow intensive \ cDMARDs \rightarrow TCZ + MTX \rightarrow RTX + MTX \rightarrow MTX \rightarrow NBT$
	$bDMARD^{b} + MTX \rightarrow RTX + MTX \rightarrow TCZ + MTX \rightarrow MTX \rightarrow intensive \ cDMARDs \rightarrow NBT$
2 and 3	$MTX \rightarrow NBT$
	$bDMARD^{a} + MTX \rightarrow RTX + MTX \rightarrow TCZ + MTX \rightarrow MTX \rightarrow NBT$
	$TCZ + MTX \rightarrow RTX + MTX \rightarrow MTX \rightarrow NBT$

TABLE 157 Broad strategies considered possible for patients who could receive MTX

a Excluding TCZ.

b Excluding ABT, CTZ and TCZ.

Table 157 provides the broad strategies that were deemed appropriate by the Assessment Group for consideration in patients who could receive MTX.

Table 158 provides the broad strategies that were deemed appropriate by the Assessment Group for consideration in patients who could not receive MTX.

The broad strategies were distilled into the following strategies which were evaluated (*Tables 159–162*). The Assessment Group believes that these provide representative results. These strategies are not

	158	Broad	stratogias	considered	nossible f	or r	ationte	who	could	not i	rocoivo	MTY
IADLL	130	bibau	suategies	considered	possible i	υμ	allents	00110	coulu	noti	Leceive	

Population	Strategy
1	$cDMARD \rightarrow intensive \ cDMARDs \rightarrow NBT$
	$bDMARD^{a} \rightarrow bDMARD^{b} \rightarrow cDMARD \rightarrow intensive \ cDMARDs \rightarrow NBT$
2 and 3	$cDMARDs \rightarrow NBT$
	$bDMARD \rightarrow bDMARD^{b} \rightarrow cDMARD \rightarrow NBT$
a Excluding ABT, CTZ and TCZ. b Excluding TCZ.	

TABLE 159 The strategies evaluated for populations 2 and 3 for those who can receive MTX

Strategy	First-line treatment	Second-line treatment	Third-line treatment	Fourth-line treatment	Fifth-line treatment
Strategy 1	MTX	NBT			
Strategy 2	ABT i.v. + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 3	ABT s.c. + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 4	ADA + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 5	CTZ + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 6	ETN + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 7	GOL + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 8	IFX + MTX	RTX + MTX	TCZ + MTX	MTX	NBT
Strategy 9	TCZ + MTX	RTX + MTX	MTX	NBT	

Strategy	First-line treatment	Second-line treatment	Third-line treatment	Fourth-line treatment	Fifth-line treatment
Strategy 1	SSZ	NBT			
Strategy 2	ADA	ETN	SSZ	NBT	
Strategy 3	CTZ	ETN	SSZ	NBT	
Strategy 4	ETN	ADA	SSZ	NBT	
Strategy 5	TCZ	ETN	SSZ	NBT	

TABLE 160 The strategies evaluated for populations 2 and 3 for those who cannot receive MTX

TABLE 161 The strategies evaluated for population 1 for those who can receive MTX

Strategy	First-line treatment	Second-line treatment	Third-line treatment	Fourth-line treatment	Fifth-line treatment	Sixth-line treatment	Seventh-line treatment
Strategy 1	MTX	Intensive cDMARDs	NBT				
Strategy 2	ETN + MTX	RTX + MTX	TCZ + MTX	MTX	Intensive cDMARDs	NBT	

TABLE 162 The strategies evaluated for population 1 for those who cannot receive MTX

Strategy	First-line treatment	Second-line treatment	Third-line treatment	Fourth-line treatment	Fifth-line treatment	Sixth-line treatment
Strategy 1	SSZ	NBT				
Strategy 2	ETN	ADA	NBT			

significantly different from those of the manufacturers bar the exclusion of named cDMARDs at the end of the sequence. Given the large uncertainty in the efficacy of the cDMARDs in post bDMARD or post intensive cDMARDs the inclusion of specific interventions may be introducing spurious accuracy.

For population 1, in order to ease interpretation of results the analyses have been conducted assuming that ETN is generalisable in terms of costs and QALYs to all other bDMARDs. This assumption is given some support by the results for populations 2 and 3 presented in *Results*. The cost-effectiveness of a bDMARD first option compared with an option of bDMARD use after initial intensive cDMARD use is the analysis presented for populations 2 and 3.

Model structure/time cycle

A simplified schematic of the Assessment Group's model is shown in *Figure 101*. The model is individual patient based, written in Microsoft Excel and uses a DES approach. Therefore, a time cycle was not employed. The model allows only legitimate HAQ scores (the 25 points defined in the 0–3 range) with time to a change in HAQ score being a competing risk. The advantage of using discrete HAQ scores means that if some outputs (such as costs, utility or risk of mortality) are assumed, related by HAQ, there is no need to be continually updating the output as a HAQ score is assumed to linearly progress between legitimate HAQ points.

The Assessment Group model differs substantially from that of the manufacturers, as it is EULAR based and uses large databases for population of key parameters such as the initial HAQ changes conditional on EULAR response, and HAQ trajectory based on EULAR response.

Time horizon

The Assessment Group model employs a lifetime patient horizon, but assumes that no patient will live beyond 101 years. This is similar to the approaches undertaken in the manufacturer's submission.

Perspective

The Assessment Group model employs a direct NHS and Personal Social Services perspective, which is in line with that adopted by the manufacturers.

Discounting

The Assessment Group model used discount rates of 3.5% per annum for both costs and benefits as recommended within both the 2013 NICE methods guide²⁷⁴ and the 2008 methods guide.²²⁰ Sensitivity analyses were undertaken assuming values of 6.0% for costs and 1.5% for benefits.

Population characteristics

The Assessment Group samples patients who are MTX experienced from the BSRBR, which allows correlation to be maintained between the following characteristics: age; sex; disease duration; DAS; previous DMARDs; HAQ; and weight. Individual patients were resampled until the patient met the criteria for the population being analysed. This approach significantly increased the running times for those patients with a DAS between 3.2 and 5.1, as these represented a minority of patients in the BSRBR and required considerable resampling.

Having sampled the patient's characteristics, the HAQ score is set at a legitimate value. As an example, suppose that a non-legitimate HAQ of 1.600 was simulated. Sampling the probabilities of the bordering legitimate HAQ scores in inverse relation to their distance from 1.6 (20% chance of being 1.5 and 80% chance of being 1.625) would retain the mean value but allow legitimate HAQ scores. Thus, in this example we would simulate 80% of patients having a HAQ score of 1.625 with the remaining patients having a HAQ of 1.5 rather than 100% having a HAQ of 1.600.

The Assessment Group populated patients' characteristics based on the BSRBR, whereas a number of manufacturers have used the patient characteristics from their pivotal trials to populate their mathematical models. The advantage of the Assessment Group's approach is that it is a much larger data set (7250 patients), it is representative of people treated in England and Wales and the correlation structure between parameters is maintained. A disadvantage is that the data set for moderate to severe RA patients is much smaller, with approximately 500 patients, although this is not small relative to the numbers of patients within the RCTs.

For patients who are MTX naive it was deemed that the BSRBR database was not an appropriate data source, as this would contain a very small number of such patients. Both AbbVie and Pfizer presented population characteristics for MTX-naive patients with a DAS > 5.1. Of the two estimates, that of Pfizer based on the COMET trial⁸¹ was deemed more appropriate, as the disease duration was of 1 year, compared with 11.28 years reported by AbbVie (citing Breedveld *et al.*¹⁰⁹), which was thought to be a long period without having experienced MTX. The estimate from Pfizer had a greater HAQ at baseline (1.70 compared with 1.38) and were on average younger (a mean age of 51.4 years compared with 60 years).

Costs of the interventions

These costs are similar to those used by the manufacturers; however, there are two comments worth noting: (1) that the Assessment Group takes all PASs into consideration whereas the majority of manufacturers do not; and (2) that a number of manufacturers have assumed a fixed weight per person, which can underestimate the costs of weight-based interventions. The intensive cDMARDs strategy was costed as triple cDMARD plus prednisolone therapy. This is consistent with the intensive cDMARD therapy provided in the TICORA study.²⁹⁴ The treatment included MTX (20 mg weekly), HCQ (6.5 mg/kg daily), SSZ (3 g daily) and prednisolone (oral, 7.5 mg daily). The total treatment cost in the response period is £3365.32, with a regular monthly treatment cost of £491.34.

An additional treatment option is listed in *Tables 161* and *162* that is not an intervention within the NICE scope: RTX plus MTX.

The costs of other drugs used within the sequence (RTX and the costs of cDMARDs) are provided in *Table 163*.

Costs of administration and monitoring

The administration costs of infusions were taken from TA247,²⁶ in which the final appraisal determination stated that 'the manufacturer's revised estimate of £154 was acceptable'. This estimate (of 60 minutes infusion time) was also applied to ABT and IFX in the absence of a robust relationship between costs and infusion times. This assumption may be favourable to IFX and unfavourable to ABT, as the recommended infusion times are at least 2 hours and 30 minutes respectively. The final appraisal determination for TA247²⁶ did not comment on the assumption that 10% of s.c. injections would be performed by district nurses and the Assessment Group has assumed that these were also thought acceptable. This resulted in an average administration cost per s.c. injection of £2.61. Neither of the administration costs has been inflated as they were relatively recent and there is uncertainty in the direction of costs in the current economic climate. The value used by the Assessment Group is in broad agreement with the majority of manufacturers.

The assumed monitoring costs are provided in *Table 164*. These are assumed equal for MTX and bDMARDs. It is possible that the estimate of one hospital outpatient appointment per month may be an overestimate. However, because, on clinical advice, this was assumed, in both the bDMARD and the cDMARD arms, and there was no benefit on mortality assumed, there would be no impact on the cost-effectiveness ratio were this value to be changed to a different value.

Treatment	Dose regimen	Cost per cheapest dose (£)ª	Cost of first 6 months (£) ^b	Subsequent annual treatment cost (£) ^b
RTX	2000 mg every 9 months	3492.60 (2000 mg)	3492.60	4656.80 ^c
HCQ	6.5 mg/kg per day (maximum 400 mg per day)	0.17 (400 mg)	31.35 ^d	62.70 ^d
MTX	7.5 mg per week escalated by 2.5 mg per week up to 20 mg per week	0.80 (20 mg)	19.32	41.57
Prednisolone	7.5 mg per day	1.07 (7.5 mg)	196.25	392.50
SSZ	500 mg per day escalated by 500 mg per week up to 3000 mg per day	0.79 (3000 mg)	131.38	290.17
Intensive combination DMARD therapy ^e	HCQ + MTX + prednisolone + SSZ (doses as per monotherapy treatments)	N/A	378.31	786.94
Palliative care/rescue therapy	N/A ^e	Assumed 60 per month ^f	360	720

TABLE 163 The costs of cDMARDs and RTX

N/A, not applicable.

a Note that dose can be daily or weekly (see dose regimen column).

b No administration or monitoring costs included.

c RTX is administered at discrete 9-month periods.

d Using BSRBR average weight of 73 kg for illustration.

e Intensive combination DMARD therapy is assumed to be the individual regimens for HCQ, MTX, prednisolone and SSZ combined.

f An approximation of monthly 'post-biologic' cDMARD therapy (LEF, GLD, CYC, etc.).

TABLE 164 The monitoring costs assumed in the Assessment Group model

Monitoring component	FBC	ESR	ВСР	CXR	Urinalysis	Hospital outpatient attendance	Total cost (£)
Assumed cost (£)	3ª	3ª	3ª	33ª	0.09 ^b	128 ^b	
MTX monitoring: before treatment initiation	1	1	1	1	0	1	170
MTX monitoring: first 6 months of treatment	10	0	10	0	0	10	1700
Monthly monitoring cost	1	0	1	0	0	1	134

BCP, biochemical profile; CXR, chest X-ray; FBC, full blood count.

a NHS reference costs 2012.29

b Malottki et al.¹⁷¹

Comparative treatment efficacy (network meta-analysis)

The NMA undertaken by the Assessment Group has been detailed in *Chapter 3, Network meta-analysis results*. For information graphical depictions of the estimated proportions of EULAR response are provided in *Figures 102* and *103* for EULAR and in *Figures 104–109* for ACR mapped to EULAR. It is stressed that these figures do not reflect the considerable uncertainty in the values and reflect mean estimates only.

The Assessment Group model reflects current NICE guidance and UK practice by simulating patient response in terms of EULAR categories (none, moderate, good). However, the evidence on clinical effectiveness does not universally report EULAR responses, with ACR categories widely used. In order to inform the evidence synthesis and to be able to make use of the entirety of the evidence base in the most informed and efficient manner, we sought evidence of the relationship between these response categories using individual patient-level data.

FIGURE 102 Estimated mean EULAR responses in cDMARD-experienced patients (main analyses). Int, intensive.

FIGURE 103 Estimated mean EULAR responses in cDMARD-experienced patients (main analyses + RCTs with a small level of bDMARD use). Int, intensive.

FIGURE 104 Estimated mean EULAR response in cDMARD-experienced mapped patients from ACR trials (main analyses). Int, intensive.

FIGURE 105 Estimated mean EULAR response in cDMARD-experienced mapped patients from ACR trials (main analyses + RCTs with a small level of bDMARD use). Int, intensive.

FIGURE 106 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials (main analyses + RCTs with a small level of bDMARD use and also allowing a trial with low MTX background use). Int, intensive.

FIGURE 107 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials (main analyses + RCTs with low MTX background use). Int, intensive.

FIGURE 108 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials in cDMARD-naive patients. Int, intensive.

FIGURE 109 Estimated mean EULAR response in cDMARD-experienced patients mapped from ACR trials in cDMARD-naive patients including RCTs with a proportion of cDMARD-experienced patients. Int, intensive.

Patient category	Less	ACR20	ACR50	ACR70	Total
EULAR ESR, all patients					
None	755	4	2	0	759
Moderate	136	27	2	2	163
Good	57	26	10	2	83
EULAR ESR, severe active					
None	72	2	0	0	74
Moderate	33	19	0	0	52
Good	3	9	5	1	12

TABLE 165 The relationship between EULAR responses and ACR responses in the VARA database

Analyses were undertaken (1) using both versions of EULAR response (CRP based and ESR based) and (2) for all patients and just those with DA28 > 5.1 at baseline. There was great similarity between the CRP- and ESR-based measures. *Table 165* reports ESR-based values, which were used in the economic model as it is this measure that was reported most regularly in the relevant RCTs.

By assuming that the relationships shown in *Table 165* were correct it was possible to use data taken from the NMA of ACR by mapping these onto EULAR data and subsequently using the same procedures as for the Assessment Group model.

The following assumptions have been made regarding the efficacy of RTX based on work by Malottki *et al.*¹⁷¹ Table 46 in Malottki *et al.*¹⁷¹ reports that in terms of ACR20, ACR50, ACR70 and withdrawal for any reason that the indirect comparison of RTX versus ABT either favoured RTX, albeit with wide CIs, or there was no difference. Given these data, the efficacy of RTX was assumed equal to i.v. ABT.

There are no marked differences between the results produced by the Assessment Group and the combined evidence presented by the manufacturers.

Responder criteria

The Assessment Group model is based on EULAR response category (good/moderate/none) in order to reflect current NICE guidance on biologic therapies in RA and to align more closely to UK clinical practice in terms of the assessment of response to therapies. The estimated probability of each EULAR response has been taken from the NMAs conducted by the Assessment Group. This allowed analyses to be conducted purely on EULAR data or estimated based on ACR responses in order to encompass a wider evidence base. This differs from the majority of submissions, which assumed that ACR responses would be used to determine whether or not patients were responders (i.e. there is an implicit stopping rule associated with ACR and its relationship to EULAR criteria that underpins these models, though this is not explicitly stated).

Health Assessment Questionnaire/European Quality of Life-5 Dimensions changes in relation to response levels

For each simulated individual the model allocates a change in HAQ from baseline, dependent on the individual's EULAR response. Different sources for these values were considered, including the option of allocating different values for those on bDMARDs compared with those on cDMARDs. However, in the base case we used the same values for both cDMARDs and bDMARDs.

In the base case we used values modelled from the BSRBR. We assumed zero change for non-responders, a HAQ reduction of 0.317 (SE 0.048) for moderate responders and 0.672 (SE 0.112) for good responders (*Table 166*). These values were obtained from modelling data from the BSRBR and equate to predictions for a person with the characteristics equivalent to the mean of the overall sample. Full details of the approach are provided in *Health Assessment Questionnaire trajectory following initial response* because the method estimates both 6-month and subsequent HAQ changes in a single statistical approach.

bDMARDs

For patients with the mean characteristics of the actual sample of EULAR moderate responders in the BSRBR, the statistical model predicts a change from 2.08 to 1.79 (a change of 0.29). The mean change in the raw data for this group is from 2.08 to 1.75 (a change of 0.33). For patients with the mean characteristics of the actual sample of EULAR good responders the statistical model predicts a change from 1.81 to 1.27 (a change of 0.54). The mean change in the raw data for this group from 1.81 to 1.26 (a change of 0.55). These data are provided to demonstrate the fact that the observed and predicted values are extremely similar. As the patients sampled in the cost-effectiveness model have the mean characteristics of the entire BSRBR bDMARDs-treated cohort and there is no mechanism to link those characteristics to the probability of EULAR response it is appropriate to use the values in *Table 166*. This could favour bDMARDs as the HAQ change associated with a good EULAR response is higher.

The statistical model that estimates HAQ change at 6 months and beyond, conditional on EULAR response category, is designed to do so at the individual patient level. However, as the School of Health and Related Research (ScHARR) model is not a true patient-level model in the sense that many of the functions in fact are programmed to estimate the average course of a patient, and because using this statistical model at the patient level substantially increased computational run time, we instead used the mean 6-month HAQ improvement for all patients. This was calculated by setting all characteristics at their mean values and assuming that the model error and mean random effect were both set to zero.

EULAR response	Mean	SE
None	-0.000	_
Moderate	-0.317	0.048
Good	-0.672	0.112

TABLE 166 Mean HAQ change by EULAR response category used in the model

The statistical model estimating initial response is calculated at the individual patient level; however, as the data for cDMARDs were only at the aggregate level, aggregate data for bDMARDs were used. Without this adaptation the results would be unfavourable to bDMARDs as individual patients could be predicted to have a HAQ increase despite a good EULAR response, and when this is combined with the non-linear mapping of HAQ to utility such patients would have a disproportionate weight when calculating the average QALYs.

cDMARDs

In the base-case model the same values were applied for cDMARDs as for bDMARDs.

In addition, the mean HAQ improvements for patients on cDMARDs according to their EULAR response between baseline and 6 months was calculated from the ERAS data set. These data are shown in *Table 167* for all patients between baseline and 6 months later.

It is seen that the average HAQ improvement for both moderate and good EULAR responses were markedly larger than that for no EULAR response and are relatively close to each other. Given the degree of uncertainty surrounding these mean values, it was possible in some instances that the HAQ improvement for those with a moderate EULAR response was greater than those with a good EULAR response.

The use of the modelled data for the entire BSRBR cohort for all treatments and for both those with moderate and those with severe active disease has the advantage of avoiding this potential anomaly, it reduces the running time of the model, and it provides results that are closely aligned to those observed in the BSRBR and ERAS data sets. For EULAR moderate responders the value we used (average HAR improvement 0.32) is close to that observed for moderate responders in the BSRBR (average HAR improvement 0.33). This is a smaller improvement in HAQ than observed it the ERAS data set (0.51). For EULAR good responders the value used (average HAQ improvement 0.67) was closer to the ERAS values (average HAR improvement 0.65) and significantly higher than the values seen for good responders in the BSRBR (average HAR improvement 0.55). The choice of values therefore is likely to be favourable to the cost-effectiveness of bDMARDs in the base case.

The methods used by the Assessment Group differ from those used by the majority of the manufacturers, which assume that the relationship between HAQ and ACR response observed within their key trials is applicable to all interventions. These assumptions use a relatively small sample size and may be subject to variability, as observed in the two MSD submissions where the assumed HAQ changes per ACR level are markedly different. Additionally, the patients recruited to RCTs may not be representative of those patients who will be treated: this could influence the relation between the absolute change in HAQ and HAQ at baseline.

	НАQ						
	Mean	SE	<i>z</i> -value	<i>p</i> -value	LCL	UCL	
EULAR response baseline > 6-month visits							
None	-0.050	0.025	-2.03	0.043	-0.098	-0.002	
Moderate	-0.509	0.035	-14.67	0.000	-0.577	-0.441	
Good	-0.650	0.043	-15.10	0.000	-0.735	-0.566	
LCL, lower 95% CI; UCL, upper 95% CI.							

TABLE 167 Mean HAQ change by EULAR response category for those on cDMARDs

Health Assessment Questionnaire trajectory following initial response

This section has been divided into two subsections: one relating to bDMARDs and one relating to cDMARDs.

In addition to the values assumed by the Assessment Group in our base case, sensitivity analyses were run using values considered within previous NICE TAs. These assumed that the HAQ trajectory on biologics is flat, 0.045 per annum while on cDMARDs and 0.06 per annum while on 'palliative care' (which equated to NBT in the Assessment Group model).

bDMARDs

The BSRBR database was used in order to estimate the trajectory of HAQ. The BSRBR database measures HAQ at 6-month intervals for all registered patients for a maximum of 3 years. The evolution of HAQ while a patient remains on a biologic therapy was estimated as a function of a patient's baseline characteristics and 6-month EULAR response category.

The patient data were restricted to those patients who had a full set of baseline characteristics, including HAQ and at least two other recorded measurements of HAQ while on a biologic therapy. The only bDMARDs for which there was sufficient follow-up time were deemed to be ETN, IFX and ADA.

There are 10,186 such patients in the data set, of whom 2417 are EULAR good responders, 5492 are EULAR moderate responders and 2277 are EULAR non-responders (of whom a quarter had treatment longer than 4 years' duration). *Figure 110* shows the average HAQ in the sample by EULAR response. It is seen that HAQ decreases in the first 6 months after starting on a biologic therapy (with the level of decrease greater as the level of EULAR response increases) and levels off towards the end of the 3-years observation period. For good responders there is a degree of loss of initial 6-month HAQ improvement in subsequent periods. It is important to note that there is an imbalance between the three groups of responders. For example, it can be seen that 'good' EULAR responders have a lower baseline HAQ than 'moderate' or non-responders.

Statistical analyses have been undertaken for those patients who have a good or moderate EULAR response. No formal analysis was conducted for those patients who had no EULAR response as they are assumed to have treatment stopped after 6 months in accordance with NICE guidance within the cost-effectiveness analyses.

FIGURE 110 Mean HAQ by EULAR response category for those receiving bDMARDs.

An 'autoregressive latent trajectory model'²⁹⁶ was fitted separately for moderate and good responders. The model uses baseline characteristics, including baseline HAQ, to estimate both initial HAQ response (6 months) and the longer-term progression of HAQ in a single statistical model. The model incorporates a random intercept and a random slope from a growth model that captures the fixed and random effects of the latent growth trajectories over time. It also includes an autoregressive structure representing any time-specific influences between the repeated measures of HAQ over time. The model can be written as follows:

where y_{it} denotes HAQ for patient *i* at time *t* for t = 1, ..., 6 (where t = 1 corresponds to 6 months after starting biologic, t = 2 corresponds to 12 months after, etc.); η_{0i} and η_{1i} are a random intercept and a random slope respectively; w'_i is a time invariant, individual specific vector of baseline covariates; x_t are the time scores of a non-linear trend where, for identification purposes, we set the first one to zero ($x_1 = 0$) and the last one, 30 months later, to 3 ($x_6 = 3$) and freely estimate the remaining time scores ($x_2, ..., x_5$). If a linear trend can appropriately describe the data the estimated time scores should follow the sequence 0.6, 1.2, 1.8, 2.4 for successive periods t = 2, ..., 5. The ε_{it} are mean zero normal disturbances with time varying variances equal to σ_{et}^2 , they are independent over time and uncorrelated with the u_i 's. The u_i 's are mean zero, normally distributed, time invariant individual random terms with a full covariance matrix and potentially correlated with ε_{i0} . The parameters γ_0 , α_0 , α_1 and the vectors of parameters γ_1 , β_0 , β_1 are fixed over time whereas ρ_t is a time-varying parameter.

Health Assessment Questionnaire at baseline is treated as predetermined. Baseline covariates, *w'*_i, include age; sex; disease duration (in months); DAS28; and number of previous DMARDs. The continuous baseline covariates are centred on their overall sample means (*Table 168*). In addition, the covariate age is divided by 10 in the model to avoid convergence problems due to scaling differences. This is for ease of interpretation of the estimated parameters but does not change the model in any way.

We estimate the model using maximum likelihood with robust SEs using a sandwich estimator to guard against non-normality. Initially a joint model for the three groups (good EULAR response, moderate EULAR response and no EULAR response) was estimated to try to maximise informative data. However, it was found that no restrictions across groups could be imposed and thus the final models had to be estimated conditional on EULAR response to therapy at 6 months. *Table 169* shows the estimated parameters of the models for moderate and good responders.

The autoregressive latent trajectory model fits better than either the autoregressive model or the growth model on its own. Restrictions are tested using the Satorra and Bentler²⁹⁷ scaled difference chi-squared test.

Covariate	All sample (sample mean <i>n</i> = 10,186)	Moderate responders (sample mean <i>n</i> = 5492)	Good responders (sample mean <i>n</i> = 2417)
Age (years)	56.096	56.854	53.815
Female (%)	0.763	0.781	0.700
Disease duration (months)	159.444	160.188	155.544
DAS	6.551	6.763	6.281
Number of previous DMARDs	3.898	3.937	3.645

TABLE 168 Sample means of baseline covariates

Covariates		Moderate		Good	
	<i>x</i> ₂	0.159	(0.397)	1.649	(1.531)
	<i>X</i> ₃	1.634***	(0.314)	2.515***	(4.395)
	X ₄	2.732***	(0.351)	3.260***	(12.639)
	<i>x</i> ₅	3.249***	(0.415)	2.810***	(6.998)
Random intercept (η_{0i})	Intercept	1.365***	0.05	1.233***	0.112
	(Age–mean age)/10	0.088***	0.008	0.147***	0.014
	Female	0.161***	0.021	0.145***	0.035
	Disease duration (months) – mean disease duration	0.006***	0.001	0.013***	0.002
	DAS – mean DAS	0.097***	0.010	0.091***	0.021
	Number of previous DMARDs–mean number of previous DMARDs	0.044***	0.005	0.106***	0.013
Random slope (η_{1i})	Intercept	0.043	0.03	-0.091**	0.042
	(Age–mean age)/10	0.009***	0.003	-0.009*	0.005
	Female	0.009*	0.006	0.003	0.008
	Disease duration (months) – mean disease duration	0.000	0.000	-0.001***	0.000
	DAS – mean DAS	0.003	0.003	-0.011*	0.006
	Number of previous DMARDs–mean number of previous DMARDs	0.004**	0.002	-0.007*	0.004
HAQ at baseline	Intercept	1.915***	0.015	1.797***	0.023
	(Age–mean age)/10	0.052***	0.006	0.069***	0.010
	Female	0.155***	0.017	0.139***	0.027
	Disease duration (months) – mean disease duration	0.004***	0.001	0.006***	0.001
	DAS – mean DAS	0.179***	0.007	0.158***	0.013
	Number of previous DMARDs—mean number of previous DMARDs	0.033***	0.004	0.076***	0.008
	ρ_1	0.111***	0.025	0.007	0.058
	ρ_2	0.117***	0.034	0.129**	0.052
	$ ho_3$	0.069***	0.021	0.182***	0.046
	$ ho_4$	0.040	0.033	0.246***	0.055
	$ ho_5$	0.019	0.047	0.216***	0.041
	$ ho_{6}$	0.026	0.040	0.225***	0.052
Cov	HAQ0 $-\eta_{0i}$	0.171***	0.008	0.241***	0.022
	HAQ0 $-\eta_{1i}$	0.005	0.004	-0.018**	0.008
	$\eta_{0i} - \eta_{1i}$	0.005	0.006	-0.039**	0.019
	$Var(\eta_{0i})$	0.259	0.017	0.431	0.067
	$Var(\eta_{1i})$	0.004	0.001	0.009	0.005
					continued

TABLE 169 Estimated parameters and SEs in brackets

Covariates		Moderate		Good	
Var	Eps0	0.245***	(0.006)	0.335***	(0.010)
	Eps1	0.069***	(0.008)	0.039	(0.041)
	Eps2	0.050***	(0.003)	0.074***	(0.011)
	Eps3	0.058***	(0.005)	0.073***	(0.007)
	Eps4	0.044***	(0.004)	0.072***	(0.010)
	Eps5	0.047***	(0.007)	0.060***	(0.008)
	Eps6	0.053***	(0.005)	0.065*	(0.010)
Cov, covariance; v	ar, variance.				

TABLE 169 Estimated parameters and SEs in brackets (continued)

*p<0.1; **p<0.05; ***p<0.01.

As discussed above, the model provided estimates very close to the observed data in terms of 6-month HAQ changes. The cost-effectiveness model used estimates of the 6-month HAQ change for a patient with mean characteristics of the overall sample, baseline HAQ of 2.03, with all error terms set to zero and conditional on EULAR response category. This resulted in estimates of 0.317 (SE 0.048) for moderate responders and 0.672 (SE 0.112) for good responders.

cDMARDs

The cost-effectiveness model simulates, for each patient, the progression of HAQ for the period that patient remains on non-biologic DMARDs. This could be (a) for patients on the cDMARD (comparator) element of the simulation model, or (b) for patients on the bDMARD strategy at the point when they withdraw from the biologic therapy.

Previously, Norton et al.²⁹² estimated HAQ progression in patients not receiving bDMARDs using data from patients recruited to the ERAS inception cohort study. This is a large, UK-based cohort that has long-term follow-up. In the Norton et al. study,²⁹² observations relate to patients recruited between 1986 and 1998 (n = 1460), followed for up to 10 years. A growth mixture model approach was taken to the analysis of the data. In the published paper, four classes were identified. Full details of the statistical methods are provided in the Norton et al. paper,²⁹² including details of the process for selecting the optimal number of latent classes. These findings have since been corroborated in the NOAR data set with follow-up to 15 years and the Early Rheumatoid Arthritis Network data set.²⁹³ Although the concern in the cost-effectiveness analysis is to estimate the expected change in HAQ over time, not with the latent classes per se, the latent class analysis provides a more flexible and appropriate method of modelling HAQ change over time. It allows the incorporation of patient characteristics as predictors of HAQ progression in a more appropriate manner. Importantly, it also provides a reflection of how the rate of HAQ progression changes over time and places no restriction on this being a simple linear progression. This is likely to be a more appropriate reflection of a chronic disease, the use of different treatments (including drugs and surgical interventions) at different points in the care pathway which influence that progression and the nature of the HAQ scale itself. The use of a simple annual progression rate for all patients at all time points does none of these things.

A modified analysis based on the published Norton *et al.* study²⁹² was performed so that additional patient descriptors, including those used to define patients within the cost-effectiveness model, were used as covariates within the statistical model. Importantly, these were used as explanatory variables for group membership. In this way, the expected HAQ at any point for a patient with a given set of baseline characteristics can be estimated. The model is formally:

$$y_{itc}^{*} = \eta_{0ic} + \eta_{1ic} x_{t} + \eta_{2ic} x_{t}^{2} + \eta_{3ic} x_{t}^{3} + \varepsilon_{it} \qquad t = 0, 0.5, 1, 2, ..., 15$$

$$y_{itc} = \begin{cases} y_{itc}^{*} \text{ if } y_{itc}^{*} > 0 \\ 0 \text{ if } y_{itc}^{*} \le 0, \end{cases}$$
(25)

where c is the class and the probabilities of class membership are estimated using a multinomial logit model:

$$\Pr(C_{it} = c | z_{it}) = \frac{e^{z_{it} \mu c}}{\sum_{s=1}^{4} e^{z_{it} \mu s}},$$
(26)

where *z* contains a series of factors as covariates within the model that were originally considered in separate analyses in Norton *et al.*²⁹⁸ plus additional factors relevant to our decision model. Specifically, the model used for the analysis in this report includes age at disease onset; sex; deprivation level; disease duration; rheumatoid factor positive at baseline; fulfilment of ACR criteria for RA at baseline; baseline DAS; failed two DMARDs; and DAS response achieved at 6 months.

The four classes used in the assessment are shown in *Figure 111*. Probabilities in this case relate to the ERAS population as a whole. For the cost-effectiveness populations, covariate adjustment was used to estimate relevant class probabilities.

The plots show that there are clearly identifiable separate groups in terms of HAQ progression. Three classes exhibit a J-shaped curve and the fourth shows a general worsening over time. In all cases, the rate of worsening over time decreases. This is contrary to the typical assumptions of DMARD worsening incorporated into cost-effectiveness models, which are assumed to be linear. The use of the growth model also avoids the prediction that large proportions of patients progress to the worst HAQ state (3) before death. This is contrary to the pattern seen in the ERAS, Early Rheumatoid Arthritis Network and NOAR observational data sets both in and beyond. For example, in the US NDB just 1% of observations exceed a HAQ of 2.5.²⁹⁹ Although there may be reasons why observational data sets like this do not fully represent patients with such extreme levels of functional disability (e.g. that self-completed surveys are not returned), it is unlikely that these are substantially biased.

There are limitations with this approach: ERAS is an inception cohort with follow-up of patients up to 15 years and we therefore cannot be sure what happens beyond that time. Covariates refer to baseline characteristics in the ERAS data set and, while many of these are set, this baseline does not match all the uses of the data in the cost-effectiveness analysis. It should be noted, however, that many of the limitations that are pertinent to the ERAS analysis are similarly applicable, often to a greater degree, in the studies that underpin the mean HAQ progression rates that are typically used in cost-effectiveness analyses of drug therapies in RA.

FIGURE 111 Academic-in-confidence information has been removed.

To implement the results of the statistical model in the cost-effectiveness analysis, a number of choices were made:

- 1. Rather than use the model predictions for absolute HAQ values, we used the model to predict change in HAQ. This ensured consistency with the baseline sampled HAQ value, the degree of improvement modelled at 6 months based on the EULAR response seen in clinical trials and the simulated HAQ scores for patients treated with bDMARDs.
- 2. The output provided to us [from the software package Mplus version 7 (Muthén & Muthén, Los Angeles, CA, USA)] reports parameter estimates to three decimal places. This is not sufficient and results in some very large fluctuations in the predicted HAQ, particularly at times exceeding 10 years from the start of treatment (this is because there is a cubic term in the model that requires a much greater degree of precision). Instead we used the values for each class reported in *Figure 111*. The model for this analysis differs from that underpinning *Figure 111* only in that there are more variables entering as explanatory variables for class membership. The trajectories within the four classes are unaffected.
- 3. Not all explanatory variables that appear in the statistical model are relevant to the way that the cost-effectiveness model defines individuals: deprivation level, rheumatoid factor positive at baseline, fulfilment of ACR criteria for RA. We therefore set deprivation level and RF factor positive at the means for the ERAS cohort (0.49 and 0.73 respectively). We set ACR criteria of RA to 1.
- 4. The HAQ trajectory for the ERAS cohort includes the initial period where patients with early RA start on cDMARDs and, in many cases, experience improvement in their disease. As this period is modelled separately in the ScHARR model we incorporated values from year 2 onwards only, as this is the point where initial treatment benefits appear to have been lost for all latent classes.
- 5. Where extrapolation was used beyond the period for which data were available (i.e. beyond year 15), we assumed zero HAQ progression, as this is the rate of progression predicted by the statistical model, for all classes. This also ensures that the cost-effectiveness model did not simulate counter intuitive results, whereby HAQ improves for patients on cDMARDs but not for patients on bDMARDs. Additionally, it should be noted that it is at these long extrapolations beyond 10 years where there is evidence that the model may underpredict HAQ worsening, even within the period covered by the data. In ERAS there appears to be continued worsening of HAQ in the observed data, though NOAR does not exhibit this characteristic.
- 6. For those patients simulated to follow bDMARD therapy who then return to cDMARDs after the sequence of biologic drugs has been exhausted, we again take each class from year 2 of the modelled data. Patient covariates are taken from the current position in the model rather than from baseline characteristics.

Overall, for patients population simulated in the cost-effectiveness model for group 2 (those that have failed two previous DMARDs and have active disease), there is a lower probability of being in the lowest class 1 (13% vs. 22% in the overall ERAS cohort), a higher probability of class 2 (36% vs. 33%) and class 3 (38% vs. 29%), and a lower probability of being in class 4 (12% vs. 16%). Thus, the cohort of patients simulated within the cost-effectiveness analysis are concentrated more in the latent classes that exhibit rapid HAQ progression than in the overall ERAS cohort.

The methods used by the Assessment Group differ from those used by the manufacturers, which typically assume within their base cases that HAQ progression on bDMARDs is zero and that HAQ progression on cDMARDs is at the rate of 0.045 per annum.

As seen in *Figure 110*, the assumption that there is no HAQ progression while on bDMARDs appears, in the short term, to be supported by the 3-year follow-up data from the BSRBR. However, the assumed progression on cDMARDs is not compatible with that seen in *Figure 111*, and lacks face validity as this leads to predictions that most patients reach the ceiling value of HAQ prior to death.

It should also be noted that the use of an annual worsening in HAQ of 0.045 entirely lacks any empirical support. Chen *et al.*¹²³ are the source of this value; they state:

In the base case, the following assumptions were made concerning HAQ increases over time. It was assumed that patients remaining on TNF inhibitors experience a worsening (increase) in HAQ equivalent to the general population. Based on the study by Krishnan and colleagues, this was set a progression of 0.03 per year... It was assumed that TNF inhibitors halve the general worsening in HAQ, so that patients on palliation have a progression rate of 0.06 per year ... For conventional DMARDs, an intermediate progression rate of 0.045 per year was assumed ... These assumptions were varied in sensitivity analysis.

Chen et al., p.100¹²³

Calculating an accurate HAQ progression can be challenging as historical data on past trends may be only a weak predictor of future trajectories; and there are no data on patients who are inadequately treated. In addition, HAQ alone may not encompass all utility impacts of RA that can be caused by flares.

The Assessment Group identified three papers that provided detail on HAQ trajectory while patients were receiving cDMARDs.^{243,300,301} The search was not systematic and it is possible that papers were not identified. Key elements of these trials have been tabulated (*Table 170*). It is also not known whether or not the use of current cDMARDs would be associated with a lower HAQ trajectory.

The clinical advisors within the Assessment Group stated that observational studies of RA populations generally show a HAQ progression substantially < 0.05 per year, but caution that these often cover the spectrum of RA patients and would contain patients who would not have received bDMARDs. This point is highlighted in McWilliams *et al.*³⁰²

In order to provide an insight into the impact of assumed HAQ trajectory while on cDMARDs the Assessment Group has undertaken scenario analyses using the values of 0.045 for cDMARDs and 0.06 for palliative care in addition to using the models derived from the ERAS database.

There appears to be little long-term evidence to support the value used by the manufacturers; in contrast the values used by the Assessment group have come from a large, prospective, observational database that has been corroborated in a separate database. Assuming a linear HAQ progression does not take into account the impact of surgery that may halt HAQ progression, the costs of which are currently assumed to be incurred without benefit.

Time to discontinuation on treatment

The duration of treatment on the first biologic for adult RA patients was estimated using the BSRBR database, which records the dates on which therapies are initiated and ended. Separate analyses were undertaken for those patients obtaining good and moderate EULAR responses at 6 months. Patients classed as non-responders at 6 months are assumed to be withdrawn from therapy in the Assessment

Study	Number of patients analysed	cDMARDs	Mean follow-up (years)	Average HAQ progression per annum
Plant <i>et al.</i> , 2005 ³⁰⁰	421	HCQ, sodium aurothiomalate, auranofin and penicillamine	5	0.08 (from years 1 to 5)
Symmons <i>et al.</i> , 2005 ³⁰¹	466	Intensive cDMARD treatment	3	0.06
Munro <i>et al.</i> , 1998 ²⁴³	440	i.m. GLD	5	0.05 (from years 2 to 5)
im intromussular				

TABLE 170 Identified evidence on HAQ progressions while on cDMARDs

Group model (as in current NICE guidance,^{22,24,26,27,237} which requires an improvement in DAS28 of at least 1.2 at this time point for treatment to be maintained). This allows patients who have been withdrawn prior to 6 months to be included in the analysis, though there is a risk that their response category recorded at 6 months is in fact related to having switched to some other therapy.

A range of parametric survival models (Weibull, exponential, Gompertz, log-logistic, log-normal, gamma and Weibull frailty models) were considered. The best-fitting model, in terms of both the Akaike information criterion and the Bayesian information criterion, was that based on the gamma distribution. The following covariates were included: age, sex, disease duration at baseline, DAS; number of previous DMARDs and HAQ at baseline. We included all covariates, even if insignificant, but considered alternative specifications (such as squared and log-terms) in order to identify our preferred model, guided by AIC/BIC.

Establishing separate covariates for the individual biologic therapies within this appraisal was considered. As GOL, ABT, TCZ and CTZ comprised < 1% of the observations, and had follow-up durations of much shorter duration, these were excluded leaving only IFX, ETN and ADA. Although the duration of treatment for those on ETN and ADA was significantly shorter than for IFX, this is likely to be due to the times at which therapies became available in the UK. Owing to this potential confounding and the lack of data for a number of treatments, separate terms for individual therapies in the cost-effectiveness analysis were not adopted.

Two plots comparing the duration on treatment estimated by the models with those observed in the BSRBR database are shown in *Figure 112*. These are divided into those patients with moderate or good EULAR response, and are constrained to only those patients who would be eligible for biologics under current NICE guidance. Patients who met the NICE criteria were the overwhelming majority and constituted 7250 of the 7743 patients (94%).

FIGURE 112 Plots of the estimated data from the statistical models compared with the observed data. (a) Moderate responders (NICE eligible); and (b) good responders (NICE eligible).

Given the paucity of data on bDMARDs used before cDMARDs an assumption was required regarding the duration of treatment if bDMARDs were used before cDMARDs. It was assumed that the duration would be unaffected by whether or not cDMARDs were used prior to bDMARDs.

There were also few data on the duration of response for patients receiving cDMARDs. Based on the assumption that cDMARDs are not likely to be more toxic than biologics used in combination with a cDMARD, it was assumed that the survival duration for each EULAR response category for bDMARDs would be applicable for cDMARDs.

It was assumed that patients would not switch to a subsequent treatment within 6 months of initiating a treatment; this assumes that any AE would be monitored before changing treatment at 6 months.

The method used by the Assessment Group differs from those of the manufacturers but it is commented that there was diversity in the methods used by the manufacturers with no clear consensus reached. One flaw in the approach taken by manufacturers is that the discontinuation rates had frequently not been conditional on EULAR response and thus the average time on treatment would be decreased by those patients without a response who typically stay on treatment for 1 year, despite the current NICE stopping criteria.

In summary, the Assessment Group does not believe any of the methods assumed by the manufacturers represents a significantly better method than that used by the Assessment Group and there is a reason to believe that the approach taken by the Assessment Group is the preferred method.

Rebound post treatment

The change in a patient's HAQ when treatment has failed to be efficacious or is stopped owing to an AE is not known with certainty. The Assessment Group has assumed that following cessation of treatment the initial HAQ improvement experienced on treatment initiation would be lost. The resultant HAQ would be assumed for the subsequent 6 months when the next treatment in the sequence is trialled.

This is similar to assumptions made within the manufacturers' models.

Assumed NHS costs per Health Assessment Questionnaire band

A brief review of the recent literature regarding the costs associated with active RA and in particular HAQ score identified few data that were not identified collectively within the manufacturers' submissions. The only information of note was a poster by Bansback *et al.*³⁰³ which, using Canadian data, concluded that 'the study finds no signal after three years that biologic therapies in patients with RA have led to overall cost offsets from related treatment costs'. Possible explanations that were proffered were falling resource utilisation in general, potentially due to more aggressive use of cDMARDs, have given a false impression that biologics are causally associated with resource utilisation; that cost offsets occur beyond 3 years; and that the model is mis-specified and estimates remain biased.

Although these results are noted the Assessment Group believes it is plausible that there could be an increase in hospitalisation costs as HAQ increases. Having reviewed the hospital costs within the manufacturers' submissions the Assessment Group decided to use that reported by AbbVie for the base case, which were among the lowest of those presented and were relatively flat until the patient had severe HAQ scores (defined as HAQ scores of ≥ 2.125). These values were derived from data taken from the NOAR database on impatient days and joint replacements^{260,261} and were multiplied by NHS reference costs. The values assumed in the Assessment Group base case are depicted in *Figure 113*.

Utility related to Health Assessment Questionnaire

The NICE methods guide states that mapping is an acceptable method for estimating EQ-5D from clinical outcome measures in the absence of direct evidence, but that the statistical properties of the model 'should be fully described, its choice justified, and it should be adequately demonstrated how well the

FIGURE 113 The assumed relationship between annual hospitalisation costs and HAQ score in the Assessment Group model.

function fits the data' (pp. 39–40).²²⁷ UCB Pharma (CTZ) provided data on the changes in EQ-5D in the initial 6-month period but these were marked AiC.

Hernandez-Alava *et al.*^{299,304} report the results of fitting a bespoke mixture model to data from patients with RA from a US observational database comprising in excess of 100,000 observations. Full details of the data set, the statistical model and its performance (in comparative and absolute terms) are provided in the manuscripts.

The set of models reported include HAQ, HAQ², pain, age, age² and sex as explanatory variables. These were included because models performed substantially better when they are included. Most previous analyses have excluded pain. However, a substantially better estimate of EQ-5D is obtained by the inclusion of pain alongside HAQ than via HAQ alone. This is to be expected, as the domains covered by the HAQ instrument are very similar to the domains of usual activities, mobility and self-care in the EQ-5D. The dimension of 'pain' attracts the highest weights in the EQ-5D UK scoring regression. The fact that pain enters as a separate covariate in the Hernandez-Alava *et al.*^{299,304} model is because HAQ and pain are not perfectly correlated. It is therefore important to include pain as an explanatory variable in estimating EQ-5D.

This does not mean that the cost-effectiveness model needs to be both HAQ and pain based, or that separate HAQ and pain treatment effects need to be estimated for therapies. There are alternative methods by which the relationship between HAQ and pain can be incorporated in to the cost-effectiveness model without the requirement for additional complexity, rather than reverting to poorer methods of explaining EQ-5D.

The Assessment Group uses a two-step process for estimating EQ-5D values from HAQ values: the first step simulates the expected pain score associated with HAQ; the second step estimates EQ-5D based on both HAQ value and pain score.

Step 1: simulating the expected pain score associated with Health Assessment Questionnaire

The estimation of EQ-5D utility scores is substantially more accurate when based on HAQ and pain than on HAQ alone as detailed in Hernandez-Alava *et al.*²⁷⁶ In order to incorporate the published statistical models that estimate this relationship, pain is independently predicted from the simulated HAQ score for each patient within the model. Although this assumes that all treatments affect pain proportionate to their effect on HAQ score, this is also the assumption implicit in all models that exclude pain.

Health Assessment Questionnaire and pain are not related in a simple linear fashion as shown in data from the NDB and data from ERAS (*Figure 114*), which incorporate 100,398 observations for the NDB and 13,357 from ERAS.

Data from the NDB are used to populate the mathematical model, with the mean pain score (and its variance) being estimated for each feasible HAQ score.

FIGURE 114 The relationship between HAQ score and pain value. (a) NDB; and (b) ERAS.

Step 2: estimating European Quality of Life-5 Dimensions based on both Health Assessment Questionnaire value and pain scores

It is well recognised that simple linear regression models are inappropriate for estimating EQ-5D values as a function of clinical outcomes. This is because the assumption of conditional normality does not hold for an outcomes measure that is limited above by full health (1), at the worst health state (-0.594) and that is typically bi- or tri-modal within this range. This theoretical assertion is supported by empirical findings across a broad range of disease areas³⁰⁵ and within RA from two separate large data sets that span the full spectrum of disease.^{276,299} Linear models lead to biased estimates of EQ-5D. They estimate higher EQ-5D scores for patients in severe health states and lower EQ-5D scores for those patients in less severe health states. The net effect is an undervaluation of the cost-effectiveness of effective therapies. This has been shown to be of a substantial magnitude in RA with ICERs varying by up to 20%.²⁹⁹

In this report an alternative method is undertaken, based on mixture models that use an underlying distribution that is bespoke to the EQ-5D UK instrument. This has been reported in Hernandez-Alava *et al.*²⁹⁹ The model was estimated using data from the US NDB. A total of 103,867 observations were included in the total data set from 16,011 patients. The size of the data set dwarfs that which is typical of most 'mapping' studies and provides a good exemplar in which to test competing methods because patients spanned the full range of HAQ, pain and EQ-5D values.

The preferred model comprised four components, each of which includes HAQ and HAQ², pain, age and age² as explanatory variables. HAQ, pain and pain² enter the model as predictors of component membership. The model fits substantially better than linear regression or response mapping approaches, does not generate non-feasible values or suffer from systematic bias in the estimates. Full coefficient values are reported in the associated publications. We used the full covariance matrix to incorporate parameter uncertainty into the cost-effectiveness model when running PSAs. These data can be obtained online (http://rheumatology.oxfordjournals.org/content/suppl/2013/01/20/kes400.DC1 – accessed July 2013³⁰⁴).

The Assessment Group believes that its method is more appropriate than those used by the manufacturers. All of the studies used in the base-case manufacturers' submissions are based on linear regression models with insufficient information on which to judge the appropriateness of the statistical models being used and with far fewer patients than used to derive the relationship between HAQ, pain and utility used by the Assessment Group.

The Assessment Group reports that there are further studies that could have been used to inform the manufacturers' submissions that report on the relationship between health utilities, HAQ and other covariates. These are briefly summarised:

- Hawthorne *et al.*³⁰⁶ used UK EQ-5D data from 139 patients with RA recruited in Australia in a linear regression with HAQ as the only covariate.
- Lindgren *et al.*²⁸⁴ used Swedish registry data from 1787 patients and used the UK EQ-5D tariff to estimate EQ-5D as a function of HAQ, DAS and age.
- Marra *et al.*¹⁹⁵ report UK tariff EQ-5D as a function of HAQ and age (n = 317) from a sample of Canadian patients with RA.
- Kobelt *et al.*^{262,264} report mean EQ-5D scores by HAQ category using Swedish registry data (n = 116) in the former paper and a combination of Swedish and UK patients in the latter (n = 210). For illustrative purposes only, we fitted simple linear models to these reported mean values.

Compared with these studies, the models used as the base case for the entire set of manufacturer submissions^{171,241,266,275} have a greater assumed impact on utility than the remaining studies particularly where HAQ exceeds 2, which is the case for a sizeable proportion of cDMARD-treated patients given the assumptions used in many of the cost-effectiveness models regarding HAQ progression over time while on cDMARDs (*Figure 115*).

In a sensitivity analysis the equation mapping HAQ to utility described in Malottki *et al.*¹⁷¹ was used. Additionally, using the relationship between HAQ and pain taken from the ERAS rather than that from the NDB was evaluated.

The assumed costs and disutilities associated with adverse events

The Assessment Group took a simplistic view regarding AEs.

It was assumed that only serious infections would carry a significant cost and disutility burden and limited the AEs within the model to serious infections alone. A review of the adverse effects of biologics¹⁶⁵ indicated that serious infections were observed in 35 per 1000 patients (95% CI 27 to 46). Singh *et al.*²⁸¹ reported the rate of serious infections in people on cDMARDs to be 26 per 1000 patients (no CI reported), implying that an additional 9 per 1000 patients would sustain a serious infection when using a bDMARD. It was assumed that the rate of serious infection was independent of the bDMARDs used. The Assessment Group accepted arguments presented as AiC by UCB Pharma (the manufacturer of CTZ) that there were different exposure durations between CTZ and PBO in the CTZ RCTs and that the increased risk of serious infections reported by Singh *et al.*²⁸¹ for CTZ should be treated with caution.

The costs (£1479 per episode) and undiscounted QALY loss associated with serious infections (a loss in utility of 0.156 for 28 days) were both taken from the Pfizer submission.²⁰⁹ Based on the assumed increased rate of serious infection it was assumed that a bDMARD strategy would incur an additional £13.31 and a QALY loss of 0.0001 per typical patient treated. These values were increased 100-fold in sensitivity analyses to assess the impact of events that may be too infrequent to be observed in RCTs, but may become apparent when large numbers of patients are treated.

The majority of submissions excluded AEs from the model, although Pfizer included both costs and disutility in a sensitivity analysis and AbbVie included costs alone within the base case.

Mortality associated with rheumatoid arthritis

The link between RA and early mortality has been long documented with a seminal paper being that of Wolfe *et al.*²⁸² published in 1994. A meta-analysis by Naz and Symmons⁵ incorporating 15 studies involving > 300 subjects and published between 1993 and 2006 indicated a range in the standardised mortality ratio of between 1.01 and 2.70. Dadoun *et al.*⁶ undertook a meta-analysis of studies reporting mortality rates in RA and reported a meta- standardised mortality ratio of 1.47 (95% CI 1.19 to 1.83) from eight studies although the level of heterogeneity was high with an *I*² statistic of 93.47.

However, few data have been published on the relationship between change in HAQ and change in expected mortality, which is the key relationship that is required if there is to be proof that an increase in HAQ score is associated with an increase in mortality. Following a literature review, a paper by Michaud *et al.*³⁰⁸ published in 2012 was identified that aimed to establish the relationship between change in HAQ and mortality. Their conclusions were that 'changes in the PCS [SF36 physical component summary score] and HAQ did not contribute substantially to predictive value over and above the baseline values of these variables'. As such, the Assessment Group assumed that only the baseline HAQ score was important for predicting mortality and the HRs detailed in *Table 171* were applied. It is noted that as initial HAQ increases then the HRs also increases. It was assumed that these HRs were independent of time.

The CIs for each HAQ category overlap with the neighbouring category. In order to preserve monotonicity for the HRs, quantile matching was assumed when drawing the HR for each category for each PSA iteration. The patient was assumed to die mid-way through their final year.

The Assessment Group method straddles those of the manufacturers in that it applies a fixed HR for mortality but selects this HR based on the initial HAQ category of the patient, with those with a worse HAQ dying sooner on average. This contrasts with the methods used of applying a non-HAQ-related HR, and allowing mortality to be determined by current HAQ score. The Assessment Group comments that the data source used to determine their method is much more recent than those used by the manufacturers.

Initial HAQ category	HR (95% CI)
0.000	1 referent
0.125–0.375	1.4 (1.1 to 1.8)
0.500–0.875	1.5 (1.2 to 1.9)
1.000–1.375	1.8 (1.4 to 2.2)
1.500–1.875	2.7 (2.2 to 3.5)
2.000–2.375	4.0 (3.1 to 5.2)
2.500–3.000	5.5 (3.9 to 7.7)

TABLE 171 Hazard ratio for mortality associated with HAQ category
Calculation of the appropriate number of patients to run when generating results

Analyses were undertaken to assess the number of patients required to be simulated in order that stable results were produced; although these analyses were conducted on an earlier version of the model, it is believed the conclusions in terms of number of patients required are generalisable. The strategies compared were strategies 1 and 6 in *Table 159*, which started with MTX, and ETN and MTX respectively. It was demonstrated (*Figure 116*) that beyond 20,000 simulated patients the change in cost per QALY was small, being < £500 from a base of approximately £62,000. Therefore, 20,000 patients were simulated for all analyses involving patients with severe RA who could receive MTX. It is commented that the cost per QALY between active interventions is likely to require greater numbers of patients for stability, but running greater numbers of patients was not possible within the time constraints of the project.

For patients with moderate RA the computational time required was significantly greater as patients were resampled until the DAS criterion of between 3.1 and 5.2 was met, meaning that large numbers of simulated patients were discarded. This led to the results for this group to be taken from 2000 patients. As such, only 2000 patients were simulated and it is unclear whether or not a stable cost per QALY had been reached (*Figure 117*): the potential error, however, was not deemed to be excessive and appeared to be between £1000 and £2000 on the cost per QALY value.

FIGURE 116 Evaluating the number of patients required in analyses involving patients with severe RA who could receive MTX.

FIGURE 117 Evaluating the number of patients required in analyses involving patients with moderate RA who could receive MTX.

For a cDMARD-naive population with severe RA, 20,000 patients were run, at which value the results had appeared to stabilise (see *Figure 117*).

For the population who had severe RA and were bDMARD naive the numbers of patients required to be simulated to generate stable results were investigated (*Figure 118*). Analyses were conducted assuming 20,000 patients at which value the results appeared relatively stable.

The large computational time required meant that the simulated patient numbers were reduced further in the PSA. For severe patients 100 Monte Carlo samples of 2000 patients were conducted and 100 Monte Carlo samples of 200 patients for the moderate group. Although there are fewer patients simulated the expectation of the results are likely to be robust as O'Hagan *et al.*³⁰⁹ proved that the most efficient method of generating the expectation of cost-effectiveness would be to generate only one patient per PSA iteration. The greater numbers used in our PSA was to facilitate the generation of CEACs.

For both the moderate and the severe RA populations the computational time required for a deterministic analysis was approaching 90 minutes. For the probabilistic analyses the number of simulated patients was reduced by 90% (i.e. 1000 for severe patients and 100 for moderate patients) and 100 probabilistic samples were evaluated, representing approximately 15 hours of computational time.

Results

A summary of the analyses undertaken is provided in *Table 172*. These are all 24 combinations of factors shown excluding those combining EULAR response in MTX-naive patients as the only data available were for an intervention (GOL) unlicensed in this population. Each analysis had further sensitivity analyses conducted assessing the impact of using a different RCT evidence base, a different mapping of HAQ to utility, an increase in the effects of serious AEs and a different assumed relationship between HAQ and pain.

FIGURE 118 Discounted cost per QALY of a bDMARD strategy compared with a non-bDMARD strategy in a cDMARD-naive population.

Population	Treatment provided	Response measure	HAQ trajectory on cDMARDs
Population 3 (severe MTX experienced)	In combination with MTX	EULAR	Taken from the ERAS database
Population 2 (moderate to severe MTX experienced)	As monotherapy	ACR (then mapped to EULAR)	Using previous NICE appraisal values
Population 1 (severe MTX naive)			

TABLE 172 Combinations of factors analysed in the cost-effectiveness analyses

Owing to the number of results presented, the Assessment Group decided that a summary table, providing indicative results, would aid the reader. As will be seen, there is little difference in the estimated cost-effectiveness of the bDMARDs, with the exception of TCZ, which differs as it cannot be used after RTX if it was used as the first bDMARD. As such, the median ICERs for all bDMARDs in populations 2 and 3 are presented in *Tables 173* and *174*. The median was selected as a method of detailing the cost-effectiveness of an average bDMARD. The ICERs for population 1 are provided in *Tables 175* and *176*. No results are presented for a model based on EULAR data for population 1, as there was only one RCT identified that did not include intensive cDMARDs, which are the recommended treatment. The results provided use ACR transformed to EULAR data, but as is seen this approach produced similar cost per QALY results to the models which used EULAR data in populations 2 and 3.

Fully incremental results follow the summary tables. However, these may be misleading when betweenbDMARD comparisons are made, as the ICERs compared with the cDMARD-alone strategy are relatively similar, and there is considerable uncertainty in efficacy data. Interventions labelled as dominated may be only slightly more expensive and marginally less effective than a comparator. This cannot be seen in the results as owing to the CiC PASs both discounted costs and discounted QALYs are marked CiC. CEACs are presented; however, CEACs show only the probability of being optimal and inferences regarding relative cost-effectiveness should be made with caution.

European League Against Rheumatism response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-experienced, rheumatoid arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 177–183*. The CEAC for the base case is shown in *Figure 119*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £39,000–43,000.

It is seen that at a willingness to pay of £30,000 the MTX strategy has a very high probability of being optimal (see *Figure 119*).

			Base cas	e +							
Population	Response measure	Assumed HAQ progression	No change (£)	RCTs with small percentage of bDMARD prior use, adequate MTX history (£)	RCTs with small percentage of bDMARD prior use (irrespective of MTX history) (£)	Trials with inadequate MTX history (£)	Malottki et al. ¹⁷¹ mapping of HAQ to utility (£)	Discount rates (6% costs, 1.5% QALYs) (£)	Impact of AEs assumed to be 100-fold higher (£)	Relationship between HAQ and pain taken from ERAS (£)	PSA (£)
2 (severe MTX	EULAR	ERAS	61,200	61,400	No data	No data	49,700	39,500	62,200	73,700	61,700
experienced)		Linear	37,900	36,300	No data	No data	32,400	22,300	38,300	46,300	37,600
	ACR	ERAS	62,200	62,200	62,600	68,900	49,700	39,500	62,200	73,700	62,700
		Linear	35,500	35,100	35,700	36,400	30,900	21,400	35,600	43,700	35,900
3 (moderate MTX	EULAR	ERAS	75,000	74,200	No data	No data	53,400	46,600	78,100	87,300	76,800
experienced)		Linear	37,500	36,600	No data	No data	31,300	21,800	39,300	48,300	35,800
	ACR	ERAS	77,100	77,500	77,300	79,200	53,900	48,300	79,800	89,300	79,000
		Linear	38,000	36,700	38,000	39,200	30,000	21,800	39,100	46,700	38,400
All numbers round	ed to the near	rest £100.									

TABLE 173 Summarised results: median ICERs for all bDMARD strategies compared with the MTX-alone strategy. Populations 2 and 3 who can receive MTX

Summary of median ICERs for all bDMARDs compared with an SSZ-alone strategy. Populations 2 and 3 who are treated with monotherapy **TABLE 174**

			Base case	+							
Population	Response	Assumed HAQ progression	No change (£)	RCTs with small percentage of bDMARD prior use, adequate MTX history (£)	RCTs with small percentage of bDMARD prior use (irrespective of MTX history) (£)	Trials with inadequate MTX history (£)	Malottki <i>et al.</i> ¹⁷¹ mapping of HAQ to utility (£)	Discount rates (6% costs, 1.5% QALYs) (£)	Impact of AEs assumed to be 100-fold higher (£)	Relationship between HAQ and pain taken from ERAS (£)	PSA (£)
2 (severe MTX	EULAR	ERAS	87,600	89,000	No data	No data	71,600	58,200	89,100	107,000	88,400
experienced)		Linear	39,600	38,000	No data	No data	34,800	24,800	40,200	49,200	39,100
	ACR	ERAS	94,800	93,900	99,600	94,700	79,000	64,700	97,200	117,400	000'06
		Linear	38,500	37,300	37,200	37,200	34,100	23,600	39,300	47,800	38,800
3 (moderate MTX	EULAR	ERAS	104,800	108,100	No data	No data	74,400	65,100	108,700	121,900	105,400
experienced)		Linear	41,400	39,300	No data	No data	32,800	23,900	41,600	49,700	41,700
	ACR	ERAS	106,400	107,900	110,500	107,900	77,200	70,000	105,900	120,300	108,200
		Linear	38,800	38,500	38,000	37,200	31,100	23,800	40,500	47,100	39,600
All numbers round	ed to the near	rest £100.									

TABLE 175 Summarised results: median ICERs for all bDMARD strategies compared with the MTX-alone strategy. Population 1 who can receive MTX

			Base case						
Population	Response measure	Assumed HAQ progression	No change (£)	RCTs with small percentage of MTX prior use (£)	Malottki <i>et al.</i> ¹⁷¹ mapping of HAQ to utility (£)	Discount rates (6% costs, 1.5% QALYs) (£)	Impact of AEs assumed to be 100-fold higher (£)	Relationship between HAQ and pain taken from ERAS (£)	PSA (£)
Population 1	ACR mapped	ERAS	308,700	571,700	214,800	185,000	326,100	344,800	295,700
(severe MIX naive)	to eulak	Linear	296,300	432,800	216,400	192,900	323,600	344,700	296,700
All numbers rounded	I to the nearest f	100.							

			Base case	+					
Population	Response measure	Assumed HAQ progression	No change (£)	RCTs with small percentage of MTX prior use (£)	Malottki <i>et al.</i> ¹⁷¹ mapping of HAQ to utility (£)	Discount rates (6% costs, 1.5% QALYs) (£)	Impact of AEs assumed to be 100-fold higher (£)	Relationship between HAQ and pain taken from ERAS (£)	PSA (£)
Population 1	ACR mapped	ERAS	414,700	140,400	340,500	295,400	382,000	438,700	404,500
(severe MIX naive)	to EULAR	Linear	378,000	139,800	357,700	291,200	375,300	460,000	408,800
All numbers rounded	I to the nearest £	100.							

TABLE 176 Summary of median ICERs for all bDMARDs compared with a SSZ-alone strategy. Population 1 who are treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	41,647	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	39,142	39,142
IFX + MTX	CiC information has been removed	CiC information has been removed	39,884	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	41,015	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	42,194	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	42,087	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	42,014	74,290
CPQ, cost per QALY ga	ained.			

TABLE 177 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 178 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	41,194	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed)	CiC information has been removed	38,771	38,771
IFX + MTX	CiC information has been removed	CiC information has been removed	39,246	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	41,497	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	41,700	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	40,467	60,158
ETN + MTX	CiC information has been removed	CiC information has been removed	41,748	Dominated
CPO cost per OALY ga	ained			

TABLE 179 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	34,734	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	32,613	32,613
IFX + MTX	CiC information has been removed	CiC information has been removed	33,193	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	34,158	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,234	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	34,912	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	34,984	61,719
CPQ, cost per QALY ga	ained.			

TABLE 180 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	28,495	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	25,618	25,618
IFX + MTX	CiC information has been removed	CiC information has been removed	26,007	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	26,875	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	27,750	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	27,682	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	27,670	50,770
CPQ, cost per QALY ga	ined.			

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	42,426	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed)	CiC information has been removed	40,059	40,059
IFX + MTX	CiC information has been removed	CiC information has been removed	40,490	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	42,797	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	41,756	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	42,759	Dominated
ETN + MTX	CiC information has been removed)	CiC information has been removed	42,719	72,481
CPQ, cost per QALY ga	ained.			

 TABLE 181
 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 182 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	50,985	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	47,972	47,972
IFX + MTX	CiC information has been removed	CiC information has been removed	48,393	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	51,133	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	49,945	Extendedly dominated
GOL + MTX	CiC information has been removed)	CiC information has been removed	51,058	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	51,019	83,942
CPQ, cost per QALY ga	ained.			

Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
CiC information has been removed	CiC information has been removed	-	-
CiC information has been removed	CiC information has been removed	41,305	Extendedly dominated
CiC information has been removed	CiC information has been removed	38,904	38,904
CiC information has been removed	CiC information has been removed	39,376	Dominated
CiC information has been removed	CiC information has been removed	40,505	Extendedly dominated
CiC information has been removed	CiC information has been removed	41,710	Dominated
CiC information has been removed	CiC information has been removed	41,617	Extendedly dominated
CiC information has been removed	CiC information has been removed	41,691	73,145
	Discounted costs CiC information has been removed CiC information has been removed	Discounted costsDiscounted QALYsCiC information has been removedCiC information has been removed	Discounted costsDiscounted QALYsCPQ compared with MTX strategy (f)CiC information has been removedCiC information has been removed-CiC information has been removedCiC information has been removed41,305CiC information has been removedCiC information has been removed38,904CiC information has been removedCiC information has been removed39,376CiC information has been removedCiC information has been removed39,376CiC information has been removedCiC information has been removed40,505CiC information has been removedCiC information has been removed41,710CiC information has been removedCiC information has been removed41,617CiC information has been removedCiC information has been removed41,691CiC information has been removedCiC information has been removed41,691

 TABLE 183
 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe,

 MTX-experienced, RA population

CPQ, cost per QALY gained.

FIGURE 119 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population.

European League Against Rheumatism response measure: linear cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-experienced, rheumatism arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 184–190*. The CEAC for the base case is shown in *Figure 120*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £35,000–40,000.

It is seen that at a willingness to pay of £30,000 per QALY the MTX strategy has a high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	35,872	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	35,794	34,247
IFX + MTX	CiC information has been removed	CiC information has been removed	36,176	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	38,463	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	37,867	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	38,689	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	39,068	83,446
CPQ, cost per QALY ga	ained.			

TABLE 184 Deterministic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 185 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)			
MTX	CiC information has been removed	CiC information has been removed	-	-			
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,795	33,795			
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	33,896	35,682			
IFX + MTX	CiC information has been removed	CiC information has been removed	34,473	Dominated			
ADA + MTX	CiC information has been removed	CiC information has been removed	36,589	Extendedly dominated			
GOL + MTX	CiC information has been removed	CiC information has been removed	36,800	Extendedly dominated			
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,292	69,464			
ETN + MTX	CiC information has been removed	CiC information has been removed	37,377	616,967			
CPO cost per OALY ga	CPO, cost per OALY gained						

TABLE 186 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	30,635	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	30,412	30,412	
IFX + MTX	CiC information has been removed	CiC information has been removed	31,067	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	33,066	Extendedly dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	32,382	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	33,160	Dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	33,193	67,129	
CPQ, cost per QALY gained.					

TABLE 187 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	22,212	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	21,057	21,057
IFX + MTX	CiC information has been removed	CiC information has been removed	21,470	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	22,479	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	22,998	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	23,178	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	23,476	32,884
CPQ, cost per QALY ga	ined.			

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	35,890	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	35,421	35,421	
IFX + MTX	CiC information has been removed	CiC information has been removed	36,303	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	38,543	Extendedly dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	37,866	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	38,608	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	39,067	87,843	
CPQ, cost per QALY gained.					

TABLE 188 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 189 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	44,112	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	43,866	43,866
IFX + MTX	CiC information has been removed	CiC information has been removed	44,533	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	47,199	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	46,305	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	47,439	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	47,830	99,048
CPQ, cost per QALY ga	ained.			

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	38,152	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,843	34,843	
IFX + MTX	CiC information has been removed	CiC information has been removed	35,425	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,644	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	37,583	Dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	37,779	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	38,355	86,917	
CPO_cost par OALX gained					

TABLE 190 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

CPQ, cost per QALY gained

FIGURE 120 The CEAC using EULAR data directly and assuming linear CDMARD HAQ progression.

American College of Rheumatology response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-experienced, rheumatoid arthritis population The base-case results for this population and those from sensitivity analyses are provided in *Tables 191–199*. The CEAC for the base case is shown in *Figure 121*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £38,000–43,000.

It is seen that at a willingness to pay of £30,000 the MTX strategy has a very high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	41,453	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	38,468	38,468	
IFX + MTX	CiC information has been removed	CiC information has been removed	38,503	43,937	
CTZ + MTX	CiC information has been removed	CiC information has been removed	39,924	Dominated	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	41,314	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	41,611	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	41,567	Dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	42,494	201,284	
CPQ, cost per QALY gained.					

TABLE 191 Deterministic base-case results using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 192 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	41,396	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	38,743	38,743
IFX + MTX	CiC information has been removed	CiC information has been removed	38,844	50,533
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	41,468	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	41,892	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	41,943	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	41,144	105,558
ETN + MTX	CiC information has been removed	CiC information has been removed	42,894	1,526,573

CPQ, cost per QALY gained.

TABLE 193 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	40,977	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	38,171	38,171
IFX + MTX	CiC information has been removed	CiC information has been removed	38,446	Extendedly dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	40,945	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	41,263	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	41,104	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	40,690	104,017
ETN + MTX	CiC information has been removed	CiC information has been removed	42,404	Dominated
CPQ, cost per QALY ga	ined.			

TABLE 194 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	42,440	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	38,774	38,774
IFX + MTX	CiC information has been removed	CiC information has been removed	39,223	150,385
CTZ + MTX	CiC information has been removed	CiC information has been removed	40,750	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	41,827	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	41,879	211,049
ADA + MTX	CiC information has been removed	CiC information has been removed	42,060	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	42,857	Dominated

CPQ, cost per QALY gained.

TABLE 195 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	34,810	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	32,233	32,233
IFX + MTX	CiC information has been removed	CiC information has been removed	32,497	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	33,681	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	34,606	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	34,976	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	34,751	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	35,581	125,993
CPQ, cost per QALY ga	ained.			

TABLE 196 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	29,441	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	26,238	26,238
IFX + MTX	CiC information has been removed	CiC information has been removed	26,295	30,514
CTZ + MTX	CiC information has been removed	CiC information has been removed	27,266	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	28,264	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	28,197	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	28,300	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	28,947	127,884

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	42,766	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	39,148	39,148
IFX + MTX	CiC information has been removed	CiC information has been removed	39,550	88,576
CTZ + MTX	CiC information has been removed	CiC information has been removed	41,482	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	42,350	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	42,441	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	42,849	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	43,656	223,921
CPQ, cost per QALY gained.				

TABLE 197 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULARdata: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 198 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAScDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	50,025	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	46,468	46,468
IFX + MTX	CiC information has been removed	CiC information has been removed	47,302	127,526
CTZ + MTX	CiC information has been removed	CiC information has been removed	48,910	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	50,522	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	50,490	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	50,581	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	51,744	212,575
CPO_cost par OALX gained				

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	42,537	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	39,355	39,355
IFX + MTX	CiC information has been removed	CiC information has been removed	39,803	107,673
CTZ + MTX	CiC information has been removed	CiC information has been removed	41,317	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	42,334	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	42,599	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	42,551	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	43,632	187,586

TABLE 199 Probabilistic base-case results using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

CPQ, cost per QALY gained.

FIGURE 121 The CEAC when using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population.

American College of Rheumatology response measure: linear Health Assessment Questionnaire progression and a severe,

methotrexate-experienced, rheumatoid arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 200–208*. The CEAC for the base case is shown in *Figure 122*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £33,000–39,000.

It is seen that at a willingness to pay of £30,000 per QALY the MTX strategy has a relatively high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,099	33,099
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	33,660	38,771
IFX + MTX	CiC information has been removed	CiC information has been removed	34,348	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,518	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	36,794	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	36,878	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	36,701	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	38,078	213,466
CPQ, cost per QALY gained.				

TABLE 200 Deterministic base-case results using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 201 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	31,190	31,190
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	32,511	43,343
IFX + MTX	CiC information has been removed	CiC information has been removed	32,570	82,908
ADA + MTX	CiC information has been removed	CiC information has been removed	35,233	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	35,142	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	35,470	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,107	132,855
ETN + MTX	CiC information has been removed	CiC information has been removed	36,633	Dominated

CPQ, cost per QALY gained.

TABLE 202 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	31,647	31,647	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	32,806	42,791	
IFX + MTX	CiC information has been removed	CiC information has been removed	33,283	91,638	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	35,721	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	35,859	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	35,977	Extendedly dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,736	150,620	
ETN + MTX	CiC information has been removed	CiC information has been removed	37,174	Dominated	
CPQ, cost per QALY gained.					

TABLE 203 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	34,228	34,228
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,493	36,870
IFX + MTX	CiC information has been removed	CiC information has been removed	34,870	258,927
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,362	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	37,610	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	37,938	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	37,693	261,545
ETN + MTX	CiC information has been removed	CiC information has been removed	38,550	Dominated

CPQ, cost per QALY gained.

TABLE 204 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	29,087	29,087	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	29,472	32,461	
IFX + MTX	CiC information has been removed	CiC information has been removed	29,940	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	30,948	Dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	31,900	Extendedly dominated	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	31,970	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	32,190	Dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	33,104	176,415	
CPQ, cost per QALY gained.					

TABLE 205 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	20,847	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	20,379	20,379
IFX + MTX	CiC information has been removed	CiC information has been removed	20,739	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	21,424	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	22,309	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	22,486	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	22,485	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	23,184	199,830
CPO, cost per OALV gained				

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,139	33,139
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	33,923	40,436
IFX + MTX	CiC information has been removed	CiC information has been removed	34,236	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,603	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	36,703	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	36,861	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	36,819	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	38,160	180,120
CPQ, cost per QALY gained.				

TABLE 206 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

TABLE 207 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	41,248	41,248
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	41,523	43,865
IFX + MTX	CiC information has been removed	CiC information has been removed	41,926	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	43,663	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	45,232	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	45,383	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	45,326	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	46,770	142,639

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,537	33,537
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,047	38,505
IFX + MTX	CiC information has been removed	CiC information has been removed	34,504	148,650
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,803	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	36,957	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	37,163	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	37,139	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	38,328	244,601
CPQ, cost per QALY gained.				

TABLE 208 Probabilistic base-case results using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

1.00 0.90 Probability of being most MTX 0.80 ABT i.v. + MTX 0.70 cost-effective ABT s.c. + MTX 0.60 ADA + MTX 0.50 CTZ + MTX - ETN + MTX 0.40 - GOL + MTX 0.30 IFX + MTX 0.20 TCZ + MTX 0.10 0.00 0 10 20 30 40 50 60 70 80 90 100 Willingness to pay per QALY (£000)

FIGURE 122 The CEAC using ACR data mapped to EULAR data and assuming linear CDMARD HAQ progression.

European League Against Rheumatism response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population The base-case results for this population and those from sensitivity analyses are provided in *Tables 209–215*. The CEAC for the base case is shown in *Figure 123*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £48,000–53,000.

It is seen that at a willingness to pay of £30,000 the MTX strategy has a very high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,032	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	48,816	48,816	
IFX + MTX	CiC information has been removed	CiC information has been removed	49,071	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	50,891	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	52,093	Dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	52,203	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	52,275	89,540	
CPQ, cost per QALY gained.					

TABLE 209 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 210 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,480	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	48,494	48,494	
IFX + MTX	CiC information has been removed	CiC information has been removed	49,409	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	52,827	Dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	51,858	Extendedly dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	51,782	94,534	
ETN + MTX	CiC information has been removed	CiC information has been removed	52,861	108,335	
CPO_cost per OALY gained					

TABLE 211 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	36,290	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,666	Extendedly dominated
IFX + MTX	CiC information has been removed	CiC information has been removed	34,147	34,147
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,848	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	36,272	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	36,573	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	36,834	69,318
CPQ, cost per QALY gained.				

TABLE 212 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,821	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	30,491	30,491	
IFX + MTX	CiC information has been removed	CiC information has been removed	30,880	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	32,723	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	32,079	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	32,788	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	32,801	57,940	
CPQ, cost per QALY gained.					

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,423	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	48,186	48,186	
IFX + MTX	CiC information has been removed	CiC information has been removed	49,231	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	52,157	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	51,015	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	52,813	Dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	52,762	117,717	
CPQ, cost per QALY gained.					

TABLE 213 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 214 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	57,687	Extendedly dominated
IFX + MTX	CiC information has been removed	CiC information has been removed	56,810	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	55,790	55,790
ADA + MTX	CiC information has been removed	CiC information has been removed	58,483	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	58,078	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	59,136	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	59,475	88,312
CPQ, cost per QALY gained.				

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,032	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	48,816	48,816
IFX + MTX	CiC information has been removed	CiC information has been removed	49,071	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	50,891	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	52,093	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	52,203	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	52,275	89,540

TABLE 215 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

CPQ, cost per QALY gained.

FIGURE 123 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population.

European League Against Rheumatism response measure: linear cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 216–222*. The CEAC for the base case is shown in *Figure 124*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £36,000–42,000.

It is seen that at a willingness to pay of £30,000 per QALY the MTX strategy has the highest probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	37,769	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	36,815	36,815	
IFX + MTX	CiC information has been removed	CiC information has been removed	37,270	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	39,702	Extendedly dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	39,468	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	40,379	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	41,265	110,772	
CPQ, cost per QALY gained.					

TABLE 216 Deterministic base-case results using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 217 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	39,018	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	39,012	39,012	
IFX + MTX	CiC information has been removed	CiC information has been removed	39,767	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	41,515	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	42,197	Extendedly dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	42,137	71,973	
ETN + MTX	CiC information has been removed	CiC information has been removed	43,054	Dominated	
CPO, cost per OALY gained					

TABLE 218 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	30,439	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	29,571	29,571
IFX + MTX	CiC information has been removed	CiC information has been removed	29,942	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	32,260	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	31,257	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	32,137	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	32,313	64,372
CPQ, cost per QALY gained.				

TABLE 219 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	20,043	20,043	
TCZ + MTX	CiC information has been removed	CiC information has been removed	21,297	Dominated	
IFX + MTX	CiC information has been removed	CiC information has been removed	20,370	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	21,972	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	21,758	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	22,216	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	22,936	80,582	
CPO, cost per OALY gained.					

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	36,912	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	36,224	36,224
IFX + MTX	CiC information has been removed	CiC information has been removed	37,115	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	39,254	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	39,587	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	40,239	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	41,128	125,849
CPQ, cost per QALY gained.				

TABLE 220 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

 TABLE 221
 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	46,453	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	45,674	45,674
IFX + MTX	CiC information has been removed	CiC information has been removed	45,886	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	48,343	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	49,405	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	49,113	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	50,252	115,803
CPQ, cost per OALY gained.				

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	38,152	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,843	34,843
IFX + MTX	CiC information has been removed	CiC information has been removed	35,425	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,644	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	37,583	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	37,779	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	38,355	86,917
CPO_cost per OALV gained				

TABLE 222 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

CPQ, cost per QALY gained

FIGURE 124 The CEAC using EULAR data directly and assuming linear CDMARD HAQ progression and a moderate, MTX-experienced, RA population.

American College of Rheumatology response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population The base-case results for this population and those from sensitivity analyses are provided in *Tables 223–230*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £47,000–54,000.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,410	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	47,833	47,833
IFX + MTX	CiC information has been removed	CiC information has been removed	48,474	101,458
CTZ + MTX	CiC information has been removed	CiC information has been removed	50,044	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	51,625	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	51,573	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	51,341	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	53,006	468,878
CPQ, cost per QALY gained.				

TABLE 223 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 224 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,779	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	47,839	47,839
IFX + MTX	CiC information has been removed	CiC information has been removed	49,646	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	52,111	Extendedly dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	52,771	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	52,489	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	52,215	167,643
ETN + MTX	CiC information has been removed	CiC information has been removed	53,866	Dominated

CPQ, cost per QALY gained.

TABLE 225 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	53,650	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	46,985	46,985
IFX + MTX	CiC information has been removed	CiC information has been removed	49,149	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	51,016	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	52,073	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	52,375	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	51,296	145,070
ETN + MTX	CiC information has been removed	CiC information has been removed	53,588	Dominated
CPQ, cost per QALY gained.				

TABLE 226 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,464	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	47,673	47,673
IFX + MTX	CiC information has been removed	CiC information has been removed	47,685	48,465
CTZ + MTX	CiC information has been removed	CiC information has been removed	51,273	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	51,471	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	51,230	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	51,540	399,034
ETN + MTX	CiC information has been removed	CiC information has been removed	53,193	Dominated

CPQ, cost per QALY gained.

TABLE 227 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	37,766	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,586	34,586	
IFX + MTX	CiC information has been removed	CiC information has been removed	34,852	64,571	
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,358	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	37,506	Dominated	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	37,229	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	37,535	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	38,247	242,769	
CPQ, cost per QALY gained.					

TABLE 228 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,852	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	30,721	30,721
IFX + MTX	CiC information has been removed	CiC information has been removed	31,023	Extendedly dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	32,074	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	33,016	Extendedly dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	32,807	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	33,300	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	33,712	97,679

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	52,982	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	48,644	48,644
IFX + MTX	CiC information has been removed	CiC information has been removed	48,818	90,480
CTZ + MTX	CiC information has been removed	CiC information has been removed	51,151	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	52,012	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	52,104	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	52,992	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	53,614	183,170
CPQ, cost per QALY gained.				

TABLE 229 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 230 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	59,499	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	54,356	54,356
IFX + MTX	CiC information has been removed	CiC information has been removed	54,514	67,602
CTZ + MTX	CiC information has been removed	CiC information has been removed	58,334	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	59,480	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	59,394	Extendedly dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	59,107	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	60,912	372,652

CPQ, cost per QALY gained.
Probabilistic results using American College of Rheumatology data mapped to European League Against Rheumatism data and assuming Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population

The probablistic base-case results for this population and those from sensitivity analyses are provided in *Table 231*. The CEAC for the base case is shown in *Figure 125*.

It is seen that at a willingness to pay of £30,000 the MTX strategy has a very high probability of being optimal.

TABLE 231 Prob	abilistic base-case	results using ACR	data mapped t	o EULAR data	: ERAS cDM	ARD HAQ	progression
and a moderate	, MTX-experienced	l, RA population					

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	51,651	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	47,658	47,658
IFX + MTX	CiC information has been removed	CiC information has been removed	48,260	110,763
CTZ + MTX	CiC information has been removed	CiC information has been removed	50,444	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	51,566	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	51,674	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	51,638	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	53,133	247,395

CPQ, cost per QALY gained.

FIGURE 125 The CEAC when using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population.

American College of Rheumatology response measure: linear cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 232–239*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £36,000–41,000.

Probabilistic results using American College of Rheumatology data mapped to European League Against Rheumatism data and assuming linear cDMARD Health Assessment Questionnaire progression

The probabilistic base-case results for this population and those from sensitivity analyses are provided in *Table 240*. The CEAC for the base case is shown in *Figure 126*.

It is seen at a willingness to pay of £30,000 per QALY that the MTX strategy has a very high likelihood of being optimal.

TABLE 232 Deterministic base-case results using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	_	
TCZ + MTX	CiC information has been removed	CiC information has been removed	36,576	36,576	
IFX + MTX	CiC information has been removed	CiC information has been removed	36,916	39,965	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	37,372	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	38,039	Dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	39,847	Extendedly dominated	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	40,035	Extendedly dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	39,785	264,074	
ETN + MTX	CiC information has been removed	CiC information has been removed	40,893	Dominated	
CPQ, cost per QALY gained.					

TABLE 233 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	33,337	33,337	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,568	Extendedly dominated	
IFX + MTX	CiC information has been removed	CiC information has been removed	34,413	43,931	
ADA + MTX	CiC information has been removed	CiC information has been removed	36,691	Dominated	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	37,177	Dominated	
CTZ + MTX	CiC information has been removed	CiC information has been removed	37,111	Extendedly dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	37,387	275,630	
ETN + MTX	CiC information has been removed	CiC information has been removed	39,123	Dominated	
CPQ, cost per QALY gained.					

TABLE 234 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	39,495	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,536	17,203
IFX + MTX	CiC information has been removed	CiC information has been removed	37,952	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	37,623	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	37,909	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	41,375	Dominated
CTZ + MTX	CiC information has been removed	CiC information has been removed	37,765	129,483
ETN + MTX	CiC information has been removed	CiC information has been removed	42,666	Dominated

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)		
MTX	CiC information has been removed	CiC information has been removed	-	-		
TCZ + MTX	CiC information has been removed	CiC information has been removed	40,094	Extendedly dominated		
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	35,589	35,589		
IFX + MTX	CiC information has been removed	CiC information has been removed	39,245	Dominated		
CTZ + MTX	CiC information has been removed	CiC information has been removed	37,348	Dominated		
ADA + MTX	CiC information has been removed	CiC information has been removed	38,788	807,662		
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	39,151	Dominated		
GOL + MTX	CiC information has been removed	CiC information has been removed	42,274	Dominated		
ETN + MTX	CiC information has been removed	CiC information has been removed	42,085	Dominated		
CPQ, cost per QALY ga	CPQ, cost per QALY gained.					

 TABLE 235
 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data

 mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 236 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	32,540	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	27,857	27,857
IFX + MTX	CiC information has been removed	CiC information has been removed	28,284	112,265
CTZ + MTX	CiC information has been removed	CiC information has been removed	28,972	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	30,258	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	29,952	216,351
ADA + MTX	CiC information has been removed	CiC information has been removed	30,289	Dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	31,287	6,775,191

CPQ, cost per QALY gained.

TABLE 237 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	20,467	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	20,373	20,373
IFX + MTX	CiC information has been removed	CiC information has been removed	21,397	144,174
CTZ + MTX	CiC information has been removed	CiC information has been removed	21,831	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	22,822	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	22,899	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	23,129	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	23,524	264,012
CPQ, cost per QALY ga	ained.			

TABLE 238 Deterministic results assuming 100-fold increased impact of AEs and using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	38,589	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	34,339	34,339
IFX + MTX	CiC information has been removed	CiC information has been removed	35,366	153,812
CTZ + MTX	CiC information has been removed	CiC information has been removed	35,983	Dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	37,069	Dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	37,360	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	37,359	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	38,510	239,256

CPQ, cost per QALY gained.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
MTX	CiC information has been removed	CiC information has been removed	-	-	
TCZ + MTX	CiC information has been removed	CiC information has been removed	48,514	Extendedly dominated	
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	42,655	42,655	
IFX + MTX	CiC information has been removed	CiC information has been removed	43,444	198,638	
CTZ + MTX	CiC information has been removed	CiC information has been removed	45,289	Dominated	
ADA + MTX	CiC information has been removed	CiC information has been removed	46,863	Dominated	
GOL + MTX	CiC information has been removed	CiC information has been removed	46,719	Extendedly dominated	
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	47,094	Extendedly dominated	
ETN + MTX	CiC information has been removed	CiC information has been removed	48,243	387,730	
CPQ, cost per QALY gained.					

TABLE 239 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

TABLE 240 Probabilistic base-case results using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
MTX	CiC information has been removed	CiC information has been removed	-	-
TCZ + MTX	CiC information has been removed	CiC information has been removed	40,241	Extendedly dominated
ABT i.v. + MTX	CiC information has been removed	CiC information has been removed	35,088	35,088
IFX + MTX	CiC information has been removed	CiC information has been removed	35,318	70,967
CTZ + MTX	CiC information has been removed	CiC information has been removed	36,970	Dominated
ABT s.c. + MTX	CiC information has been removed	CiC information has been removed	38,183	Extendedly dominated
GOL + MTX	CiC information has been removed	CiC information has been removed	38,412	Extendedly dominated
ADA + MTX	CiC information has been removed	CiC information has been removed	38,369	Extendedly dominated
ETN + MTX	CiC information has been removed	CiC information has been removed	39,754	340,953
CDO and any OALV an	the state			

CPQ, cost per QALY gained.

FIGURE 126 The CEAC using ACR data mapped to EULAR data and assuming linear CDMARD HAQ progression and a moderate, MTX-experienced, RA population.

European League Against Rheumatism response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 241–247*. The CEAC for the base case is shown in *Figure 127*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 46,000-49,000$.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has a very high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	48,306	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	48,528	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	46,327	46,327
CPQ, cost per QALY gained.				

TABLE 241 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe,MTX-experienced, RA population treated with monotherapy

TABLE 242 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	49,001	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	49,084	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	46,660	46,660
CPQ, cost per QALY ga	ained.			

TABLE 243 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	40,230	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	40,890	Dominated
TCZ	CiC information has been removed	CiC information has been removed	38,369	38,369
CPQ, cost per QALY ga	ained.			

TABLE 244 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	32,747	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	33,110	Dominated
TCZ	CiC information has been removed	CiC information has been removed	31,064	31,064
CPO, cost per OALY ga	ained.			

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	48,869	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	48,917	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	46,797	46,797
CPQ, cost per QALY g	ained.			

TABLE 245 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

TABLE 246 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	58,955	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	59,351	Dominated
TCZ	CiC information has been removed	CiC information has been removed	55,361	55,361
CPQ, cost per QALY ga	ained.			

TABLE 247 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a severe,MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	48,192	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	48,392	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	46,040	46,040
CPQ, cost per QALY ga	ained.			

FIGURE 127 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy.

European League Against Rheumatism response measure: linear cDMARD Health Assessment Questionnaire progression and a severe, methotrexateexperienced, rheumatoid arthritis population treated with monotherapy The base-case results for this population and those from sensitivity analyses are provided in *Tables 248–254*. The CEAC for the base case is shown in *Figure 128*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £39,000–40,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has a very high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	39,171	39,171
ETN	CiC information has been removed	CiC information has been removed	39,637	Dominated
TCZ	CiC information has been removed	CiC information has been removed	39,654	43,846
CPO cost per OALY o	ained			

TABLE 248 Deterministic base-case results using EULAR data directly: linear cDMARD HAQ progression and
a severe, MTX-experienced, RA population treated with monotherapy

TABLE 249 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	37,799	37,799
ETN	CiC information has been removed	CiC information has been removed	37,975	Dominated
TCZ	CiC information has been removed	CiC information has been removed	38,558	44,689
CPQ, cost per QALY ga	ained.			

TABLE 250 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	34,836	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	34,997	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	34,565	34,565
CPQ, cost per QALY ga	ained.			

TABLE 251 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	24,632	24,632
ETN	CiC information has been removed	CiC information has been removed	24,789	Dominated
TCZ	CiC information has been removed	CiC information has been removed	24,770	26,079
CPO cost per OALY ga	ained			

TABLE 252 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	40,074	40,074
ETN	CiC information has been removed	CiC information has been removed	40,207	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	40,337	42,432
CPQ, cost per QALY ga	ained.			

 TABLE 253
 Deterministic results having used the relationship between HAQ and pain derived from ERAS:

 linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	49,152	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	49,716	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	49,145	49,145
CPQ, cost per QALY ga	ined.			

TABLE 254 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	38,806	38,806
ETN	CiC information has been removed	CiC information has been removed	39,132	Dominated
TCZ	CiC information has been removed	CiC information has been removed	39,115	41,651
CPQ, cost per QALY gained.				

FIGURE 128 The CEAC when using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy.

American College of Rheumatology response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 255–266*. The CEAC for the base case is shown in *Figure 129*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of \pounds 49,000–50,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has a very high probability of being optimal.

TABLE 255 Deterministic base-case results mapping EULAR data from ACR data: ERAS c	OMARD HAQ progression
and a severe, MTX-experienced, RA population treated with monotherapy	

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	49,707	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	49,808	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	49,584	49,584
CPO cost per OALY ga	ained			

TABLE 256 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	49,550	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	49,484	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	49,394	49,394
CPQ, cost per QALY ga	ained.			

TABLE 257 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	49,473	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	49,953	Dominated
TCZ	CiC information has been removed	CiC information has been removed	49,169	49,169
CPQ, cost per QALY ga	ained.			

TABLE 258 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	49,983	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	50,384	Dominated
TCZ	CiC information has been removed	CiC information has been removed	49,546	49,546
CPQ, cost per QALY gained.				

TABLE 259 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	41,558	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	41,409	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	41,007	41,007
CPQ, cost per QALY ga	ained.			

TABLE 260 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	41,558	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	41,409	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	41,007	41,007
CPQ, cost per QALY ga	ained.			

TABLE 261 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	50,272	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	50,135	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	49,575	49,575
CPQ, cost per QALY ga	ained.			

TABLE 262 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	60,418	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	60,704	Dominated
TCZ	CiC information has been removed	CiC information has been removed	60,386	60,386
CPQ, cost per QALY gained.				

TABLE 263 Probabilistic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	50,272	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	50,135	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	49,575	49,899

CPQ, cost per QALY gained.

FIGURE 129 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy.

American College of Rheumatology response measure: linear cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 264–272*. The CEAC for the base case is shown in *Figure 130*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £38,000–41,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy and the TCZ strategy have reasonably high probabilities of being optimal.

 TABLE 264
 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	38,501	38,501
ETN	CiC information has been removed	CiC information has been removed	38,547	49,828
TCZ	CiC information has been removed	CiC information has been removed	40,049	70,054
CPQ, cost per QALY ga	ined.			

TABLE 265 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)	
SSZ	CiC information has been removed	CiC information has been removed	-	-	
ETN	CiC information has been removed	CiC information has been removed	37,261	Extendedly dominated	
ADA	CiC information has been removed	CiC information has been removed	37,343	37,261	
TCZ	CiC information has been removed	CiC information has been removed	38,835	66,329	
CPQ, cost per QALY gained.					

TABLE 266 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	37,185	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	37,087	37,087
TCZ	CiC information has been removed	CiC information has been removed	38,562	67,396
CPQ, cost per QALY ga	ained.			

TABLE 267 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	36,796	36,796
ADA	CiC information has been removed	CiC information has been removed	37,204	Dominated
TCZ	CiC information has been removed	CiC information has been removed	38,432	59,568
CPQ, cost per QALY gained.				

TABLE 268 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	34,042	34,042
ETN	CiC information has been removed	CiC information has been removed	34,055	49,928
TCZ	CiC information has been removed	CiC information has been removed	35,280	55,140
CPQ, cost per QALY ga	ined.			

TABLE 269 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	23,591	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	23,537	23,537
TCZ	CiC information has been removed	CiC information has been removed	24,343	39,745
CPQ, cost per QALY ga	ained.			

 TABLE 270
 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR

 data:
 linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	39,173	39,173
ETN	CiC information has been removed	CiC information has been removed	39,257	59,684
TCZ	CiC information has been removed	CiC information has been removed	40,674	65,518
CPQ, cost per QALY gained.				

 TABLE 271
 Deterministic results having used the relationship between HAQ and pain derived from ERAS:

 linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	47,732	47,732
ETN	CiC information has been removed	CiC information has been removed	47,801	73,402
TCZ	CiC information has been removed	CiC information has been removed	49,552	78,345
CPQ, cost per QALY ga	ained.			

TABLE 272 Probabilistic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression	n
and a severe, MTX-experienced, RA population treated with monotherapy	

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	38,765	38,765
ADA	CiC information has been removed	CiC information has been removed	38,766	Dominated
TCZ	CiC information has been removed	CiC information has been removed	40,229	70,551
CPO cost per OALY gaine	h			

FIGURE 130 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy.

European League Against Rheumatism response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 273–279*. The CEAC for the base case is shown in *Figure 131*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £58,000–60,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has a very high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	59,036	Extendedly dominated
CTZ	CiC information has been removed	CiC information has been removed	58,798	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	58,673	58,673
CPQ, cost per QALY o	jained.			

 TABLE 273
 Deterministic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

TABLE 274 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	55,934	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	57,588	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	55,364	55,364
CPO, cost per OALY ga	ained.			

TABLE 275 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	42,028	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	41,852	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	40,433	40,433
CPQ, cost per QALY gained.				

TABLE 276 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	39,090	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	37,482	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	35,952	35,952
CPQ, cost per QALY gained.				

TABLE 277 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	59,928	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	59,443	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	58,291	58,291
CPQ, cost per QALY gained.				

 TABLE 278
 Deterministic results having used the relationship between HAQ and pain derived from ERAS:

 ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	67,022	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	66,067	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	63,456	63,456
CPQ, cost per QALY gained.				

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	59,657	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	59,719	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	57,809	57,809
CPQ, cost per QALY gained.				

TABLE 279 Probabilistic base-case results using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

FIGURE 131 The CEAC when using EULAR data directly: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy.

European League Against Rheumatism response measure: linear cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 280–286*. The CEAC for the base case is shown in *Figure 132*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £41,000–43,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has a high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	41,190	41,190
ETN	CiC information has been removed	CiC information has been removed	41,385	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	42,465	54,415
CPQ, cost per QALY gained.				

TABLE 280 Deterministic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

TABLE 281 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	38,937	38,937
ETN	CiC information has been removed	CiC information has been removed	39,300	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	41,020	61,560
CPQ, cost per QALY gained.				

TABLE 282 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	32,767	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	32,872	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	32,465	29,207
CPQ, cost per QALY gained.				

TABLE 283 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	23,671	23,671
ETN	CiC information has been removed	CiC information has been removed	23,869	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	24,469	32,344
CPQ, cost per QALY gained.				

 TABLE 284
 Deterministic results assuming 100-fold increased impact of AEs and using EULAR data directly:

 LINEAR cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	41,580	41,580
ETN	CiC information has been removed	CiC information has been removed	41,621	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	43,376	60,121
CPQ, cost per QALY gained.				

TABLE 285 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	48,834	48,834
ETN	CiC information has been removed	CiC information has been removed	49,661	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	50,440	65,894
CPQ, cost per QALY gained.				

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	41,263	41,263
ETN	CiC information has been removed	CiC information has been removed	41,683	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	43,062	62,038

 TABLE 286
 Probabilistic base-case results using EULAR data directly: linear cDMARD HAQ progression and a severe,

 MTX-experienced, RA population treated with monotherapy

CPQ, cost per QALY gained.

FIGURE 132 The CEAC when using EULAR data directly: linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy.

American College of Rheumatology response measure: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 287–295*. The CEAC for the base case is shown in *Figure 133*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £57,000–59,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has a very high probability of being optimal.

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	58,981	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	57,264	57,264
TCZ	CiC information has been removed	CiC information has been removed	57,786	62,823
CPQ, cost per QALY gained.				

 TABLE 287
 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

TABLE 288 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	58,346	58,346
ADA	CiC information has been removed	CiC information has been removed	59,145	Dominated
TCZ	CiC information has been removed	CiC information has been removed	59,533	77,492
CPO, cost per OALY gained.				

TABLE 289 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	62,630	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	62,393	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	62,210	62,210
CPQ, cost per QALY gained.				

TABLE 290 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	63,131	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	61,889	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	61,577	61,577
CPQ, cost per QALY gained.				

TABLE 291 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	44,867	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	44,934	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	44,729	44,729
CPQ, cost per QALY gained.				

TABLE 292 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	40,068	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	39,282	39,282
TCZ	CiC information has been removed	CiC information has been removed	39,575	44,275
CPO_cost per OALY gained				

TABLE 293 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	61,794	Extendedly dominated
ADA	CiC information has been removed	CiC information has been removed	61,928	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	60,755	60,755
CPQ, cost per QALY ga	ained.			

TABLE 294 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	67,208	67,208
ETN	CiC information has been removed	CiC information has been removed	67,659	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	67,318	68,411
CPQ, cost per QALY gained.				

 TABLE 295
 Probabilistic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ETN	CiC information has been removed	CiC information has been removed	60,034	60,034
ADA	CiC information has been removed	CiC information has been removed	60,659	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	60,269	62,566
CPQ, cost per QALY gained.				

FIGURE 133 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy.

American College of Rheumatology response measure: linear cDMARD Health Assessment Questionnaire progression and a moderate, methotrexate-experienced, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 296–304*. The CEAC for the base case is shown in *Figure 134*.

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £38,000–41,000.

It is seen that at a willingness to pay of £30,000 the SSZ strategy has the highest probability of being optimal.

TABLE 296 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progressio	n
and a moderate, MTX-experienced, RA population treated with monotherapy	

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	38,751	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	38,469	38,469
TCZ	CiC information has been removed	CiC information has been removed	40,644	94,949
CPQ, cost per QALY gained.				

330

TABLE 297 Deterministic results having included RCTs with a small proportion of previous bDMARD use (with adequate prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	38,956	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	38,547	38,547
TCZ	CiC information has been removed	CiC information has been removed	41,321	107,580
CPQ, cost per QALY gained.				

TABLE 298 Deterministic results having included RCTs with a small proportion of previous bDMARD use (irrespective of prior MTX exposure) mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	38,264	38,264
ETN	CiC information has been removed	CiC information has been removed	38,545	Extendedly dominated
TCZ	CiC information has been removed	CiC information has been removed	40,304	76,254
CPQ, cost per QALY ga	ained.			

TABLE 299 Deterministic results having included RCTs with potentially low prior MTX exposure using ACR data mapped to EULAR data: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	37,025	37,025
ETN	CiC information has been removed	CiC information has been removed	37,217	50,652
TCZ	CiC information has been removed	CiC information has been removed	40,508	85,586
CPQ, cost per QALY ga	ained.			

TABLE 300 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	30,914	30,914
ETN	CiC information has been removed	CiC information has been removed	31,053	49,620
TCZ	CiC information has been removed	CiC information has been removed	32,431	56,717
CPQ, cost per QALY ga	ained.			

TABLE 301 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	23,654	Extendedly dominated
ETN	CiC information has been removed	CiC information has been removed	23,766	23,766
TCZ	CiC information has been removed	CiC information has been removed	24,878	47,829
CPQ, cost per QALY ga	ained.			

TABLE 302 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	39,857	39,857
ETN	CiC information has been removed	CiC information has been removed	40,477	Dominated
TCZ	CiC information has been removed	CiC information has been removed	42,660	147,373
CPO, cost per OALY ga	ined.			

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	46,973	46,973
ETN	CiC information has been removed	CiC information has been removed	47,107	Dominated
TCZ	CiC information has been removed	CiC information has been removed	49,606	95,878
CPQ, cost per QALY g	ained.			

TABLE 303 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

TABLE 304 Probabilistic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

First intervention in the strategy	Discounted costs	Discounted QALYs	CPQ compared with MTX strategy (£)	Incremental CPQ (£)
SSZ	CiC information has been removed	CiC information has been removed	-	-
ADA	CiC information has been removed	CiC information has been removed	39,460	39,460
ETN	CiC information has been removed	CiC information has been removed	39,550	59,914
TCZ	CiC information has been removed	CiC information has been removed	41,843	84,981
CPQ, cost per QALY ga	ined.			

FIGURE 134 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

Response measure American College of Rheumatology: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-naive, rheumatoid arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 305–311*. The CEAC for the base case is shown in *Figure 135*.

TABLE 305 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	68,277
CPQ, cost per QALY gained.			

TABLE 306 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression including RCTs with some patients with prior cDMARD experience and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	68,152
CPQ, cost per QALY gained.			

TABLE 307 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	50,504
CPQ, cost per QALY gained.			

TABLE 308 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	42,587
CPQ, cost per QALY gained.			

TABLE 309 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	71,147
CPQ, cost per QALY gained.			

TABLE 310 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	79,535
CPQ, cost per QALY gained.			

TABLE 311 Probabilistic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	66,091
CPQ, cost per QALY gained.			

FIGURE 135 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated. Int, intensive.

It is seen that at a willingness to pay of £30,000 that MTX/intensive cDMARDs/NBT strategy has a very high probability of being optimal.

Response measure American College of Rheumatology: linear cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-naive, rheumatoid arthritis population

The base-case results for this population and those from sensitivity analyses are provided in *Tables 312–318*. The CEAC for the base case is shown in *Figure 136*.

It is seen that at a willingness to pay of £30,000 the MTX/NBT strategy has a very high probability of being optimal.

 TABLE 312
 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression

 and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	58,290
CPQ, cost per QALY gained.			

TABLE 313 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression including RCTs with some patients with prior cDMARD experience and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	58,065
CPQ, cost per QALY gained.			

TABLE 314 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	44,694
CPQ, cost per QALY gained.			
TABLE 315 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	33,580
CPQ, cost per QALY gained.			

TABLE 316 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	59,839
CPQ, cost per QALY gained.			

TABLE 317 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	68,258
CPQ, cost per QALY gained.			

TABLE 318 Probabilistic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/MTX/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	60,484
CPQ, cost per QALY gained.			

FIGURE 136 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population. Int, intensive.

Response measure American College of Rheumatology: Early Rheumatoid Arthritis Study cDMARD Health Assessment Questionnaire progression and a severe, MTX-naive, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 319–325*. The CEAC for the base case is shown in *Figure 137*.

TABLE 319 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	68,277
CPQ, cost per QALY gained.			

TABLE 320 Deterministic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy including RCTs with a small percentage of prior cDMARD experience

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	68,152
CPQ, cost per QALY gained.			

TABLE 321 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	50,504
CPQ, cost per QALY gained.			

TABLE 322 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	42,587
CPQ, cost per QALY gained.			

TABLE 323 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	71,147
CPQ, cost per QALY gained.			

TABLE 324 Deterministic results having used the relationship between HAQ and pain derived from ERAS: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	79,535
CPQ, cost per QALY gained.			

TABLE 325 Probabilistic base-case results mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	66,091
CPQ, cost per QALY gained.			

FIGURE 137 The CEAC when mapping EULAR data from ACR data: ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy. Int, intensive.

Response measure American College of Rheumatology: linear cDMARD Health Assessment Questionnaire progression and a severe, methotrexate-naive, rheumatoid arthritis population treated with monotherapy

The base-case results for this population and those from sensitivity analyses are provided in *Tables 326–332*. The CEAC for the base case is shown in *Figure 138*.

TABLE 326 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	58,290
CPQ, cost per QALY gained.			

TABLE 327 Deterministic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy including RCTs with a small percentage of prior cDMARD experience

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	58,065
CPQ, cost per QALY gained.			

TABLE 328 Deterministic results having used the mapping of HAQ to utility from Malottki *et al.*¹⁷¹ rather than Hernandez-Alava *et al.*²⁷⁶ mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	44,694
CPQ, cost per QALY gained.			

TABLE 329 Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	33,580
CPQ, cost per QALY gained.			

TABLE 330 Deterministic results assuming 100-fold increased impact of AEs and mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	59,839
CPQ, cost per QALY gained.			

TABLE 331 Deterministic results having used the relationship between HAQ and pain derived from ERAS: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	68,258
CPQ, cost per QALY gained.			

TABLE 332 Probabilistic base-case results mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted costs	Discounted QALYs	Incremental CPQ (£)
SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	-
bDMARDs/SSZ/intensive cDMARDs/NBT	CiC information has been removed	CiC information has been removed	60,484
CPO_cost per OALY gained			

FIGURE 138 The CEAC when mapping EULAR data from ACR data: linear cDMARD HAQ progression and a severe, MTX-naive, RA population. Int, intensive.

Interpretation of the results

Methotrexate-experienced rheumatoid arthritis patients

It is seen that the results are particularly sensitive to the assumptions made regarding the progression of HAQ while on cDMARDs, particularly for those with moderate RA and for those who cannot receive MTX.

The base-case analyses undertaken by the Assessment Group estimate the HAQ progression while on cDMARDs to be that produced by a statistical analysis of the ERAS database, which contains a large number of patients diagnosed with RA with a 15-year follow-up. This results in ICERs for the bDMARDs typically > £40,000 per QALY when compared with a cDMARD-alone option for patients with severe disease who can receive MTX. This value rises to £50,000 per QALY when patients with moderate disease are evaluated.

In contrast, the manufacturers typically used a linear HAQ progression that has been used in previous NICE appraisals;^{26,28,171,207} when the Assessment Group used the same assumptions the ICERs were typically in the region of £30,000–40,000 per QALY for both patients with severe or moderate disease.

The most appropriate HAQ progression to assume is discussed in *Health Assessment Questionnaire trajectory following initial response*. The Assessment Group believes that the progression calculated from ERAS data is likely to be more plausible, although may underestimate HAQ progression as it may contain patients who would not receive bDMARDs.

Altering the discount rate to that used in the initial appraisals of bDMARDs (6% per annum for costs and 1.5% per annum for QALYs) noticeably reduces the ICERs; using the relationship between HAQ and pain from a different data source noticeably increases the ICERs. The ICERs for severe RA patients were typically lower than for moderate RA patients, although the difference was smaller when a linear HAQ progression was used.

The results between EULAR-only data and EULAR mapped from ACR were comparable, which is reassuring given the wider evidence base reporting ACR data.

The ICERs for those patients who receive monotherapy are higher than for those who can be treated with MTX, increasing to approximately £48,000 per QALY gained for patients with severe RA, approximately £59,000 using the ERAS HAQ progression, and increasing to approximately £39,000 for both groups when using the linear HAQ progression.

Methotrexate-naive rheumatoid arthritis patients

The ICERs associated with treating with bDMARDs prior to MTX are over £60,000 per QALY gained for patients regardless of whether or not the patient can receive MTX or whether the assumed HAQ progression was linear or that estimated from the ERAS data set.

In addition, these ICERs are expected to be highly favourable to bDMARDs, as it is assumed that the HAQ progressions associated with single cDMARDs (either linear or non-linear) would also apply to intensive cDMARDs, which, according to the clinical advisors to the Assessment Group, is becoming widespread. If, as expected, the HAQ progression on intensive cDMARDs was lower than that assumed within the analyses then the ICERs would increase, potentially very considerably.

Discussion

Summary of key results

See Chapter 6, Statement of principal findings.

Comparison of the Assessment Group results and those produced by the companies

The base-case ICERs estimated by the Assessment Group are considerably higher than those estimated by the companies, whose values for patients who have severe RA and can receive MTX typically lie between £20,000 and £30,000 per QALY gained. Contrastingly, the base-case value produced by the Assessment Group was £37,000.

The discrepancy is initially reduced if the value produced by the Assessment Group when using the linear model and the Malottki *et al.*¹⁷¹ HAQ to utility mapping is used. This evaluation is more in line with the analyses conducted by the companies and in this scenario the median ICER in the Assessment Group model fell to £32,400.

On investigation, it was seen that the reduction in HAQ assumed with a positive response to treatment was typically assumed to be greater in the submissions from the companies (see *Health Assessment Questionnaire/European Quality of Life-5 Dimensions changes in relation to response levels*) than that seen in the BSRBR database and used by the Assessment Group. To illustrate this, if the HAQ reduction values assumed by AbbVie were applied, a patient with an initial HAQ of 2.0 would, following an ACR50–70 response, be assumed to have a HAQ of 0.77 (a reduction of 1.23); contrastingly, the BSRBR data show that on average the HAQ reduction following a good response is 0.67, resulting in a HAQ of 1.33. The use of greater HAQ reductions for bDMARDs will have the effect of reducing the ICER, as HAQ is linked to utility and to disease-related cost. It is noted that the HAQ changes assumed by the companies are typically taken from relatively small RCTs whereas the Assessment Group has used a large UK database.

Additionally, not all submissions have assumed that HAQ score will affect mortality. The approach taken within the Assessment Group model is that people with greater HAQ score on model entry will die, on average, earlier than those with lower HAQ scores. If such an assumption was not applied, this would be expected to have the impact of reducing the ICER, owing to the greater number of years the most severe patients lived, with both low utility and high disease-related costs and the likely difference in HAQ progression between those on cDMARDs and those on bDMARDs.

These reasons lead the Assessment Group to believe that there is no large unexplainable difference between its model and those submitted by the companies. Although other differences exist, for example the Assessment Group model is EULAR based, whereas the majority of company models are ACR based, it is not clear that such differences would represent a systematic difference in the comparative ICERs.

Generalisability of results

There is no reason to believe that the results detailed in this report are not generalisable to the English and Welsh populations.

Strengths and limitations of analysis

A strength of this report is that a systematic review of RCTs for bDMARDs in bDMARD-naive patients has been conducted. The primary outcome measures are EULAR or ACR response at 6 months and a formal NMA has been conducted to assess relative effectiveness. Different analyses have been undertaken to assess the impact of including RCTs with a small proportion of patients with prior bDMARD use, and/or including RCTs when patients may not have received adequate prior MTX treatment.

A major strength of the analyses presented is that the Assessment Group has constructed a EULAR-based model that is much more appropriate to practice in England and Wales than previous ACR-based models. Estimates of ICERs for both EULAR data only and when mapping ACR data to EULAR data indicate that the conclusions were not altered by restricting the selection of RCTs to only those that reported EULAR data.

An additional strength is that large observational databases were used to generate data on parameters such as HAQ change conditional on EULAR response and HAQ progression while on cDMARDs. This is preferable to data taken from relatively small RCTs of limited follow-up.

The model has known limitations. The plausible reduced efficacy of treatments when used subsequent to other treatments has not been formally incorporated. It is expected that this omission will favour bDMARDs. Additionally, the effects of non-adherence to NICE guidelines (as shown in the BSRBR) have not formally been incorporated; it is expected that, were this included, then the ICERs for bDMARDs compared with cDMARDs would increase and disfavour bDMARDs.

Lost productivity has not been included in the model, which could favour bDMARDs if it were included. However, an estimation of any lost productivity gains associated with technologies not funded because of the purchase of bDMARDs would be required to produce a definitive conclusion on the effect on the ICER.

Chapter 5 Assessment of factors relevant to the NHS and other parties

Beyond potential impact on expenditure there is unlikely to be any major implications for the NHS as the interventions are largely s.c. and self-administered. The implications for expenditure are uncertain as it will be heavily dependent on the guidance produced by NICE.

Chapter 6 Discussion

Statement of principal findings

Although there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in population 1, IFX plus MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups: intensive cDMARDs and ADA plus MTX; ETN, GOL plus MTX and step-up combination cDMARDs; ADA and cDMARDs.

Although there was uncertainty in, and overlap between, the effects of treatment on EULAR for interventions in populations 2 and 3 in the main trials, ETN plus MTX and TCZ plus MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: (1) TCZ, GOL plus MTX, ADA plus MTX, ABT i.v. plus MTX and grouped biologics; and (2) ETN, IFX plus MTX, ADA and intensive cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although CTZ plus MTX was associated with an even bigger response than ETN plus MTX and TCZ plus MTX.

Although there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions in populations 2 and 3 in the main trials, ETN plus MTX, TCZ and TCZ plus MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: (1) ETN, GOL plus MTX, ABT s.c. plus MTX, ADA plus MTX, IFX plus MTX and ABT i.v. plus MTX; and (2) CTZ plus MTX, intensive cDMARDs and ADA. The inclusion of the additional studies in which patients received prior biologics suggested that CTZ plus MTX and ETN plus MTX resulted in the highest response rates. Other interventions appeared to give rise to broadly similar and slightly smaller response rates.

The Assessment Group believes the ICERs for bDMARDs used in MTX-experienced patients with severe RA is credibly > £40,000 per QALY gained when compared with a cDMARD-alone strategy. These values are higher (£50,000) for moderate RA patients, higher for patients who cannot receive MTX and higher when bDMARDs were used before cDMARDs (£60,000), although this last estimate is likely to be favourable to bDMARDs owing to the assumption of HAQ progression while on intensive cDMARDs.

These estimates are lower if a different assumption, used in previous NICE appraisals regarding HAQ progression on cDMARDs, is adopted; however, the Assessment Group found few data to support this historic assumption.

The analyses have assumed that the discontinuation rule specified by NICE has been strictly adhered to: data from the BSRBR show that this is not the case. If such non-adherence continues the ICERs will be considerably higher than those presented. Analysis of the impact has not been undertaken owing to the possibility of back-calculation of CiC discounts offered through PASs.

Strengths and limitations of the assessment

A strength of this report is that a systematic review of RCTs for bDMARDs in bDMARD-naive patients has been conducted. The primary outcome measures are EULAR or ACR response at 6 months and a formal NMA has been conducted to assess relative efficacy. Different analyses have been undertaken to assess the impact of including RCTs with a small proportion on patients with prior bDMARD use, and/or including RCTs when patients may not have received adequate prior MTX treatment.

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

A major strength of the analyses presented is that the Assessment Group has constructed a EULAR-based model that is much more appropriate to practice in England and Wales than previous ACR-based models. Estimates of ICERs both for EULAR data only and when mapping ACR data to EULAR data indicate that the conclusions were not altered by restricting the selection of RCTs to those that reported EULAR data.

An additional strength is that large observational databases were used to generate data on parameters such as HAQ change conditional on EULAR response and HAQ progression while on cDMARDs. This is preferable to data taken from relatively small RCTs with limited follow-up.

The model has known limitations. The plausible reduced efficacy of treatments when used subsequent to other treatments has not been formally incorporated. It is expected that this omission will favour bDMARDs. Additionally, the effects of non-adherence to NICE guidelines (as shown in the BSRBR) have not formally been incorporated; it is expected that were this included then the ICERs for bDMARDs compared with cDMARDs would increase and disfavour bDMARDs.

Lost productivity has not been included in the model, although the impact of lost productivity in those interventions displaced due to purchasing bDMARDs is unknown.

Uncertainties

A key uncertainty relating to the cost-effectiveness results is related to the HAQ progression while on cDMARDs. This has been shown to have a large influence on the results, particularly for patients with moderate RA and those who cannot receive MTX. The relationship between HAQ and pain can also greatly influence the ICER, as is currently uncertain, with two large observational databases providing different estimated relationships.

Chapter 7 Conclusions

Implications for service provision

The implications for service provision are unclear and would be dependent on the final guidance issued by NICE. The majority of interventions are administered subcutaneously by the patient or family member, although it is possible that requirements for infusions or for district nurse time are affected conditional on the final guidance.

Suggested research priorities

In order to provide a more accurate estimate of the cost-effectiveness of bDMARDs the following research priorities are suggested by the Assessment Group. These aim to establish:

- the evaluation of the long-term HAQ trajectory while on cDMARDs
- the relationship between HAQ and utility
- the relationship between HAQ and hospital costs consumed
- the relationship between HAQ and pain
- the relative efficacy of bDMARDs assessed through head-to-head RCTs, although it is acknowledged that this is unlikely to occur owing to the large-scale, costly RCTs that would be required
- the relative efficacy of bDMARDs when used after a previous bDMARD and/or RTX compared with bDMARD naive
- the relative efficacy of cDMARDs when used after a bDMARD and/or RTX compared with bDMARD naive
- whether or not bDMARDs could be stopped once a patient has achieved a stated target (e.g. remission).

Acknowledgements

The authors wish to thank the BSRBR for providing access to their data and expert advice on how to use it, in particular Rebecca Davies, Xuejuan Fan, Kath Watson and Kimme Hyrich; Sam Norton for providing data and expert analyses from the ERAS data set; the VARA database for providing access to their data, and Kaleb Michaid for performing analyses on those data. The authors wish to thank Alan Brennan, Louise Preston and Colin Angus for advice and help throughout the project.

The authors would also like to thank Gill Rooney and Andrea Shippam for providing administrative support, help in preparing and formatting the report. Gill Rooney also assisted with digitising curves from published papers.

Contributions of authors

Matt Stevenson led the project and was involved in all aspects of the project.

Rachel Archer led the systematic review along with Emma Simpson and Emma Everson-Hock.

Jon Tosh constructed the mathematical model and undertook the review of economic evaluations.

John Stevens undertook the NMA.

Monica Hernandez-Alava, along with Allan Wailoo, formulated statistical models based on these data.

Suzy Paisley and Kath Dickinson formulated and ran the search strategies.

David Scott and Adam Young provided clinical advice.

Allan Wailoo provided advice throughout the project, liaised with registry holders, commented on elements of the manufacturer submissions and provided a detailed account of the utility mapping models.

About the School of Health and Related Research

The ScHARR is one of the nine departments that constitute the Faculty of Medicine, Dentistry and Health at the University of Sheffield. ScHARR specialises in health services and public health research, and the application of health economics and decision science to the development of health services and the improvement of public health.

The ScHARR Technology Assessment Group synthesises research on the clinical effectiveness and cost-effectiveness of health-care interventions for the National institute for Health Research HTA programme on behalf of a range of policy-makers, including NICE. ScHARR Technology Assessment Group is part of a wider collaboration of a number of units from other regions including Health Economics Research Unit and Health Services Research Unit, University of Aberdeen; Southampton HTA Centre, University of Southampton; Liverpool Reviews and Implementation Group, University of Liverpool; Peninsular Technology Assessment Group, University of Exeter; the NHS Centre for Reviews and Dissemination, University of York; Warwick Evidence, University of Warwick; the BMJ Technology Assessment Group, BMJ Evidence Centre; and Kleijnen Systematic Reviews Ltd.

Data sharing statement

Data can be obtained from the corresponding author subject to them being non-confidential.

References

- 1. Scott DL, Steer S. The course of established rheumatoid arthritis. *Best Pract Res Clin Rheumatol* 2007;**21**:943–67. http://dx.doi.org/10.1016/j.berh.2007.05.006
- Pincus T, Fuchs HA, Callahan LF, Nance EP Jr, Kaye JJ. Early radiographic joint space narrowing and erosion and later malalignment in rheumatoid arthritis: a longitudinal analysis. *J Rheumatol* 1998;**25**:636–40.
- Drossaers-Bakker KW, Kroon HM, Zwinderman AH, Breedveld FC, Hazes JM. Radiographic damage of large joints in long-term rheumatoid arthritis and its relation to function. *Rheumatology* 2000;**39**:998–1003. http://dx.doi.org/10.1093/rheumatology/39.9.998
- Allaire S, Wolfe F, Niu J, LaValley MP, Zhang B, Reisine S. Current risk factors for work disability associated with rheumatoid arthritis: recent data from a US national cohort. *Arthritis Rheum* 2009;61:321–8. http://dx.doi.org/10.1002/art.24281
- Naz SM, Symmons DP. Mortality in established rheumatoid arthritis. Best Pract Res Clin Rheumatol 2007;21:871–83. http://dx.doi.org/10.1016/j.berh.2007.05.003
- Dadoun S, Zeboulon-Ktorza N, Combescure C, Elhai M, Rozenberg S, Gossec L, et al. Mortality in rheumatoid arthritis over the last fifty years: systematic review and meta-analysis. *Joint Bone Spine* 2013;80:29–33. http://dx.doi.org/10.1016/j.jbspin.2012.02.005
- Meune C, Touze E, Trinquart L, Allanore Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. *Rheumatology* 2009;**48**:1309–13. http://dx.doi.org/10.1093/rheumatology/kep252
- Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315–24. http://dx.doi.org/10.1002/art.1780310302
- 9. National Collaborating Centre for Chronic Conditions (UK). *Rheumatoid Arthritis: National Clinical Guideline for Management and Treatment in Adults*. London: Royal College of Physicians; 2009.
- Combe B, Landewe R, Lukas C, Bolosiu HD, Breedveld F, Dougados M, et al. EULAR recommendations for the management of early arthritis: report of a task force of the European Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2007;66:34–45. http://dx.doi.org/10.1136/ard.2005.044354
- Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2010;69:1580–8. http://dx.doi.org/10.1136/ ard.2010.138461
- Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, et al. American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 1995;38:727–35. http://dx.doi.org/10.1002/art.1780380602
- 13. van Gestel AM, Prevoo ML, van't Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. *Arthritis Rheum* 1996;**39**:34–40. http://dx.doi.org/10.1002/art.1780390105
- 14. Felson DT. Assessing the efficacy and safety of rheumatic disease treatments: obstacles and proposed solutions. *Arthritis Rheum* 2003;**48**:1781–7. http://dx.doi.org/10.1002/art.11087

- Prevoo M, van't Hof M, Kuper H, Van Leeuwen M, van de Putte L, van Riel P. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. *Arthritis Rheum* 1995;**38**:44–8. http://dx.doi.org/10.1002/art.1780380107
- van Gestel AM, Anderson JJ, van Riel PL, Boers M, Haagsma CJ, Rich B, et al. ACR and EULAR improvement criteria have comparable validity in rheumatoid arthritis trials. American College of Rheumatology European League of Associations for Rheumatology. J Rheumatol 1999;26:705–11.
- 17. Bruce B, Fries JF. The Health Assessment Questionnaire (HAQ). *Clin Exp Rheumatol* 2005;**23**:S14–18.
- Symmons D, Turner G, Webb R, Asten P, Barrett EM, Lunt M, et al. The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. *Rheumatology* 2002;41:793–800. http://dx.doi.org/10.1093/rheumatology/41.7.793
- Symmons DP, Barrett EM, Bankhead CR, Scott DG, Silman AJ. The incidence of rheumatoid arthritis in the United Kingdom: results from the Norfolk Arthritis Register. *Br J Rheumatol* 1994;**33**:735–9. http://dx.doi.org/10.1093/rheumatology/33.8.735
- Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. *Autoimmun Rev* 2005;4:130–6. http://dx.doi.org/10.1016/j.autrev.2004.09.002
- Lugmani R, Hennell S, Estrach C, Birrell F, Bosworth A, Davenport G, et al. British Society for Rheumatology and British Health Professionals in Rheumatology Guideline for the management of rheumatoid arthritis (the first 2 years). Rheumatology 2006;45:1167–9. http://dx.doi.org/ 10.1093/rheumatology/kel215a
- 22. National Institute for Health and Care Excellence. *Adalimumab, Etanercept and Infliximab for the Treatment of Rheumatoid Arthritis*; 2007. URL: www.nice.org.uk/guidance/TA130 (accessed 30 July 2013).
- 23. National Institute for Health and Care Excellence. *Certolizumab Pegol for the Treatment of Rheumatoid Arthritis*; 2010. URL: www.nice.org.uk/guidance/TA186 (accessed 2 August 2013).
- 24. National Institute for Health and Care Excellence. *Golimumab for the Treatment of Rheumatoid Arthritis after the Failure of Previous Disease-Modifying Anti-Rheumatic Drugs*; 2011. URL: www.nice.org.uk/guidance/TA225 (accessed 30 July 2013).
- National Institute for Health and Care Excellence. Rheumatoid Arthritis (Methotrexate-Naïve) Golimumab (Terminated Appraisal): Guidance; 2011. URL: www.nice.org.uk/guidance/TA224 (accessed 30 July 2013).
- National Institute for Health and Care Excellence. *Tocilizumab for the Treatment of Rheumatoid Arthritis (Rapid Review of Technology Appraisal Guidance 198)*. TA247; 2012. URL: www.nice.org.uk/guidance/ta247 (accessed 31 July 2013).
- 27. National Institute for Health and Care Excellence. Abatacept for Treating Rheumatoid Arthritis After the Failure of Conventional Disease-Modifying Anti-Rheumatic Drugs (Rapid Review of Technology Appraisal Guidance 234); 2013. URL: www.nice.org.uk/guidance/TA280 (accessed 2 August 2013).
- National Institute for Health and Care Excellence. Adalimumab, Etanercept, Infliximab, Rituximab and Abatacept for the Treatment of Rheumatoid Arthritis After the Failure of a TNF Inhibitor; 2010. URL: www.nice.org.uk/guidance/ta195 (accessed 2 August 2013).

- 29. School of Health and Related Research, University of Sheffield. *NICE Protocol Adalimumab, Etanercept, Infliximab, Certolizumab Pegol, Golimumab, Tocilizumab and Abatacept for the Treatment of Rheumatoid Arthritis not Previously Treated with Disease Modifying Anti-Rheumatic Drugs and After the Failure of Conventional Disease-Modifying Anti-Rheumatic Drugs Only (Review of Technology Appraisal Guidance 130, 186, 224, 234 and a Part Review of Technology Appraisal Guidance 225 and 247).*
- 30. Joint Formulary Committee. *British National Formulary*. 64 ed. London: BMJ Group and Pharmaceutical Press; 2012.
- 31. Haynes RB, McKibbon KA, Wilczynski NL, Walter SD, Were SR, Hedges Team. Optimal search strategies for retrieving scientifically strong studies of treatment from MEDLINE: analytical survey. *BMJ* 2005;**330**:1179. http://dx.doi.org/10.1136/bmj.38446.498542.8F
- Montori VM, Wilczynski NL, Morgan D, Haynes RB. Optimal search strategies for retrieving systematic reviews from MEDLINE: analytical survey. *BMJ* 2005;**330**:68 http://dx.doi.org/10.1136/ bmj.38336.804167.47
- 33. Wong SS, Wilczynski NL, Haynes RB. Optimal CINAHL search strategies for identifying therapy studies and review articles. *J Nurs Scholarsh* 2006;**38**:194–9. http://dx.doi.org/10.1111/j.1547-5069.2006.00100.x
- Wilczynski NL, Haynes RB. EMBASE search strategies achieved high sensitivity and specificity for retrieving methodologically sound systematic reviews. J Clin Epidemiol 2007;60:29–33. http://dx.doi.org/10.1016/j.jclinepi.2006.04.001
- 35. Wong SS, Wilczynski NL, Haynes RB. Developing optimal search strategies for detecting clinically sound treatment studies in EMBASE. *J Med Libr Assoc* 2006;**94**:41–7.
- 36. Lefebvre C, Manheimer E, Glanville J. Chapter 6: Searching for Studies. In Higgins JPT, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions*. Version 5.1.0 (updated March 2011). URL: www.cochrane-handbook.org (accessed 10 August 2011).
- Golder S, Mcintosh HM, Duffy S, Glanville J. Developing efficient search strategies to identify reports of adverse effects in MEDLINE and EMBASE. *Health Info Libr J* 2006;**23**:3–12. http://dx.doi.org/10.1111/j.1471-1842.2006.00634.x
- 38. National Institute for Health and Care Excellence. *Abatacept for the Treatment of Rheumatoid Arthritis After the Failure of Conventional Disease Modifying Anti-Rheumatic Drugs*. TA234; 2011. URL: www.nice.org.uk/guidance/ta234 (accessed 5 July 2013).
- 39. Information Services, Canadian Agency for Drugs and Technologies in Health (CADTH). *Grey Matters: A Practical Search Tool for Evidence-Based Medicine*. Ottawa, ON: CADTH; 2013.
- 40. National Institute for Health and Care Excellence. Adalimumab, Etanercept, Infliximab, Certolizumab Pegol, Golimumab, Abatacept and Tocilizumab for the Treatment of Rheumatoid Arthritis (Review of TA Guidance 130, 186, 224, 234 and Part Review of TA Guidance 225 and 247) Final scope. 2012. URL: www.nice.org.uk/guidance/TA375/documents/rheumatoid-arthritisadalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumabreview-final-scope-2 (accessed 5 July 2013).
- 41. Electronic Medicines Compendium. *Summary of Product Characteristics Cimzia (Certolizumab)*; 2013. URL: www.medicines.org.uk/emc/medicine/22323/SPC/Cimzia+200+mg+solution+for +injection/ (accessed 5 July 2013).
- 42. Electronic Medicines Compendium. *Summary of Product Characteristics Enbrel (Etanercept)*; 2012. URL: www.medicines.org.uk/emc/searchresults.aspx?term=Enbrel&searchtype=QuickSearch (accessed 5 July 2013).

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- Electronic Medicines Compendium. Summary of Product Characteristics HUMIRA (Adalimumab); 2013. URL: www.medicines.org.uk/emc/medicine/21201/SPC/Humira+Pre-filled+Pen%2c+Pre-filled+Syringe+and+Vial/ (accessed 5 July 2013).
- Electronic Medicines Compendium. Summary of Product Characteristics Orencia® (Abatacept); 2012. URL: www.medicines.org.uk/emc/medicine/27216/SPC/ORENCIA+125+mg+solution+for +injection+(pre-filled+syringe)/ (accessed 5 July 2013).
- 45. Electronic Medicines Compendium. *Summary of Product Characteristics Remicade (Infliximab)*; 2013. URL: www.medicines.org.uk/emc/medicine/3236/SPC/Remicade+100mg+powder+for +concentrate+for+solution+for+infusion/ (accessed 5 July 2013).
- Electronic Medicines Compendium. Summary of Product Characteristics Simponi (Golimumab); 2013. URL: www.medicines.org.uk/emc/medicine/23766/SPC/Simponi+50+mg+solution+for +injection/ (accessed 5 July 2013).
- Electronic Medicines Compendium. Summary of Product Characteristics. RoActemra (Tocilizumab); 2013. URL: www.medicines.org.uk/emc/medicine/22311/SPC/RoActemra+20mg+ml+Concentrate +for+Solution+for+Infusion/ (accessed 5 July 2013).
- 48. Centre for Reviews and Dissemination. *Systematic Reviews: CRD's Guidance for Undertaking Systematic Reviews in Health Care.* York: University of York; 2009.
- 49. Higgins JPT, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions*. Version 5.1.0 (updated March 2011). The Cochrane Collaboration; 2011. URL: http://handbook. cochrane.org/ (accessed 2 August 2013).
- Karsh J, Keystone EC, Haraoui B, Thorne JC, Pope JE, Bykerk VP, et al. Canadian recommendations for clinical trials of pharmacologic interventions in rheumatoid arthritis: inclusion criteria and study design. J Rheumatol 2011;38:2095–104. http://dx.doi.org/10.3899/ jrheum.110188
- 51. Thorlund K, Druyts E, Avina-Zubieta JA, Wu P, Mills EJ. Why the findings of published multiple treatment comparison meta-analyses of biologic treatments for rheumatoid arthritis are different: an overview of recurrent methodological shortcomings. *Ann Rheum Dis* 2012;**72**:1524–35. http://dx.doi.org/10.1136/annrheumdis-2012-201574
- 52. Dias S, Welton N, Sutton A, Ades A. *NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials*. London: NICE; 2011.
- Moreland LW, O'Dell JR, Paulus HE, Curtis JR, Bathon JM, Clair EW, et al. A randomised comparative effectiveness study of oral triple therapy versus etanercept plus methotrexate in early aggressive rheumatoid arthritis: the treatment of early aggressive rheumatoid arthritis trial. Arthritis Rheum 2012;64:2824–35. http://dx.doi.org/10.1002/art.34498
- Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M, et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. *Lancet* 2004;**363**:675–81. http://dx.doi.org/10.1016/S0140-6736(04)15640-7
- Jones G, Sebba A, Gu J, Lowenstein MB, Calvo A, Gomez-Reino JJ, et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann Rheum Dis 2010;69:88–96. http://dx.doi.org/ 10.1136/ard.2008.105197
- 56. Abe T, Takeuchi T, Miyasaka N, Hashimoto H, Kondo H, Ichikawa Y, et al. A multicenter, double-blind, randomised, placebo controlled trial of infliximab combined with low dose methotrexate in Japanese patients with rheumatoid arthritis. J Rheumatol 2006;33:37–44.

- 57. Dougados M, Kissel K, Sheeran T, Tak PP, Conaghan PG, Mola EM, *et al.* Adding tocilizumab or switching to tocilizumab monotherapy in methotrexate inadequate responders: 24-week symptomatic and structural results of a 2-year randomised controlled strategy trial in rheumatoid arthritis (ACT-RAY). *Ann Rheum Dis* 2013;**72**:43–50. http://dx.doi.org/10.1136/annrheumdis-2011-201282
- 58. Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Pavelka K, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 2013;**381**:1541–50. http://dx.doi.org/ 10.1016/S0140-6736(13)60250-0
- van Riel PL, Taggart AJ, Sany J, Gaubitz M, Nab HW, Pedersen R, et al. Efficacy and safety of combination etanercept and methotrexate versus etanercept alone in patients with rheumatoid arthritis with an inadequate response to methotrexate: the ADORE study. Ann Rheum Dis 2006;65:1478–83. http://dx.doi.org/10.1136/ard.2005.043299
- 60. van Riel PLCM, Freundlich B, MacPeek D, Pedersen R, Foehl JR, Singh A. Patient-reported health outcomes in a trial of etanercept monotherapy versus combination therapy with etanercept and methotrexate for rheumatoid arthritis: the ADORE trial. *Ann Rheum Dis* 2008;**67**:1104–10. http://dx.doi.org/10.1136/ard.2006.068585
- 61. Russell AS, Wallenstein GV, Li T, Martin MC, MacLean R, Blaisdell B, *et al.* Abatacept improves both the physical and mental health of patients with rheumatoid arthritis who have inadequate response to methotrexate treatment. *Ann Rheum Dis* 2007;**66**:189–94. http://dx.doi.org/10.1136/ard.2006.057018
- 62. Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, *et al.* Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomised trial. *Ann Intern Med* 2006;**144**:865–76. http://dx.doi.org/10.7326/0003-4819-144-12-200606200-00003
- 63. Kremer J, Russell AS, Westhovens R, Teng J, Rosenblatt L, Emery P. Sustained and clinically meaningful improvements in both day-and night-time aspects of HRQoL are observed with abatacept treatment in patients with rheumatoid arthritis (RA) and previous inadequate response to MTX: 5-year data from the AIM trial. *Arthritis Rheum* 2010;**62**:1836.
- 64. Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, et al. Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum 2008;58:953–63. http://dx.doi.org/10.1002/ art.23397
- 65. Kremer JM, Russell AS, Emery P, Abud-Mendoza C, Szechinski J, Westhovens R, *et al.* Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-year results from the AIM trial. *Ann Rheum Dis* 2011;**70**:1826–30. http://dx.doi.org/10.1136/ard.2010.139345
- 66. Fleischmann R, Schiff MH, Weinblatt ME, Maldonado MA, Massarotti EM, Yazici Y. Effects of subcutaneous abatacept or adalimumab on remission and associated changes in physical function and radiographic outcomes: one year results from the ample (abatacept versus adalimumab comparison in biologic-naive RA subjects with background methotrexate) trial. *Arthritis Rheum* 2012;**64**:S577.
- 67. Kim H-Y, Hsu P-N, Barba M, Sulaiman W, Robertson D, Vlahos B, *et al.* Randomised comparison of etanercept with usual therapy in an Asian population with active rheumatoid arthritis: the APPEAL trial. *Int J Rheum Dis* 2012;**15**:188–96. http://dx.doi.org/10.1111/j.1756-185X.2011. 01680.x

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- 68. Bae SC, Gun SC, Mok CC, Khandker R, Nab HW, Koenig AS, *et al.* Improved health outcomes with Etanercept versus usual DMARD therapy in an Asian population with established rheumatoid arthritis. *BMC Musculoskelet Disord* 2013;**14**:13. http://dx.doi.org/10.1186/1471-2474-14-13
- 69. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, *et al.* Adalimumab, a fully human anti-tumour necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. *Arthritis Rheum* 2003;**48**:35–45. http://dx.doi.org/10.1002/art.10697
- 70. Weinblatt ME, Keystone EC, Furst DE, Kavanaugh AF, Chartash EK, Segurado OG. Long term efficacy and safety of adalimumab plus methotrexate in patients with rheumatoid arthritis: ARMADA 4 year extended study. *Ann Rheum Dis* 2006;**65**:753–9. http://dx.doi.org/10.1136/ard.2005.044404
- St Clair EW, van der Heijde DMFM, Smolen JS, Maini RN, Bathon JM, Emery P, et al. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomised, controlled trial. Arthritis Rheum 2004;50:3432–43. http://dx.doi.org/10.1002/art.20568
- 72. Conaghan P, Durez P, Alten RE, Burmester GR, Tak PP, Klareskog L, et al. Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial. Ann Rheum Dis 2013;72:1287–94. http://dx.doi.org/10.1136/annrheumdis-2012-201611
- 73. Weinblatt M, Combe B, Covucci A, Aranda R, Becker JC, Keystone E. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomised, placebo-controlled study. *Arthritis Rheum* 2006;**54**:2807–16. http://dx.doi.org/10.1002/art.22070
- 74. Schiff M, Keiserman M, Codding C, Songcharoen S, Berman A, Nayiager S, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 2008;67:1096–103. http://dx.doi.org/10.1136/ ard.2007.080002
- Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. *Lancet* 1999;**354**:1932–9. http://dx.doi.org/10.1016/S0140-6736(99)05246-0
- 76. van Vollenhoven RF, Kinnman N, Vincent E, Wax S, Bathon J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomised, placebo-controlled trial. *Arthritis Rheum* 2011;**63**:1782–92. http://dx.doi.org/ 10.1002/art.30372
- 77. Bejarano V, Quinn M, Conaghan PG, Reece R, Keenan A-M, Walker D, *et al.* Effect of the early use of the anti-tumour necrosis factor adalimumab on the prevention of job loss in patients with early rheumatoid arthritis. *Arthrit Care Res* 2008;**59**:1467–74. http://dx.doi.org/10.1002/art.24106
- Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Allaart CF, van ZD, Kerstens PJ, Hazes JM, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeST study): a randomised, controlled trial. *Arthritis Rheum* 2008;**52**:3381–90. http://dx.doi.org/10.1002/art.21405
- 79. Smolen J, Emery P, Ferraccioli G. Efficacy and safety of certolizumab pegol after incomplete response to DMARDS in RA patients with low moderate disease activity: results from certain, a phase IIIb study. *Ann Rheum Dis* 2011;**70**:S259. http://dx.doi.org/10.1136/annrheumdis-2013-204632

- 80. Miyasaka N. Clinical investigation in highly disease-affected rheumatoid arthritis patients in Japan with adalimumab applying standard and general evaluation: the CHANGE study. *Mod Rheumatol* 2008;**18**:252–62. http://dx.doi.org/10.3109/s10165-008-0045-0
- Emery P, Breedveld FC, Hall S, Durez P, Chang DJ, Robertson D, *et al.* Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. *Lancet* 2008;**372**:375–82. http://dx.doi.org/10.1016/S0140-6736(08)61000-4
- 82. Emery P, Breedveld F, van der Heijde D, Ferraccioli G, Dougados M, Robertson D, et al. Two-year clinical and radiographic results with combination etanercept-methotrexate therapy versus monotherapy in early rheumatoid arthritis: a two-year, double-blind, randomised study. *Arthritis Rheum* 2010;**62**:674–82. http://dx.doi.org/10.1002/art.27268
- Kekow J, Moots RJ, Emery P, Durez P, Koenig A, Singh A, et al. Patient-reported outcomes improve with etanercept plus methotrexate in active early rheumatoid arthritis and the improvement is strongly associated with remission: the COMET trial. Ann Rheum Dis 2010;69:222–5. [Erratum appears in Ann Rheum Dis 201;70:1519.] http://dx.doi.org/10.1136/ ard.2008.102509
- 84. Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumour necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomised, placebo-controlled, 52-week trial. *Arthritis Rheum* 2004;**50**:1400–11. http://dx.doi.org/10.1002/art.20217
- deFilippis L, Caliri A, Anghelone S, Scibilia G, Lo Gullo R, Bagnato G. Improving outcomes in tumour necrosis factor a treatment: comparison of the efficacy of the tumour necrosis factor a blocking agents etanercept and infliximab in patients with active rheumatoid arthritis. *Panminerva Med* 2006;**48**:129–35.
- 86. Durez P, Nzeusseu TA, Lauwerys BR, Manicourt DH, Verschueren P, Westhovens R, et al. A randomised comparative study of the short term clinical and biological effects of intravenous pulse methylprednisolone and infliximab in patients with active rheumatoid arthritis despite methotrexate treatment. Ann Rheum Dis 2004;63:1069–74. http://dx.doi.org/10.1136/ ard.2003.012914
- Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000;343:1586–93. http://dx.doi.org/10.1056/NEJM200011303432201
- Combe B, Codreanu C, Fiocco U, Gaubitz M, Geusens PP, Kvien TK, et al. Etanercept and sulfasalazine, alone and combined, in patients with active rheumatoid arthritis despite receiving sulfasalazine: a double-blind comparison. Ann Rheum Dis 2006;65:1357–62. http://dx.doi.org/ 10.1136/ard.2005.049650
- Combe B, Codreanu C, Fiocco U, Gaubitz M, Geusens PP, Kvien TK, et al. Efficacy, safety and patient-reported outcomes of combination etanercept and sulfasalazine versus etanercept alone in patients with rheumatoid arthritis: a double-blind randomised 2-year study. Ann Rheum Dis 2009;68:1146–52. http://dx.doi.org/10.1136/ard.2007.087106
- 90. Emery P, Fleischmann RM, Moreland LW, Hsia EC, Strusberg I, Durez P, et al. Golimumab, a human anti-tumour necrosis factor alpha monoclonal antibody, injected subcutaneously every four weeks in methotrexate-naive patients with active rheumatoid arthritis: twenty-four-week results of a phase III, multicenter, randomised, double-blind, placebo-controlled study of golimumab before methotrexate as first-line therapy for early-onset rheumatoid arthritis. Arthritis Rheum 2009;60:2272–83. http://dx.doi.org/10.1002/art.24638

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- Tanaka Y, Harigai M, Takeuchi T, Yamanaka H, Ishiguro N, Yamamoto K, et al. Golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis: results of the GO-FORTH study. Ann Rheum Dis 2012;71:817–24. http://dx.doi.org/10.1136/ard. 2011.200317
- Keystone E, Genovese MC, Klareskog L, Hsia EC, Hall S, Miranda PC, et al. Golimumab in patients with active rheumatoid arthritis despite methotrexate therapy: 52-week results of the GO-FORWARD study. Ann Rheum Dis 2010;69:1129–35. http://dx.doi.org/10.1136/ard.2009.116319
- 93. Soubrier M, Puechal X, Sibilia J, Mariette X, Meyer O, Combe B, et al. Evaluation of two strategies (initial methotrexate monotherapy vs its combination with adalimumab) in management of early active rheumatoid arthritis: data from the GUEPARD trial. *Rheumatology* 2009;**48**:1429–34. http://dx.doi.org/10.1093/rheumatology/kep261
- 94. Detert J, Bastian H, Listing J, Weis A, Wassenberg S, Liebhaber A, et al. Induction therapy with adalimumab plus methotrexate for 24 weeks followed by methotrexate monotherapy up to week 48 versus methotrexate therapy alone for DMARD-naive patients with early rheumatoid arthritis: HIT HARD, an investigator-initiated study. Ann Rheum Dis 2013;72:844–50. http://dx.doi.org/ 10.1136/annrheumdis-2012-201612
- 95. Nam JL, Villeneuve E, Conaghan PG, Hensor E, Keen HI, Amarasena R, *et al.* A preliminary report of remission induction with two therapeutic strategies with infliximab or high dose intravenous steroids for the treatment of rheumatoid arthritis. *Arthritis Rheum* 2011;**63**(Suppl. 10):463.
- 96. Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB, Study Team. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis 2012;71:1630–5. [Erratum appears in Ann Rheum Dis 2012;71:2064.] http://dx.doi.org/10.1136/annrheumdis-2011-143578
- Kameda H, Ueki Y, Saito K, Nagaoka S, Hidaka T, Atsumi T, et al. Etanercept (ETN) with methotrexate (MTX) is better than ETN monotherapy in patients with active rheumatoid arthritis despite MTX therapy: a randomised trial. *Mod Rheumatol* 2010;**20**:531–8. http://dx.doi.org/ 10.3109/s10165-010-0324-4
- Kay J, Matteson EL, Dasgupta B, Nash P, Durez P, Hall S, *et al.* Golimumab in patients with active rheumatoid arthritis despite treatment with methotrexate: a randomised, double-blind, placebo-controlled, dose-ranging study. *Arthritis Rheum* 2008;**58**:964–75. http://dx.doi.org/ 10.1002/art.23383
- 99. Kim H-Y, Lee S-K, Song YW, Yoo D-H, Koh E-M, Yoo B, et al. A randomised, double-blind, placebo-controlled, phase III study of the human anti-tumour necrosis factor antibody adalimumab administered as subcutaneous injections in Korean rheumatoid arthritis patients treated with methotrexate. Int J Rheum Dis 2007;10:9–16.
- 100. Kume K, Amano K, Yamada S, Hatta K, Ohta H, Kuwaba N. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open-label randomised controlled trial. *J Rheumatol* 2011;**38**:2169–71. http://dx.doi.org/ 10.3899/jrheum.110340
- 101. Lan J-L, Chou S-J, Chen D-Y, Chen Y-H, Hsieh T-Y, Young J. A comparative study of etanercept plus methotrexate and methotrexate alone in Taiwanese patients with active rheumatoid arthritis: a 12-week, double-blind, randomised, placebo-controlled study. *J Formos Med Assoc* 2004;**103**:618–23.

- 102. Machado D, Guzman R, Xavier R, Simon J, Ferdousi T, Pedersen R, et al. Combination Etanercept and Methotrexate Therapy Provides Better Outcomes Than Standard DMARD and Methotrexate Therapy in Rheumatoid Arthritis: Results From a Study in the Latin America Region. Presented at XVII Congress of Pan American League of Associations of Rheumatology (PANLAR); Punta Cana, Dominican Republic; 17–21 April 2012.
- 103. Mcinnes I, Lee JS, Wu W, Giles JT, Bathon JM, Salmon JE, et al. MEASURE: a translational, randomised, placebo (PBO)-controlled study to evaluate the effects of tocilizumab (TCZ) on parameters of lipids and inflammation. Ann Rheum Dis 2011;**70**:S73.
- 104. Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, et al. Etanercept therapy in rheumatoid arthritis: a randomised, controlled trial. Ann Intern Med 1999;**130**:478–86. http://dx.doi.org/10.7326/0003-4819-130-6-199903160-00004
- 105. Mathias SD, Colwell HH, Miller DP, Moreland LW, Buatti M, Wanke L. Health-related quality of life and functional status of patients with rheumatoid arthritis randomly assigned to receive etanercept or placebo. *Clin Ther* 2000;**22**:128–39. http://dx.doi.org/10.1016/S0149-2918(00) 87984-9
- 106. Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, et al. Treatment of rheumatoid arthritis with humanised anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 2004;**50**:1761–9. http://dx.doi.org/ 10.1002/art.20303
- 107. Hørslev-Petersen K. Adalimumab added to a treat-to-target strategy with methotrexate and intra-articular triamcinolone in early rheumatoid arthritis increased remission rates, function and quality of life. The OPERA study: an investigator-initiated, randomised, double-blind, parallel-group, placebo-controlled trial. *Ann Rheum Dis* 2014;**73**:654–61. http://dx.doi.org/ 10.1136/annrheumdis-2012-202735
- 108. Kavanaugh A, Fleischmann RM, Emery P, Kupper H, Redden L, Guerette B, et al. Clinical, functional and radiographic consequences of achieving stable low disease activity and remission with adalimumab plus methotrexate or methotrexate alone in early rheumatoid arthritis: 26-week results from the randomised, controlled OPTIMA study. Ann Rheum Dis 2013;72:64–71. http://dx.doi.org/10.1136/annrheumdis-2011-201247
- 109. Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R, et al. The PREMIER study: a multicenter, randomised, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. *Arthritis Rheum* 2006;**54**:26–37. http://dx.doi.org/10.1002/art.21519
- 110. Quinn MA, Conaghan PG, O'Connor PJ, Karim Z, Greenstein A, Brown A, *et al.* Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: results from a twelve-month randomised, double-blind, placebo-controlled trial. *Arthritis Rheum* 2005;**52**:27–35. http://dx.doi.org/10.1002/art.20712
- 111. O'Dell JR, Mikuls TR, Taylor T, Ahluwalia V, Brophy M, Warren S, et al. Rheumatoid arthritis comparison of active therapies in methotrexate suboptimal responders: validation of the strategy of conventional disease modifying anti-rheumatic drugs before biologicals. Arthritis Rheum 2012;64:S1297.
- 112. O'Dell JR, Mikuls TR, Taylor TH, Ahluwalia V, Brophy M, Warren SR, et al. Therapies for active rheumatoid arthritis after methotrexate failure. N Engl J Med 2013;369:307–18. http://dx.doi.org/ 10.1056/NEJMoa1303006

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

- 113. Weinblatt ME, Fleischmann R, van Vollenhoven R, Emery P, Huizinga TWJ, Goldermann R, *et al.* Certolizumab pegol in patients with active rheumatoid arthritis aligned with NICE guidance for anti-TNF therapy: post-HOC analyses of the realistic phase IIIB randomised controlled study. *Rheumatology* 2012;**51**(Suppl. 3):abstract 200.
- 114. Jobanputra P, Maggs F, Deeming A, Carruthers D, Rankin E, Jordan AC, *et al.* A randomised efficacy and discontinuation study of etanercept versus adalimumab (RED SEA) for rheumatoid arthritis: a pragmatic, unblinded, non-inferiority study of first TNF inhibitor use: outcomes over 2 years. *BMJ Open* 2012;**2**:e001395. http://dx.doi.org/10.1136/bmjopen-2012-001395
- 115. Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, *et al.* Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an X ray reader-blinded randomised controlled trial of tocilizumab. *Ann Rheum Dis* 2007;**66**:1162–7. http://dx.doi.org/10.1136/ard.2006.068064
- 116. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J, *et al.* Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. *Mod Rheumatol* 2009;**19**:12–19. http://dx.doi.org/10.3109/s10165-008-0125-1
- 117. Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA, Compagnone D, *et al.* Adalimumab, a fully human anti-tumour necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of star (safety trial of adalimumab in rheumatoid arthritis). *J Rheumatol* 2003;**30**:2563–71.
- 118. Westhovens R, Yocum D, Han J, Berman A, Strusberg I, Geusens P, *et al.* The safety of infliximab, combined with background treatments, among patients with rheumatoid arthritis and various comorbidities: a large, randomised, placebo-controlled trial. *Arthritis Rheum* 2006;**54**:1075–86. http://dx.doi.org/10.1002/art.21734
- 119. van Vollenhoven RF, Ernestam S, Geborek P, Petersson IF, Coster L, Waltbrand E, *et al.* Addition of infliximab compared with addition of sulfasalazine and hydroxychloroquine to methotrexate in patients with early rheumatoid arthritis (Swefot trial): 1-year results of a randomised trial. *Lancet* 2009;**374**:459–66. http://dx.doi.org/10.1016/S0140-6736(09)60944-2
- 120. Durez P, Malghem J, Toukap AN, Depresseux G, Lauwerys BR, Westhovens R, et al. Treatment of early rheumatoid arthritis: a randomised magnetic resonance imaging study comparing the effects of methotrexate alone, methotrexate in combination with infliximab, and methotrexate in combination with intravenous pulse methylprednisolone. Arthritis Rheum 2007;56:3919–27. http://dx.doi.org/10.1002/art.23055
- 121. Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. *Arthritis Rheum* 2008;**58**:2968–80. http://dx.doi.org/10.1002/art.23940
- 122. Van De Putte LBA, Atkins C, Malaise M, Sany J, Russell AS, Van Riel PLCM, et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis 2004;63:508–16. http://dx.doi.org/10.1136/ard.2003.013052
- 123. Chen YF, Jobanputra P, Barton P, Jowett S, Bryan S, Clark W, *et al.* A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness. *Health Technol Assess* 2006;**10**(42). http://dx.doi.org/10.3310/hta10420

- 124. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, et al. A trial of etanercept, a recombinant tumour necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999;340:253–9. http://dx.doi.org/ 10.1056/NEJM199901283400401
- 125. Wong M, Oakley SP, Young L, Jiang BY, Wierzbicki A, Panayi G, et al. Infliximab improves vascular stiffness in patients with rheumatoid arthritis. Ann Rheum Dis 2009;**68**:1277–84. http://dx.doi.org/10.1136/ard.2007.086157
- 126. Zhang F-C, Hou Y, Huang F, Wu D-H, Bao C-D, Ni L-Q, *et al.* Infliximab versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a preliminary study from China. *Int J Rheum Dis* 2006;**9**:127–30. http://dx.doi.org/10.1111/j.1479-8077.2006.00186.x
- 127. Genovese MC, Covarrubias A, Leon G, Mysler E, Keiserman M, Valente R, *et al.* Subcutaneous abatacept versus intravenous abatacept: a phase IIIb noninferiority study in patients with an inadequate response to methotrexate. *Arthritis Rheum* 2011;**63**:2854–64. http://dx.doi.org/ 10.1002/art.30463
- 128. Jones G. The AMBITION trial: tocilizumab monotherapy for rheumatoid arthritis. *Expert Rev Clin Immunol* 2010;**6**:189–95. http://dx.doi.org/10.1586/eci.10.2
- 129. Yamamoto K, Takeuchi T, Yamanaka H, Ishiguro N, Tanaka Y, Eguchi K, et al. Efficacy and Safety of Certolizumab Pegol Plus Methotrexate in Japanese Rheumatoid Arthritis Patients with an Inadequate Response to Methotrexate. Arthritis and Rheumatism Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals, October 2011, Chicago, IL, USA.
- 130. Kremer JM, Blanco R, Brzosko M, Burgos-Vargas R, Halland A-M, Vernon E, *et al.* Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomised placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. *Arthritis Rheum* 2011;**63**:609–21. http://dx.doi.org/10.1002/art.30158
- 131. Kremer JM, Dougados M, Emery P, Durez P, Sibilia J, Shergy W, *et al.* Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase IIb, double-blind, randomised, placebo-controlled trial. *Arthritis Rheum* 2005;**52**:2263–71. http://dx.doi.org/10.1002/art.21201
- 132. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. *Lancet* 2008;**371**:987–97. http://dx.doi.org/10.1016/S0140-6736(08)60453-5
- 133. van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Meijide JAG, Wagner S, *et al.* Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. *N Engl J Med* 2012;**367**:508–19. http://dx.doi.org/10.1056/NEJMoa1112072
- 134. Kang Y, Park W, Park Y, Choe J, Bae S-C. Efficacy and safety of certolizumab pegol (CZP) with concomitant methotrexate (MTX) in Korean rheumatoid arthritis (RA) patients (PTS) with an inadequate response to MTX. *Ann Rheum Dis* 2012;**71**:666. http://dx.doi.org/10.1136/ annrheumdis-2012-eular.501
- 135. Keystone E, van der Heijde D, Mason J, Landewe R, van Vollenhoven R, Combe B, et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomised, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 2008;**58**:3319–29. http://dx.doi.org/10.1002/art.23964

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

- 136. Smolen J, Landewe RB, Mease P, Brzezicki J, Mason D, Luijtens K, et al. Efficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: the RAPID 2 study. A randomised controlled trial. Ann Rheum Dis 2009;68:797–804. http://dx.doi.org/10.1136/ ard.2008.101659
- 137. Kremer JM, Cohen S, Wilkinson BE, Connell CA, French JL, Gomez-Reino J, et al. A phase Ilb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum 2012;64:970–81. http://dx.doi.org/ 10.1002/art.33419
- 138. van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four month phase III randomised radiographic study. Arthritis Rheum 2013;65:559–70. http://dx.doi.org/10.1002/art.37816
- 139. Bathon JM, Genovese MC. The Early Rheumatoid Arthritis (ERA) trial comparing the efficacy and safety of etanercept and methotrexate. *Clin Exp Rheumatol* 2003;**21**:S195–7.
- 140. Kameda H, Kanbe K, Sato E, Ueki Y, Saito K, Nagaoka S, *et al.* Continuation of methotrexate resulted in better clinical and radiographic outcomes than discontinuation upon starting etanercept in patients with rheumatoid arthritis: 52-week results from the JESMR study. *J Rheumatol* 2011;**38**:1585–92. http://dx.doi.org/10.3899/jrheum.110014
- 141. Scott DL, Ibrahim F, Farewell V, O'Keeffe AG, Ma M, Walker D, et al. Randomised controlled trial of tumour-necrosis-factor inhibitors against combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: the TACIT trial. *Health Technol Assess* 2013;**18**(66). http://dx.doi.org/10.3310/hta18660
- 142. Smolen J, Fleischmann R, Guerette B. Adalimumab plus methotrexate vs. methotrexate monotherapy for early rheumatoid arthritis: 26-week results (first phase) from the 78-week optima study. *Ann Rheum Dis* 2010;**69**:102. http://dx.doi.org/10.1136/annrheumdis-2011-201247
- 143. Fleischmann R, Emery P. Long-term efficacy and safety of golimumab, a human anti-TNF alpha monoclonal antibody, in methotrexate-naïve rheumatoid arthritis patients: results from the go-before study. *Ann Rheum Dis* 2010;**69**:681.
- 144. Weinblatt ME, Schiff M, Valente R, van der Heijde D, Citera G, Zhao C, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis. *Arthritis Rheum* 2013;65:28–38. http://dx.doi.org/10.1002/art.37711
- 145. AstraZeneca. A Randomised, Double-Blind (with Open Comparator Etanercept Limb), Placebo-Controlled, Phase IIb, Multicentre Study to Evaluate the Efficacy of 4 Doses of AZD9056 Administered for 6 Months on the Signs and Symptoms of Rheumatoid Arthritis in Patients with Active Disease Receiving Background Methotrexate or Sulphasalazine. Clinical Study Report Synopsis. Drug substance AZD9056 hydrochloride. Study code D1520C00001. Edition 1; 2009. URL: www.astrazenecaclinicaltrials.com/_mshost800325/content/clinical-trials/resources/pdf/ 10775953 (accessed 8 August 2013).
- 146. Lipsky PE, van der Heijde DMFM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, *et al.* Infliximab and methotrexate in the treatment of rheumatoid arthritis. *N Engl J Med* 2000;**343**:1594–602. http://dx.doi.org/10.1056/NEJM200011303432202
- 147. van Vollenhoven RF, Geborek P, Forslind K, Albertsson K, Ernestam S, Petersson IF, et al. Conventional combination treatment versus biological treatment in methotrexate-refractory early rheumatoid arthritis: 2 year follow-up of the randomised, non-blinded, parallel-group Swefot trial. Lancet 2012;**379**:1712–20. http://dx.doi.org/10.1016/S0140-6736(12)60027-0

- 148. van der Kooij SM, de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Ewals JA, Han KH, Hazes JM, *et al.* Patient-reported outcomes in a randomised trial comparing four different treatment strategies in recent-onset rheumatoid arthritis. *Arthritis Rheum* 2009;**61**:4–12. http://dx.doi.org/ 10.1002/art.24367
- 149. Boini S, Guillemin F. Radiographic scoring methods as outcome measures in rheumatoid arthritis: properties and advantages. *Ann Rheum Dis* 2001;**60**:817–27.
- 150. Peterfy C, Haraoui B, Durez P, Patra K, Kupper H. *Decreased Incidence of Synovitis, Osteitis, and Erosion in Early RA Patients Treated with Adalimumab Plus Methotrexate Compared to Those With Methotrexate Alone: High-Field MRI Analysis from OPTIMA.* Arthritis and Rheumatism Conference: American College of Rheumatology/Association of Rheumatology Health Professionals Annual Scientific Meeting 10, Philadelphia, PA, 2010.
- 151. Ostergaard M, Emery P, Conaghan PG, Fleischmann R, Hsia EC, Xu W, et al. Significant improvement in synovitis, osteitis, and bone erosion following golimumab and methotrexate combination therapy as compared with methotrexate alone: a magnetic resonance imaging study of 318 methotrexate-naive rheumatoid arthritis patients. Arthritis Rheum 2011;63:3712–22. http://dx.doi.org/10.1002/art.30592
- 152. Tocilizumab (RoActemra) for the Treatment of Rheumatoid Arthritis. Roche MTA Submission. 2013.
- 153. Conaghan PG, Emery P, Ostergaard M, Keystone EC, Genovese MC, Hsia EC, *et al.* Assessment by MRI of inflammation and damage in rheumatoid arthritis patients with methotrexate inadequate response receiving golimumab: results of the GO-FORWARD trial. *Ann Rheum Dis* 2011;**70**:1968–74. http://dx.doi.org/10.1136/ard.2010.146068
- 154. Emery P, Kavanaugh AF, Smolen J, Cifaldi MA, Chaves L, Guerette B, *et al.* Combination Therapy With Adalimumab Methotrexate Significantly Improved Work Ability, Physical Function, Fatigue, and Other Patient-Reported Outcomes in Early Rheumatoid Arthritis: Results From a 26-Week Analysis. Arthritis and Rheumatism Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals, Chicago, IL, 2011.
- 155. Strand V, Rentz AM, Cifaldi MA, Chen N, Roy S, Revicki D. Health-related quality of life outcomes of adalimumab for patients with early rheumatoid arthritis: results from a randomised multicenter study. *J Rheumatol* 2012;**39**:63–72. http://dx.doi.org/10.3899/jrheum.101161
- 156. Multiple Technology Appraisal. ID537. Certolizumab Pegol for the Treatment of Rheumatoid Arthritis that has Previously Been Treated with Conventional Disease-Modifying Anti-Rheumatic Drugs. UCB Pharma Submission. 2013.
- 157. Kosinski M, Kujawski SC, Martin R, Wanke LA, Buatti MC, Ware J, et al. Health-related quality of life in early rheumatoid arthritis: impact of disease and treatment response. Am J Manag Care 2002;8:231–40.
- 158. Allaart CF, Breedveld FC, Dijkmans BAC. Treatment of recent-onset rheumatoid arthritis: lessons from the BeSt study. *J Rheumatol* 2007;**34**:S25–33.
- 159. National Institute for Health and Care Excellence. Adalimumab, Etanercept, Infliximab, Certolizumab, Golimumab, Abatacept, and Tocilizumab for the Treatment of Rheumatoid Arthritis (Review of TA Guidance 130, 186, 224, 234, and Part Review of TA Guidance 225 and 247) [ID537]. Manufacturer submission of evidence: Infliximab (Remicade®). 2013.
- 160. Kremer JM, Weinblatt ME, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Jackson CG, et al. Etanercept added to background methotrexate therapy in patients with rheumatoid arthritis: continued observations. Arthritis Rheum 2003;48:1493–9. http://dx.doi.org/10.1002/art.11142

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- 161. Graudal N, Jurgens G. Similar effects of disease-modifying antirheumatic drugs, glucocorticoids, and biologic agents on radiographic progression in rheumatoid arthritis: meta-analysis of 70 randomised placebo-controlled or drug-controlled studies, including 112 comparisons. Arthritis Rheum 2010;62:2852–63. http://dx.doi.org/10.1002/art.27592
- 162. Singh JA, Beg S, Lopez-Olivo MA. Tocilizumab for rheumatoid arthritis. *Cochrane Database Syst Rev* 2010;**7**:CD008331. http://dx.doi.org/10.1002/14651858.cd008331
- 163. Singh JA, Noorbaloochi S, Singh G. Golimumab for rheumatoid arthritis. *Cochrane Database Syst Rev* 2010;**1**:CD008341. http://dx.doi.org/10.1002/14651858.cd008341
- 164. Ruiz Garcia V, Jobanputra P, Burls A, Cabello JB, Galvez Munoz JG, Saiz Cuenca ES, et al. Certolizumab pegol (CDP870) for rheumatoid arthritis in adults. *Cochrane Database Syst Rev* 2011;2:CD007649. http://dx.doi.org/10.1002/14651858.cd007649.pub2
- 165. Singh JA, Wells GA, Christensen R, Tanjong GE, Maxwell L, Macdonald JK, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev 2011;2:CD008794. http://dx.doi.org/10.1002/14651858.cd008794.pub2
- 166. Blumenauer B, Judd M, Wells G, Burls A, Cranney A, Hochberg M, *et al.* Infliximab for the treatment of rheumatoid arthritis. *Cochrane Database Syst Rev* 2002;**3**:CD003785. http://dx.doi.org/10.1002/14651858.cd003785
- 167. Navarro-Sarabia F, Ariza-Ariza R, Hernandez-Cruz B, Villanueva I. Adalimumab for treating rheumatoid arthritis. Cochrane Database Syst Rev 2005;3:CD005113. http://dx.doi.org/10.1002/ 14651858.cd005113.pub2
- 168. Blumenauer B, Judd M, Cranney A, Burls A, Coyle D, Hochberg M, et al. Etanercept for the treatment of rheumatoid arthritis. Cochrane Database Syst Rev 2003;4:CD004525. http://dx.doi.org/10.1002/14651858.cd004525
- 169. Singh JA, Christensen R, Wells GA, Suarez-Almazor ME, Buchbinder R, Lopez-Olivo MA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. *Cochrane Database Syst Rev* 2009;**4**:CD007848. http://dx.doi.org/10.1002/14651858.cd007848
- 170. Connock M, Tubeuf S, Malottki K, Uthman A, Round J, Bayliss S, *et al.* Certolizumab pegol (CIMZIA (R)) for the treatment of rheumatoid arthritis. *Health Technol Assess* 2010;**14**(Suppl. 2). http://dx.doi.org/10.3310/hta14suppl2/01
- 171. Malottki K, Barton P, Tsourapas A, Uthman AO, Liu Z, Routh K, *et al.* Adalimumab, etanercept, infliximab, rituximab and abatacept for the treatment of rheumatoid arthritis after the failure of a tumour necrosis factor inhibitor: a systematic review and economic evaluation. *Health Technol* Assess 2011;**15**(14). http://dx.doi.org/10.3310/hta15140
- 172. Jobanputra P, Barton P, Bryan S, Burls A. The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation. *Health Technol Assess* 2002;**6**(21). http://dx.doi.org/10.3310/hta6210
- 173. National Institute for Health and Care Excellence. Adalimumab, Etanercept, Infliximab, Certolizumab Pegol, Golimumab, Tocilizumab and Abatacept for the Treatment of Rheumatoid Arthritis Not Previously Treated with Disease-Modifying Anti-Rheumatic Drugs and After the Failure of Conventional Disease-Modifying Anti-Rheumatic Drugs Only. Submission by AbbVie. 2013.
- 174. National Institute for Health and Care Excellence. Adalimumab, Etanercept, Infliximab, Certolizumab, Golimumab, Abatacept, and Tocilizumab for the Treatment of Rheumatoid Arthritis (Review of TA Guidance 130, 186, 224, 234, and Part Review of TA Guidance 225 and 247) [ID537]. Manufacturer submission of evidence: Golimumab (Simponi[®]). 2013.

- 175. Zink A, Strangfeld A, Schneider M, Herzer P, Hierse F, Stoyanova-Scholz M, *et al.* Effectiveness of tumour necrosis factor inhibitors in rheumatoid arthritis in an observational cohort study: comparison of patients according to their eligibility for major randomised clinical trials. *Arthritis Rheum* 2006;**54**:3399–407. http://dx.doi.org/10.1002/art.22193
- 176. Pincus T, Sokka T. Should contemporary rheumatoid arthritis clinical trials be more like standard patient care and vice versa? *Ann Rheum Dis* 2004;**63**:32–9. http://dx.doi.org/10.1136/ard.2004.028415
- 177. Drummond MF, Sculpher MJ, Torrance GW, O'Brien BJ, Stoddart GL. *Methods for the Economic Evaluation of Health Care Programmes*. 3rd edn. Oxford: Oxford University Press; 2005.
- 178. Bansback NJ, Brennan A, Ghatnekar O. Cost-effectiveness of adalimumab in the treatment of patients with moderate to severe rheumatoid arthritis in Sweden. *Ann Rheum Dis* 2005;**64**:995–1002. http://dx.doi.org/10.1136/ard.2004.027565
- 179. Barbieri M, Wong JB, Drummond M. The cost-effectiveness of infliximab for severe treatment-resistant rheumatoid arthritis in the UK. *Pharmacoeconomics* 2005;**23**:2005. http://dx.doi.org/10.2165/00019053-200523060-00007
- 180. Barton P, Jobanputra P, Wilson J, Bryan S, Burls A. The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis. *Health Technol Assess* 2004;**8**(11). http://dx.doi.org/10.3310/hta8110
- 181. Benucci M, Gobbi FL, Sabadini L, Saviola G, Baiardi P, Manfredi M. The economic burden of biological therapy in rheumatoid arthritis in clinical practice: cost-effectiveness analysis of subcutaneous anti-TNF alpha treatment in Italian patients. *Int J Immunopathol Pharmacol* 2009;**22**:1147–52.
- 182. Brennan A, Bansback N, Reynolds A, Conway P. Modelling the cost-effectiveness of etanercept in adults with rheumatoid arthritis in the UK. *Rheumatology* 2004;**43**:62–72. http://dx.doi.org/ 10.1093/rheumatology/keg451
- 183. Brennan A, Bansback N, Nixon R, Madan J, Harrison M, Watson K, et al. Modelling the cost-effectiveness of TNF-alpha antagonists in the management of rheumatoid arthritis: results from the British Society for Rheumatology Biologics Registry. *Rheumatology* 2007;**46**:1345–54. http://dx.doi.org/10.1093/rheumatology/kem115
- 184. Chiou C-F, Choi J, Reyes CM. Cost-effectiveness analysis of biological treatments for rheumatoid arthritis. *Expert Rev Pharmacoecon Outcomes Res* 2004;**4**:307–15. http://dx.doi.org/10.1586/ 14737167.4.3.307
- Choi HK, Seeger JD, Kuntz KM. A cost-effectiveness analysis of treatment options for methotrexate-naive rheumatoid arthritis. J Rheumatol 2002;29:1156–65.
- 186. Coyle D, Judd M, Blumenauer B, Cranney A, Maetzel A, Tugwell P, et al. Infliximab and Etanercept in Patients With Rheumatoid Arthritis: A Systematic Review and Economic Evaluation. Ottawa, ON: Canadian Coordinating Office for Health Technology Assessment (CCOHTA); 2006.
- Davies A, Cifaldi MA, Segurado OG, Weisman MH. Cost-effectiveness of sequential therapy with tumour necrosis factor antagonists in early rheumatoid arthritis. *J Rheumatol* 2009;**36**:16–26. http://dx.doi.org/10.3899/jrheum.080257
- 188. Diamantopoulos A, Benucci M, Capri S, Berger W, Wintfeld N, Giuliani G, et al. Economic evaluation of tocilizumab combination in the treatment of moderate-to-severe rheumatoid arthritis in Italy. J Med Econ 2012;15:576–85. http://dx.doi.org/10.3111/13696998.2012.665110

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- 189. Finckh A, Bansback N, Marra CA, Anis AH, Michaud K, Lubin S, et al. Treatment of very early rheumatoid arthritis with symptomatic therapy, disease-modifying antirheumatic drugs, or biologic agents a cost-effectiveness analysis. Ann Intern Med 2009;**151**:612–21. http://dx.doi.org/10.7326/ 0003-4819-151-9-200911030-00006
- 190. Kobelt G, Jonsson L, Young A, Eberhardt K. The cost-effectiveness of infliximab (Remicade[®]) in the treatment of rheumatoid arthritis in Sweden and the United Kingdom based on the ATTRACT study. *Rheumatology* 2003;**42**:326–35. http://dx.doi.org/10.1093/rheumatology/keg107
- 191. Kobelt G, Eberhardt K, Geborek P. TNF inhibitors in the treatment of rheumatoid arthritis in clinical practice: costs and outcomes in a follow up study of patients with RA treated with etanercept or infliximab in southern Sweden. *Ann Rheum Dis* 2004;**63**:4–10. http://dx.doi.org/ 10.1136/ard.2003.010629
- 192. Kobelt G, Lindgren P, Singh A, Klareskog L. Cost-effectiveness of etanercept (enbrel) in combination with methotrexate in the treatment of active rheumatoid arthritis based on the TEMPO trial. Ann Rheum Dis 2005;64:1174–9. http://dx.doi.org/10.1136/ard.2004.032789
- 193. Kobelt G, Lekander I, Lang A, Raffeiner B, Botsios C, Geborek P. Cost-effectiveness of etanercept treatment in early active rheumatoid arthritis followed by dose adjustment. Int J Technol Assess Health Care 2011;27:193–200. http://dx.doi.org/10.1017/S0266462311000195
- 194. Lekander I, Borgstrom F, Svarvar P, Ljung T, Carli C, van Vollenhoven RF. Cost-effectiveness of real-world infliximab use in patients with rheumatoid arthritis in Sweden. Int J Technol Assess Health Care 2010;26:54–61. http://dx.doi.org/10.1017/S0266462309990596
- 195. Marra CA, Marion SA, Guh DP, Najafzadeh M, Wolfe F, Esdaile JM, *et al.* Not all 'quality-adjusted life-years' are equal. *J Clin Epidemiol* 2007;**60**:616–24. http://dx.doi.org/10.1016/j.jclinepi.2006. 09.006
- 196. Nuijten MJC, Engelfriet P, Duijn K, Bruijn G, Wierz D, Koopmanschap M. A cost-cost study comparing etanercept with infliximab in rheumatoid arthritis. *Pharmacoeconomics* 2001;**19**:1051–64. http://dx.doi.org/10.2165/00019053-200119100-00006
- 197. Rubio-Terrés C, Dominguez-Gil A. Pharmacoeconomic analysis of the treatment of rheumatoid arthritis with leflunomide in comparison with the combination of infliximab and methotrexate. *J Med Econ* 2001;**4**:2001. http://dx.doi.org/10.3111/200104019034
- 198. Soini EJ, Hallinen TA, Puolakka K, Vihervaara V, Kauppi MJ. Cost-effectiveness of adalimumab, etanercept, and tocilizumab as first-line treatments for moderate-to-severe rheumatoid arthritis. *J Med Econ* 2012;**15**:340–51. http://dx.doi.org/10.3111/13696998.2011.649327
- 199. Spalding JR, Hay J. Cost-effectiveness of tumour necrosis factor-alpha inhibitors as first-line agents in rheumatoid arthritis. *Pharmacoeconomics* 2006;**24**:1221–32. http://dx.doi.org/10.2165/00019053-200624120-00006
- 200. Tanno M, Nakamura I, Ito K, Tanaka H, Ohta H, Kobayashi M, et al. Modelling and cost-effectiveness analysis of etanercept in adults with rheumatoid arthritis in Japan: a preliminary analysis. Mod Rheumatol 2006;16:77–84. http://dx.doi.org/10.3109/s10165-006-0461-y
- 201. van den Hout WB, Goekoop-Ruiterman YP, Allaart CF, de Vries-Bouwstra JK, Hazes JM, Kerstens PJ, et al. Cost-utility analysis of treatment strategies in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 2009;61:291–9. http://dx.doi.org/10.1002/art.24169
- 202. Vera-Llonch M, Massarotti E, Wolfe F, Shadick N, Westhovens R, Sofrygin O, et al. Cost-effectiveness of abatacept in patients with moderately to severely active rheumatoid arthritis and inadequate response to methotrexate. *Rheumatology* 2008;**47**:535–41. http://dx.doi.org/ 10.1093/rheumatology/ken007

- 203. Wailoo AJ, Bansback N, Brennan A, Michaud K, Nixon RM, Wolfe F. Biologic drugs for rheumatoid arthritis in the Medicare program: a cost-effectiveness analysis. *Arthritis Rheum* 2008;**58**:939–46. http://dx.doi.org/10.1002/art.23374
- 204. Welsing PMJ, Severens JL, Hartman M, Van Riel PLCM, Laan RFJM. Modelling the 5-year cost-effectiveness of treatment strategies including tumour necrosis factor-blocking agents and leflunomide for treating rheumatoid arthritis in the Netherlands. *Arthritis Rheum* 2004;**51**:964–73. http://dx.doi.org/10.1002/art.20843
- 205. Wong JB, Singh G, Kavanaugh A. Estimating the cost-effectiveness of 54 weeks of infliximab for rheumatoid arthritis. *Am J Med* 2002;**113**:400–8. http://dx.doi.org/10.1016/S0002-9343(02) 01243-3
- 206. National Institute for Health and Care Excellence. *The Clinical Effectiveness and Cost Effectiveness of Etanercept and Infliximab for Rheumatoid Arthritis and Juvenile Poly-Articular Idiopathic Arthritis (TA36).* 2002. URL: www.nice.org.uk/guidance/ta36 (accessed 5 July 2013).
- 207. National Institute for Health and Care Excellence. *Adalimumab, Etanercept and Infliximab for the Treatment of Rheumatoid Arthritis*. URL: www.nice.org.uk/guidance/ta130 (accessed 3 August 2013).
- 208. National Institute for Health and Care Excellence. Adalimumab, Etanercept, Infliximab, Certolizumab Pegol, Golimumab, Tocilizumab and Abatacept for the Treatment of Rheumatoid Arthritis Not Previously Treated with Disease-Modifying Anti-Rheumatic Drugs and After the Failure of Conventional Disease-Modifying Anti-Rheumatic Drugs Only (Review of Technology Appraisal Guidance 130, 186, 224, 234 and a Part Review of Technology Appraisal Guidance 225 and 247). Bristol-Myers Squibb submission of evidence to NICE. 2013.
- 209. National Institute for Health and Care Excellence. *Etanercept for the Treatment of Rheumatoid Arthritis. (Review of TA Guidance 130, 186, 224, 234 and Part Review of TA Guidance 225 and 247). Multiple Technology Appraisal (MTA).* Pfizer submission. 2013.
- 210. Drummond M, Jefferson T. Guidelines for authors and peer reviewers of economic submissions to the BMJ. *BMJ* 1996;**313**:275–83. http://dx.doi.org/10.1136/bmj.313.7052.275
- 211. Eddy D. Technology Assessment: The Role of Mathematical Modelling. In Mosteller F, editor. Assessing Medical Technologies. Washington, DC: National Academy Press; 1985. pp. 144–60.
- 212. Gabriel S, Drummond M, Maetzel A, Boers M, Coyle D, Welch V, *et al.* Omeract 6 economics working group report: a proposal for a reference case for economic evaluation in rheumatoid arthritis. *J Rheumatol* 2003;**30**:886–90.
- 213. Maetzel A, Tugwell P, Boers M, Guillemin F, Coyle D, Drummond M, *et al.* Economic evaluation of programs or interventions in the management of rheumatoid arthritis: defining a consensus-based reference case. *J Rheumatol* 2003;**30**:891–6.
- 214. Hyrich K, Symmons D, Watson K, Silman A, BSRBR Control Centre Consortium, British Society for Rheumatology Biologics Register. Baseline comorbidity levels in biologic and standard DMARD treated patients with rheumatoid arthritis: results from a national patient register. Ann Rheum Dis 2006;65:895–8. http://dx.doi.org/10.1136/ard.2005.043158
- 215. Burmester GR, Mariette X, Montecucco C, Monteagudo-Saez I, Malaise M, Tzioufas AG, et al. Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the Research in Active Rheumatoid Arthritis (ReAct) trial. Ann Rheum Dis 2007;66:732–9. http://dx.doi.org/10.1136/ard.2006.066761

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- 216. Keystone EC, Genovese MC, Klareskog L, Hsia EC, Hall ST, Miranda PC, et al. Golimumab, a human antibody to tumour necrosis factor (alpha) given by monthly subcutaneous injections, in active rheumatoid arthritis despite methotrexate therapy: the GO-FORWARD study. *Ann Rheum Dis* 2009;**68**:789–96. [Erratum appears in *Ann Rheum Dis* 2011;**70**:238.] http://dx.doi.org/10.1136/ard.2008.099010
- 217. Smolen JS, Nash P, Durez P, Hall S, Ilivanova E, Irazoque-Palazuelos F, *et al.* Maintenance, reduction, or withdrawal of etanercept after treatment with etanercept and methotrexate in patients with moderate rheumatoid arthritis (PRESERVE): a randomised controlled trial. *Lancet* 2013;**381**:918–29. http://dx.doi.org/10.1016/S0140-6736(12)61811-X
- 218. Fleischmann R, Vencovsky J, van Vollenhoven RF, Borenstein D, Box J, Coteur G, *et al.* Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD study. *Ann Rheum Dis* 2009;**68**:805–11. http://dx.doi.org/10.1136/ard.2008.099291
- 219. *Monthly Index of Medical Specialties*. January 2013. URL: www.mims.co.uk (accessed 1 February 2013).
- 220. National Institute for Health and Care Excellence. *Guide to the Methods of Technology Appraisal 2008.* NICE Methods Guide 2008. URL: www.nice.org.uk/media/B52/A7/ TAMethodsGuideUpdatedJune2008.pdf (accessed 20 July 2013).
- 221. Joint Formulary Committee. *British National Formulary*. 64 ed. London: BMJ Group and Pharmaceutical Press; 2012.
- 222. Joint Formulary Committee. *British National Formulary* (online). URL: www.medicinescomplete. com/mc/bnf/current/index.htm (accessed 1 April 2013).
- 223. Electronic Medicines Compendium. *Tocilizumab Summary of Product Characteristics*. 2011. URL: www.medicines.org.uk/EMC/browsedocuments.aspx (accessed February 2013).
- 224. NHS. National Schedule of Reference Costs Year: 2010–11 NHS Trusts and PCTS Combined HRG Data. 2013. URL: https://data.gov.uk/dataset/nhs-reference-costs-2010-11 (accessed 30 July 2013).
- 225. National Institute for Health and Care Excellence. *Costing Template for Infliximab for the Treatment of Adults With Psoriasis (Guidance TA134)*. 2008. URL: www.nice.org.uk/guidance/ta134/resources (accessed 31 July 2013).
- 226. Bradford Teaching Hospitals NHS Trust. Shared Care Guidelines and Monitoring Protocols for Rheumatology Patients on Disease Modifying Drugs (Including Biologic Therapies). Bradford: Bradford Teaching Hospitals NHS Trust & Bradford and Airedale teaching Primary Care Trust; 2010.
- 227. National Institute for Health and Care Excellence. *Costing Template: Tuberculosis: Clinical Diagnosis and Management of Tuberculosis and Measures for its Prevention and Control; Clinical Guideline 33*. 2013. URL: www.nice.org.uk/guidance/cg117/resources (accessed 31 July 2013).
- 228. Curtis L. *Unit Costs of Health and Social Care 2011*. Canterbury: Personal Social Services Research Unit, University of Kent; 2011.
- 229. Chakravarty K, McDonald H, Pullar T, Taggart A, Chalmers R, Oliver S, *et al.* BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. *Rheumatology* 2008;**47**:924–5. http://dx.doi.org/10.1093/rheumatology/kel216a
- 230. Department of Health. *NHS Trusts and PCTs Combined Reference Cost Schedules 2010–11*. Department of Health; 2012. URL: https://data.gov.uk/dataset/nhs-reference-costs-2010-11/ resource/91f6f5fd-c185-4bf0-8e56-718a4d769b24 (accessed 31 July 2013).

- 231. Roche. Achieving Clinical Excellence in the Treatment of Moderate to Severe Rheumatoid Arthritis. RoActemra® (Tocilizumab) NICE STA Submission. Manufacturer's submission TA198. 2009.
- 232. Curtis L. *Unit Costs of Health and Social Care 2012*. Canterbury: Personal Social Services Research Unit, University of Kent; 2012.
- 233. Curtis L. *Unit Costs of Health and Social Care 2010*. Canterbury: Personal Social Services Research Unit, University of Kent; 2010.
- 234. Department of Health. *NHS Reference Costs 2009–2010*. 2011. URL: www.dh.gov.uk/en/ Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_123459 (accessed 1 April 2013).
- 235. Harland D, Gibbons C, Diamantopoulos A, Pang H, Huertas D, Dejonckheere F. Tocilizumab in patients where methotrexate is considered inappropriate a cost-utility model for the UK. *Value Health* 2012;**15**:A277–575. http://dx.doi.org/10.1016/j.jval.2012.08.1403
- 236. Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Klearman M, *et al.* Tocilizumab (TCZ) monotherapy is superior to adalimumab (ADA) monotherapy in reducing disease activity in patients with rheumatoid arthritis (RA): 24-week data from the phase 4 ADACTA trial. *Ann Rheum Dis* 2012;**71**:S152. http://dx.doi.org/10.1136/annrheumdis-2012-eular.1963
- 237. UCB Pharma. Certolizumab Pegol (CIMZIA®) for the Treatment of Rheumatoid Arthritis. Manufacturer's submission for TA186. 2009.
- 238. Schering-Plough Ltd. *Golimumab for the Treatment of Rheumatoid Arthritis after Failure of Previous Disease-Modifying Antirheumatic Drugs*. Manufacturer's submission to NICE. 2010.
- 239. Strand V, Burmester GR, Ogale S, Devenport J, John A, Emery P. Improvements in health-related quality of life after treatment with tocilizumab in patients with rheumatoid arthritis refractory to tumour necrosis factor inhibitors: results from the 24-week randomised controlled radiate study. *Rheumatology* 2012;**51**:1860–9. http://dx.doi.org/10.1093/rheumatology/kes131
- 240. Smolen JS, Kay J, Doyle MK, Landewe R, Matteson EL, Wollenhaupt J, *et al.* Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. *Lancet* 2009;**374**:210–21. http://dx.doi.org/10.1016/S0140-6736(09)60506-7
- 241. Hurst NP, Kind P, Ruta D, Hunter M, Stubbings A. Measuring health-related quality of life in rheumatoid arthritis: validity, responsiveness and reliability of EuroQol (EQ-5D). *Rheumatology* 1997;**36**:551–9. http://dx.doi.org/10.1093/rheumatology/36.5.551
- 242. van der Heijde D, Landewe R, van Vollenhoven R, Fatenejad S, Klareskog L. Level of radiographic damage and radiographic progression are determinants of physical function: a longitudinal analysis of the TEMPO trial. *Ann Rheum Dis* 2008;**67**:1267–70. http://dx.doi.org/10.1136/ard.2007.081331
- 243. Munro R, Hampson R, McEntegart A, Thompson E, Modhok R, Capell H. Improved functional outcome in patients with early RA treated with intramuscular gold: results of a five year prospective study. *Ann Rheum Dis* 1998;**57**:88–93. http://dx.doi.org/10.1136/ard.57.2.88
- 244. Scott DL, Pugner K, Kaarela K, Doyle DV, Woolf A, Holmes J, *et al.* The links between joint damage and disability in rheumatoid arthritis. *Rheumatology* 2000;**39**:122–32. http://dx.doi.org/ 10.1093/rheumatology/39.2.122
- 245. Edwards CJ, Arden NK, Fisher D, Saperia JC, Reading I, van Staa TP, et al. The changing use of disease-modifying anti-rheumatic drugs in individuals with rheumatoid arthritis from the United Kingdom General Practice Research Database. *Rheumatology*2005;**44**:1394–8. http://dx.doi.org/ 10.1093/rheumatology/kei024

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

- 246. Hoyle M, Henley W. Improved curve fits to summary survival data: application to economic evaluation of health technologies. *BMC Med Res Methodol* 2011;**11**:139. http://dx.doi.org/ 10.1186/1471-2288-11-139
- 247. Tierney J, Stewart L, Ghersi D, Burdett S, Sydes M. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* 2007;**8**:16. http://dx.doi.org/10.1186/1745-6215-8-16
- 248. National Collaborating Centre for Chronic Conditions. *National Clinical Guideline for Rheumatoid Arthritis*. London: Royal College of Physicians; 2008.
- 249. Soliman MM, Ashcroft DM, Watson KD, Lunt M, Symmons DPM, Hyrich KL. Impact of concomitant use of DMARDs on the persistence with anti-TNF therapies in patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. *Ann Rheum Dis* 2011;**70**:583–9. http://dx.doi.org/10.1136/ard.2010.139774
- 250. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. *Arthritis Rheum* 2010;62:22–32. http://dx.doi.org/10.1002/art.27227
- 251. Du Pan SM, Dehler S, Ciurea A, Ziswiler HR, Gabay C, Finckh A. Comparison of drug retention rates and causes of drug discontinuation between anti-tumour necrosis factor agents in rheumatoid arthritis. *Arthritis Rheum* 2009;**61**:560–8. http://dx.doi.org/10.1002/art.24463
- 252. Keystone EC, Cohen SB, Emery P, Kremer JM, Dougados M, Loveless JE, et al. Multiple courses of rituximab produce sustained clinical and radiographic efficacy and safety in patients with rheumatoid arthritis and an inadequate response to 1 or more tumour necrosis factor inhibitors: 5-year data from the REFLEX Study. J Rheumatol 2012;**39**:2238–46. http://dx.doi.org/10.3899/ jrheum.120573
- 253. Smolen JS, Kay J, Landewe RBM, Matteson EL, Gaylis N, Wollenhaupt J, *et al.* Golimumab in patients with active rheumatoid arthritis who have previous experience with tumour necrosis factor inhibitors: results of a long-term extension of the randomised, double-blind, placebo-controlled GO-AFTER study through week 160. *Ann Rheum Dis* 2012;**71**:1671–9. http://dx.doi.org/10.1136/annrheumdis-2011-200956
- 254. Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, *et al.* IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. *Ann Rheum Dis* 2008;**67**:1516–23. http://dx.doi.org/10.1136/ard.2008.092932
- 255. Akaike H. A new look at the statistical model identification. *IEEE Trans Autom Control* 1974;**19**:732. http://dx.doi.org/10.1109/TAC.1974.1100705
- 256. Hjardem E, Ostergaard M, Podenphant J, Tarp U, Andersen LS, Bing J, *et al.* Do rheumatoid arthritis patients in clinical practice benefit from switching from infliximab to a second tumour necrosis factor alpha inhibitor? *Ann Rheum Dis* 2007;**66**:1184–9. http://dx.doi.org/10.1136/ard.2006.054742
- 257. Guyot P, Ades A, Ouwens M, Welton N. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan–Meier survival curves. *BMC Med Res Methodol* 2012;**12**:9. http://dx.doi.org/10.1186/1471-2288-12-9
- 258. Trueman D, Livings C, Mildred M. PRM81 Methods of obtaining evidence from published survival data for use in decision analytic models. *Value Health* 2012;**15**:A475. http://dx.doi.org/10.1016/j.jval.2012.08.1544
- 259. Anderson J, Wells G, Verhoeven AC, Felson DT. Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. *Arthritis Rheum* 2000;**43**:22–9. http://dx.doi.org/10.1002/1529-0131(200001)43:1<22::AID-ANR4>3.0.CO;2-9
- 260. Wiles NJ, Symmons D. Resource Use Within the Norfolk Arthritis Register (NOAR) Cohort During the First Five Years of Disease. Report for Roche. London: NICE; 2005.
- 261. Department of Health. *National Schedule of Reference Costs Year: 2010–11 NHS Trusts and PCTs Combined HRG Data*. 2013. URL: www.gov.uk/government/publications/2010-11-reference-costs-publication (accessed 2 August 2013).
- 262. Kobelt G, Jonsson L, Lindgren P, Young A, Eberhardt K. Modelling the progression of rheumatoid arthritis: a two-country model to estimate costs and consequences of rheumatoid arthritis. *Arthritis Rheum* 2002;**46**:2310–19. http://dx.doi.org/10.1002/art.10471
- 263. Young A, Dixey J, Cox N, Davies P, Devlin J, Emery P, et al. How does functional disability in early rheumatoid arthritis (RA) affect patients and their lives? Results of 5 years of follow-up in 732 patients from the Early RA Study (ERAS). *Rheumatology* 2000;**39**:603–11. http://dx.doi.org/ 10.1093/rheumatology/39.6.603
- 264. Kobelt G, Eberhardt K, Jonsson L, Jonsson B. Economic consequences of the progression of rheumatoid arthritis in Sweden. Arthritis Rheum 1999;42:347–56. http://dx.doi.org/10.1002/ 1529-0131(199902)42:2<347::AID-ANR18>3.0.CO;2-P
- 265. Kobelt G, Lindgren P, Lindroth Y, Jacobson L, Eberhardt K. Modelling the effect of function and disease activity on costs and quality of life in rheumatoid arthritis. *Rheumatology* 2005;44:1169–75. http://dx.doi.org/10.1093/rheumatology/keh703
- 266. Ducournau P, Keilhorn A, Wintfield N. Comparison of Linear and Non-Linear Utility Mapping Between HAQ and EQ-5D Using Pooled Data from the Tolicizumab Trials OPTION and LITHE. Poster 258; 2009.
- 267. Dolan P. Modelling Valuations for EuroQol Health States. *Med Care* 1997;**35**:1095–108. http://dx.doi.org/10.1097/00005650-199711000-00002
- 268. Russell AS, Conner-Spady B, Mintz A, Maksymowych WP. The responsiveness of generic health status measures as assessed in patients with rheumatoid arthritis receiving infliximab. *J Rheumatol* 2003;**30**:941–7.
- 269. Wolfe F, Hawley D. Measurement of the quality of life in rheumatic disorders using the EuroQol. *Rheumatology* 1997;**36**:786–93. http://dx.doi.org/10.1093/rheumatology/36.7.786
- 270. Conner-Spady B, Suarez-Almazor ME. Variation in the estimation of quality-adjusted life-years by different preference-based instruments. *Med Care* 2003;**41**:791–801. http://dx.doi.org/10.1097/00005650-200307000-00003
- 271. Marra C, Woolcott J, Kopec J, Shojania K, Offer R, Brazier J. A comparison of generic, indirect utility measures (the HUI2, HUI3, SF-6D, and the EQ5D) and disease specific instruments (the RAQoL and the HAQ) in rheumatoid arthritis. *Soc Sci Med* 2005;**60**:1571–82. http://dx.doi.org/10.1016/j.socscimed.2004.08.034
- 272. Boggs R, Sengupta N, Ashraf T. Estimating health utility from a physical function assessment in rheumatoid arthritis (RA) patients treated with adalimumab. *Value Health* 2002;**5**:452. http://dx.doi.org/10.1016/S1098-3015(10)61216-8
- 273. National Institute for Health and Care Excellence. *Guide to the Methods of Technology Appraisals*. 2008. URL: www.nice.org.uk/media/B52/A7/TAMethodsGuideUpdatedJune2008.pdf (accessed 2 August 2013).

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- 274. National Institute for Health and Care Excellence. *Guide to the Methods of Technology Appraisals*. 2013. URL: www.nice.org.uk/article/pmg9/chapter/foreword (accessed 2 August 2013).
- 275. Bansback N, Marra C, Tsuchiya A, Anis A, Guh D, Hammond T, *et al.* Using the health assessment questionnaire to estimate preference-based single indices in patients with rheumatoid arthritis. *Arthritis Rheum* 2007;**57**:963–71. http://dx.doi.org/10.1002/art.22885
- 276. Hernandez-Alava M, Wailoo AJ, Ara R. Tails from the Peak District: adjusted limited dependent variable mixture models of EQ-5D questionnaire health state utility values. *Value Health* 2012;**15**:550–61. http://dx.doi.org/10.1016/j.jval.2011.12.014
- 277. Bansback N, Young A, Brennan A, Dixey J. A prognostic model for functional outcome in early rheumatoid arthritis. *J Rheumatol* 2006;**33**:1503–10.
- 278. Galloway JB, Hyrich KL, Mercer LK, Dixon WG, Fu B, Ustianowski AP, *et al.* Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: Updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. *Rheumatology* 2011;**50**:124–31. http://dx.doi.org/10.1093/rheumatology/keg242
- 279. Oppong R, Kaambwa B, Nuttall J, Hood K, Smith R, Coast J. The impact of using different tariffs to value EQ-5D health state descriptions: an example from a study of acute cough/lower respiratory tract infections in seven countries. *Eur J Health Econ* 2011:**14**:197–209. http://dx.doi. org/10.1007/s10198-011-0360-9
- 280. Dixon W, Symmons D, Lunt M, Watson K, Hyrich K, Silman A. Serious infection following anti-tumour necrosis factor alpha therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies. *Arthritis Rheum* 2007;**56**:2896–904. http://dx.doi.org/10.1002/art.22808
- 281. Singh JA, Wells GA, Christensen R, Tanjong GE, Maxwell L, Macdonald JK, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev 2012;2:CD008794. http://dx.doi.org/10.1136/annrheumdis-2012-eular.3407
- 282. Wolfe F, Mitchell D, Sibley J, Fries J, Bloch D, Williams C, et al. The mortality of rheumatoid arthritis. Arthritis Rheum 1994;**37**:481–94. http://dx.doi.org/10.1002/art.1780370408
- 283. Office for National Statistics. *Interim Life Tables: 2008–2010*. URL: www.ons.gov.uk/ons/rel/ lifetables/interim-life-tables/2008-2010/index.html (accessed 30 January 2013).
- 284. Lindgren P, Geborek P, Kobelt G. Modelling the cost-effectiveness of treatment of rheumatoid arthritis with rituximab using registry data from Southern Sweden. *Int J Technol Assess Health Care* 2009;**25**:181–9. http://dx.doi.org/10.1017/S0266462309090230
- 285. Merkesdal S, Kirchhoff T, Wolka D, Ladinek G, Kielhorn A, Rubbert-Roth A. Cost-effectiveness analysis of rituximab treatment in patients in Germany with rheumatoid arthritis after etanerceptfailure. Eur J Health Econ 2010;11:95–104. http://dx.doi.org/10.1007/s10198-009-0205-y
- 286. Bristol-Myers Squibb. Abatacept for the Treatment of Rheumatoid Arthritis After the Failure of Conventional Disease-Modifying Anti-Rheumatic Drugs. Manufacturer's submission to NICE. 2010.
- 287. Wu B, Wilson A, Wang FF, Wang SL, Wallace DJ, Weisman MH, *et al.* Cost-effectiveness of different treatment strategies in the treatment of patients with moderate to severe rheumatoid arthritis in China. *PLOS ONE* 2012;**7**:e47373. http://dx.doi.org/10.1371/journal.pone.0047373

- 288. Pincus T, Furer V, Keystone E, Yazici Y, Bergman MJ, Luijtens K. RAPID3 (Routine Assessment of Patient Index Data 3) severity categories and response criteria: Similar results to DAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) in the RAPID 1 (Rheumatoid Arthritis Prevention of Structural Damage) clinical trial of certolizumab pegol. *Arthritis Rheum* 2011;**63**:1142–9. http://dx.doi.org/10.1002/acr.20481
- 289. Yelin E, Trupin L, Wong B, Rush S. The impact of functional status and change in functional status on mortality over 18 years among persons with rheumatoid arthritis. *J Rheumatol* 2002;**29**:1851–7.
- 290. Office for National Statistics. Interim Life Tables, United Kingdom, 1980–82 to 2008–10. 2010. URL: www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-223324 (accessed 1 April 2013).
- 291. Deighton C, Hyrich K, Ding T, Ledingham J, Lunt M, Kiely P, *et al.* BSR and BHPR rheumatoid arthritis guidelines on eligibility criteria for the first biological therapy. *Rheumatology* 2010;**49**:1197–9. http://dx.doi.org/10.1093/rheumatology/keq006a
- 292. Norton S, Sacker A, Dixey D, Done J, Williams P, Young A. Trajectories of functional limitation in early rheumatoid arthritis and their association with mortality. *Rheumatology* 2013;**52**:2016–24. http://dx.doi.org/10.1093/rheumatology/ket253
- 293. Norton S, Fu B, Verstappen S, Symmons D, Lunt M, Davies R, et al. Common Trajectories of HAQ Disability Progression Over 15-years in the Early Rheumatoid Arthritis Study and the Norfolk Arthritis Register. Poster. Berlin: EULAR; 2012.
- 294. Grigor C, Capell H, Stirling A, McMahon AD, Lock P, Vallance R, *et al.* Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. *Lancet* 2004;**364**:263–9. http://dx.doi.org/10.1016/S0140-6736(04)16676-2
- 295. Department of Health. *NHS Reference Costs: Financial Year 2011 to 2012*. URL: www.gov.uk/ government/publications/nhs-reference-costs-financial-year-2011-to-2012 (accessed 1 April 2013).
- 296. Bollen K, Curran P. Autoregressive latent trajectory (ALT) models. A synthesis of two traditions. Sociol Method Res 2004;**32**:336–83. http://dx.doi.org/10.1177/0049124103260222
- 297. Satorra A, Bentler PM. A scaled difference chisquare test statistic for moment structure analysis. *Psychometrika* 2001;**66**:507–14. http://dx.doi.org/10.1007/BF02296192
- 298. Norton S, Verstappen SMM, Symmons DP, Lunt M, Davies R, Scott DL, *et al.* Common trajectories of HAQ disability progression over 15-years in the early rheumatoid arthritis study and the Norfolk arthritis register. *Ann Rheum Dis* 2012;**71**:S508. http://dx.doi.org/10.1136/annrheumdis-2012-eular.3060
- 299. Hernandez-Alava M, Wailoo A, Wolfe F, Michaud K. A comparison of direct and indirect methods for the estimation of health utilities from clinical outcomes. *Med Decis Making* 2013;**34**:919–30. http://dx.doi.org/10.1177/0272989X13500720
- Plant MJ, O'Sullivan MM, Lewis PA, Camilleri JP, Coles EC, Jessop JD. What factors influence functional ability in patients with rheumatoid arthritis. Do they alter over time? *Rheumatology* 2005;44:1181–5. http://dx.doi.org/10.1093/rheumatology/keh707
- 301. Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott D. The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis. *Health Technol Assess* 2005;**9**(34). http://dx.doi.org/10.3310/hta9340

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- 302. McWilliams DF, Kiely P, Young A, Walsh D. Baseline factors predicting change from the initial DMARD treatment during the first 2 years of rheumatoid arthritis: experience in the ERAN inception cohort. BMC Musculoskelet Disord 2013;14:153. http://dx.doi.org/10.1186/1471-2474-14-153
- 303. Bansback N, Fu EHY, Sun H, Guh D, Zhang W, Lacaille D, et al. Impact of Biologics on Healthcare Utilisation in Patients with Rheumatoid Arthritis: An Instrumental Variable Approach. Canadian Rhuematology Meeting 2013. Poster presentation. CRA Annual Scientific Meeting and the AHPA Annual Meeting. Ottawa, Ontario, 13–16 February 2013.
- 304. Hernandez-Alava M, Wailoo A, Wolfe F, Michaud K. The relationship between EQ-5D, HAQ and pain in patients with rheumatoid arthritis. *Rheumatology* 2013;**52**:944–50. http://dx.doi.org/ 10.1093/rheumatology/kes400
- 305. Brazier JE, Yang YL, Tsuchiya A, Rowen DL. A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. *Eur J Health Econ* 2010;**11**:215–25. http://dx.doi.org/10.1007/s10198-009-0168-z
- 306. Hawthorne G, Buchbinder R, Defina J. *Functional Status and Health Related Quality of Life Assessment in Patients with Rheumatoid Arthritis (Working Paper 116).* Melbourne, VIC; Monash University Centre for Health Program Evaluation; 2000.
- 307. Bansback NJ, Ara R, Barkham N, Brennan A, Fraser AD, Conway P, *et al.* Estimating the cost and health status consequences of treatment with TNF antagonists in patients with psoriahc arthritis. *Rheumatology* 2006;**45**:1029–38. http://dx.doi.org/10.1093/rheumatology/kel147
- 308. Michaud K, Vera-Llonch M, Oster G. Mortality risk by functional status and health-related quality of life in patients with rheumatoid arthritis. *J Rheumatol* 2012;**39**:54–9. http://dx.doi.org/10.3899/jrheum.110491
- 309. O'Hagan A, Stevenson M, Madan J. Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA. *Health Econ* 2007;**16**:1009–23. http://dx.doi.org/10.1002/hec.1199
- 310. Heijde D, Breedveld FC, Kavanaugh A, Keystone EC, Landewé R, Patra K, et al. Disease activity, physical function, and radiographic progression after longterm therapy with adalimumab plus methotrexate: 5-year results of PREMIER. J Rheumatol 2010;**37**:2237–46. http://dx.doi.org/ 10.3899/jrheum.100208
- 311. Emery P, Genovese MC, van Vollenhoven R, Sharp JT, Patra K, Sasso EH. Less radiographic progression with adalimumab plus methotrexate versus methotrexate monotherapy across the spectrum of clinical response in early rheumatoid arthritis. *J Rheumatol* 2009;**36**:1429–41. http://dx.doi.org/10.3899/jrheum.081018
- 312. Haugeberg G, Conaghan PG, Quinn M, Emery P. Bone loss in patients with active early rheumatoid arthritis: infliximab and methotrexate compared with methotrexate treatment alone. Explorative analysis from a 12-month randomised, double-blind, placebo-controlled study. *Ann Rheum Dis* 2009;**68**:1898–1901. http://dx.doi.org/10.1136/ard.2008.106484
- 313. Bejarano V, Conaghan PG, Quinn MA, Saleem B, Emery P. Benefits 8 years after a remission induction regime with an infliximab and methotrexate combination in early rheumatoid arthritis. *Rheumatology* 2010;**49**:1971–4. http://dx.doi.org/10.1093/rheumatology/keq194
- 314. Fleischmann R, Weinblatt ME, Schiff MH, Khanna D, Furst D, Maldonado MA. Changes in patient reported outcomes in response to subcutaneous abatacept or adalimumab in rheumatoid arthritis: results from the ample (abatacept versus adalimumab comparison in biologic naive RA subjects with background methotrexate) trial. *Arthritis Rheum* 2012;**64**:S578.

- 315. Emery P, Smolen JS, Samborski W, Berenbaum F, Davies O, Ambrugeat J, *et al.* Efficacy and safety of certolizumab pegol after incomplete response to DMARDs in rheumatoid arthritis patients with low moderate disease activity: results from CERTAIN, a Phase IIIB study. *Rheumatology* 2012;**51**(Suppl. 3):Abstract 218.
- 316. Kameda H, Kurasawa T, Nagasawa H, Amano K, Takeuchi T. The addition of another disease-modifying anti-rheumatic drug, bucillamine, to methotrexate in place of infliximab improves the rate of infliximab-free sustained remission. *Int J Rheum Dis* 2010;**13**:107. http://dx.doi.org/10.3109/14397595.2013.844886
- 317. Hidaka T, Suzuki K, Matsuki Y, Takamizawa-Matsumoto M, Kataharada K, Ishizuka T, *et al.* Filtration leukocytapheresis therapy in rheumatoid arthritis: a randomised, double-blind, placebo-controlled trial. *Arthritis Rheum* 1999;**42**:431–7. http://dx.doi.org/10.1002/1529-0131 (199904)42:3<431::AID-ANR6>3.0.CO;2-2
- 318. Kremer JM, Westhovens R, Leon M, Di GE, Alten R, Steinfeld S, *et al.* Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. *N Engl J Med* 2003;**349**:1907–15. http://dx.doi.org/10.1056/NEJMoa035075
- 319. Jobanputra P, Maggs F, Deeming A, Carruthers D, Rankin E, Jordan A, *et al.* Randomized efficacy and discontinuation study of etanercept versus adalimumab (red sea): a pragmatic, open-label, non-inferiority study of first TNF inhibitor use in rheumatoid arthritis: 1-year data. *Rheumatology* 2012;**51**(Suppl. 3):Abstract 178.
- 320. Genovese MC, Han C, Keystone EC, Hsia EC, Buchanan J, Gathany T, *et al.* Effect of golimumab on patient-reported outcomes in rheumatoid arthritis: results from the GO-FORWARD study. *J Rheumatol* 2012;**39**:1185–91. http://dx.doi.org/10.3899/jrheum.111195
- 321. Genovese MC, Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, *et al.* Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. *Arthritis Rheum* 2002;**46**:1443–50. http://dx.doi.org/10.1002/art.10308
- 322. Nishimoto N, Takagi N. Assessment of the validity of the 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) as a disease activity index of rheumatoid arthritis in the efficacy evaluation of 24-week treatment with tocilizumab: subanalysis of the SATORI study. *Mod Rheumatol* 2010;**20**:539–47. http://dx.doi.org/10.3109/s10165-010-0328-0
- 323. van der Heide D. How to read radiographs according to the Sharp/van der Heijde method. *Rheumatology* 2000;**27**:261–3.
- 324. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Furst D, Weisman MH, *et al.* Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with and methotrexate. *Arthritis Rheum* 2004;**50**:1051–65. http://dx.doi.org/10.1002/art.20159
- 325. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. *Ann Rheum Dis* 2009;**68**:1580–4. http://dx.doi.org/10.1136/ard.2008.092866

Appendix 1 Search strategies

Search strategies for systematic review of clinical effectiveness

Stage 1 clinical effectiveness searches

Stage 1 searches identified trials and systematic reviews using, where appropriate, high precision search filters. Searches were undertaken in December 2012. MEDLINE and EMBASE searches were updated in May 2013. In addition to the searches detailed below, evidence was sought through hand-searching, citation and grey literature searching and through consultation of clinical trials registers. Further details are given in the main report.

MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (via Ovid)

Date range searched: 1948 to July 2013.

Search undertaken December 2012, updated May 2013.

- 1. exp Arthritis, Rheumatoid/
- 2. rheumatoid arthritis.tw.
- 3. 1 or 2
- 4. randomized controlled trial.pt.
- 5. randomized controlled trial.mp.
- 6. 4 or 5
- 7. 3 and 6

MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (via Ovid)

Date range searched: 1948 to July 2013.

Search undertaken December 2012, updated May 2013.

- 1. exp Arthritis, Rheumatoid/
- 2. rheumatoid arthritis.tw.
- 3. 1 or 2
- 4. medline.tw.
- 5. systematic review.tw.
- 6. meta analysis.pt.
- 7. 4 or 5 or 6
- 8. 3 and 7

EMBASE (via Ovid)

Date range searched: 1980 to July 2013.

Search undertaken December 2012, updated May 2013.

- 1. exp rheumatoid arthritis/
- 2. rheumatoid arthritis.tw.
- 3. 1 or 2
- 4. double blind:.mp.
- 5. placebo:.tw.
- 6. blind:.tw.
- 7. 4 or 5 or 6
- 8. 3 and 7

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

EMBASE (via Ovid)

Date range searched: 1980 to July 2013.

Search undertaken December 2012, updated May 2013.

- 1. exp rheumatoid arthritis/
- 2. rheumatoid arthritis.tw.
- 3. 1 or 2
- 4. meta-analysis.tw.
- 5. systematic review.tw.
- 6. 4 or 5
- 7. 3 and 6

Cochrane Database of Systematic Reviews (Wiley Online Library) (1996 to May 2013); Cochrane Central Register of Controlled Trials (via Wiley Online Library) (1898 to May 2013)

Search undertaken December 2012.

"rheumatoid arthritis" OR explode Arthritis, Rheumatoid

Cumulative Index to Nursing and Allied Health Literature (via EBSCO*host***)** Date range searched: 1982 to April 2013.

Search undertaken December 2012.

- 1. Explode Rheumatoid Arthritis (MH)
- 2. Rheumatoid arthritis (TX)
- 3. 1 or 2
- 4. Randomized (TX)
- 5. Treatment outcomes (MH)
- 6. Clinical trial (PT)
- 7. 4 or 5 or 6
- 8. 3 and 7

Web of Science (via ISI Web of Knowledge)

Date range searched: 1900 to present.

Search undertaken December 2012.

Rheumatoid arthritis (topic) AND (randomi?ed NEAR trial*) (topic)

Web of Science (via ISI Web of Knowledge)

Date range searched: 1900 to present.

Search undertaken December 2012.

Rheumatoid arthritis (topic) AND (systematic review* OR meta-analys?s) (topic)

Centre for Reviews and Dissemination Database of Abstracts of Reviews of Effectiveness and Health Technology Assessment

Date range searched: 1995 to 2013.

Search undertaken December 2012.

Rheumatoid arthritis (all fields)

Stage 2 clinical effectiveness searches

Stage 2 searches identified trials using high sensitivity search filters. Searches were undertaken in April 2013.

MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (via Ovid) Date range searched: 1948 to July 2013.

- 1. adalimumab.af.
- 2. humira.af.
- 3. d 2e7.af.
- 4. d2e7.af.
- 5. 331731-18-1.rn.
- 6. etanercept.af.
- 7. enbrel.af.
- 8. 185243-69-0.rn.
- 9. infliximab.af.
- 10. remicade.af.
- 11. 170277-31-3.rn.
- 12. ta650.af.
- 13. ta 650.af.
- 14. certolizumab pegol.af.
- 15. cimzia.af.
- 16. cdp870.af.
- 17. 428863-50-7.rn.
- 18. 1132819-27-2.rn.
- 19. czp.af.
- 20. abatacept.af.
- 21. orencia.af.
- 22. 213252-14-3.af.
- 23. 332348-12-6.af.
- 24. bms188667.af.
- 25. bms 188667.af.
- 26. ctla4ig.af.
- 27. ctla 4ig.af.
- 28. golimumab.af.
- 29. cnto148.af.
- 30. cnto 148.af.
- 31. simponi.af.
- 32. 476181-74-5.af.
- 33. tocilizumab.af.
- 34. atlizumab.af.
- 35. actemra.af.
- 36. roactemra.af.

- 37. 375823-41-9.af.
- 38. tofacitinib.af.
- 39. xeljanz.af.
- 40. tasocitinib.af.
- 41. cp690550.af.
- 42. cp 690550.af.
- 43. 540737-29-9.af.
- 44. rituximab.af.
- 45. rituxan.af.
- 46. mabthera.af.
- 47. 174722-31-7.rn.
- 48. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47
- 49. rheumatoid arthritis.tw.
- 50. exp Arthritis, Rheumatoid/
- 51. 49 or 50
- 52. 48 and 51
- 53. randomized controlled trial.pt.
- 54. controlled clinical trial.pt.
- 55. randomized.ab.
- 56. placebo.ab.
- 57. drug therapy.fs.
- 58. randomly.ab.
- 59. trial.ab.
- 60. groups.ab.
- 61. 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60
- 62. exp animals/ not humans.sh.
- 63. 61 not 62
- 64. 52 and 63

MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (via Ovid)

Date range searched: 1948 to July 2013.

- 1. atacicept.af.
- 2. 845264-92-8.rn.
- 3. unii-k3d9a0icq3.af.
- 4. uniik3d9a0icq3.af.
- 5. taci-fc5.af.
- 6. tacifc5.af.
- 7. taci-ig.af.
- 8. taciig.af.
- 9. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8
- 10. rheumatoid arthritis.tw.
- 11. exp Arthritis, Rheumatoid/
- 12. 10 or 11
- 13. 9 and 12
- 14. randomized controlled trial.pt.
- 15. controlled clinical trial.pt.
- 16. randomized.ab.
- 17. placebo.ab.

- 18. drug therapy.fs.
- 19. randomly.ab.
- 20. trial.ab.
- 21. groups.ab.
- 22. 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21
- 23. exp animals/ not humans.sh.
- 24. 22 not 23
- 25. 13 and 24

EMBASE (via Ovid)

Date range searched: 1980 to July 2013.

- 1. adalimumab.af.
- 2. humira.af.
- 3. d 2e7.af.
- 4. d2e7.af.
- 5. 331731-18-1.af.
- 6. etanercept.af.
- 7. enbrel.af.
- 8. 185243-69-0.af.
- 9. infliximab.af.
- 10. remicade.af.
- 11. 170277-31-3.af.
- 12. ta650.af.
- 13. ta 650.af.
- 14. certolizumab pegol.af.
- 15. cimzia.af.
- 16. cdp870.af.
- 17. cdp 870.af.
- 18. 428863-50-7.af.
- 19. 1132819-27-2.af.
- 20. czp.af.
- 21. abatacept.af.
- 22. orencia.af.
- 23. 213252-14-3.af.
- 24. 332348-12-6.af.
- 25. bms188667.af.
- 26. bms 188667.af.
- 27. ctla4ig.af.
- 28. ctla 4ig.af.
- 29. golimumab.af.
- 30. cnto148.af.
- 31. cnto 148.af.
- 32. simponi.af.
- 33. 476181-74-5.af.
- 34. tocilizumab.af.
- 35. atlizumab.af.
- 36. actemra.af.
- 37. roactemra.af.
- 38. 375823-41-9.af.
- 39. tofacitinib.af.

- 40. xeljanz.af.
- 41. tasocitinib.af.
- 42. cp690550.af.
- 43. cp 690550.af.
- 44. 540737-29-9.af.
- 45. rituximab.af.
- 46. rituxan.af.
- 47. mabthera.af.
- 48. 174722-31-7.af.
- 49. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48
- 50. exp rheumatoid arthritis/
- 51. rheumatoid arthritis.tw.
- 52. 50 or 51
- 53. 49 and 52
- 54. random\$.tw.
- 55. clinical trial\$.mp.
- 56. exp health care quality/
- 57. 54 or 55 or 56
- 58. 53 and 57

EMBASE (via Ovid)

Date range searched: 1980 to July 2013.

- 1. atacicept.af.
- 2. 845264 92 8.af.
- 3. unii-k3d9a0icq3.af.
- 4. uniik3d9a0icq3.af.
- 5. taci-fc5.af.
- 6. tacifc5.af.
- 7. taci-ig.af.
- 8. taciig.af.
- 9. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8
- 10. exp rheumatoid arthritis/
- 11. rheumatoid arthritis.tw.
- 12. 10 or 11
- 13. 9 and 12
- 14. random\$.tw.
- 15. clinical trial\$.mp.
- 16. exp health care quality/
- 17. 14 or 15 or 16
- 18. 13 and 17

Stage 3 clinical effectiveness searches

Stage 3 searches identified studies of adverse events. Searches were undertaken in July 2013. In addition to the searches detailed below evidence was sought through consultation of the National Library of Medicine (NLM) TOXLINE resource and through the website of the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA).

MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (via Ovid)

Date range searched: 1948 to July 2013.

Search undertaken July 2013.

- 1. adalimumab.af.
- 2. humira.af.
- 3. d 2e7.af.
- 4. d2e7.af.
- 5. 331731-18-1.rn.
- 6. etanercept.af.
- 7. enbrel.af.
- 8. 185243-69-0.rn.
- 9. infliximab.af.
- 10. remicade.af.
- 11. 170277-31-3.rn.
- 12. ta650.af.
- 13. ta 650.af.
- 14. certolizumab pegol.af.
- 15. cimzia.af.
- 16. cdp870.af.
- 17. 428863-50-7.rn.
- 18. 1132819-27-2.rn.
- 19. czp.af.
- 20. abatacept.af.
- 21. orencia.af.
- 22. 213252-14-3.af.
- 23. 332348-12-6.af.
- 24. bms188667.af.
- 25. bms 188667.af.
- 26. ctla4ig.af.
- 27. ctla 4ig.af.
- 28. golimumab.af.
- 29. cnto148.af.
- 30. cnto 148.af.
- 31. simponi.af.
- 32. 476181-74-5.af.
- 33. tocilizumab.af.
- 34. atlizumab.af.
- 35. actemra.af.
- 36. roactemra.af.
- 37. 375823-41-9.af.
- 38. tofacitinib.af.
- 39. xeljanz.af.
- 40. tasocitinib.af.
- 41. cp690550.af.
- 42. cp 690550.af.

- 43. 540737-29-9.af.
- 44. rituximab.af.
- 45. rituxan.af.
- 46. mabthera.af.
- 47. 174722-31-7.rn.
- 48. atacicept.af.
- 49. 845264-92-8.rn.
- 50. unii-k3d9a0icq3.af.
- 51. uniik3d9a0icq3.af.
- 52. taci-fc5.af.
- 53. tacifc5.af.
- 54. taci-ig.af.
- 55. taciig.af.
- 56. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55
- 57. rheumatoid arthritis.tw.
- 58. exp Arthritis, Rheumatoid/
- 59. 57 or 58
- 60. 56 and 59
- 61. (ae or co or de).fs.
- 62. (safe or safety or side effect* or undesirable effect* or treatment emergent or tolerability or toxicity or adrs or (adverse adj2 (effect or effects or reaction or reactions or event or events or outcome or outcomes))).tw.
- 63. 61 or 62
- 64. 60 and 63

EMBASE (via Ovid)

Date range searched: 1980 to July 2013.

Search undertaken July 2013.

- 1. adalimumab.af.
- 2. humira.af.
- 3. d 2e7.af.
- 4. d2e7.af.
- 5. 331731-18-1.af.
- 6. etanercept.af.
- 7. enbrel.af.
- 8. 185243-69-0.af.
- 9. infliximab.af.
- 10. remicade.af.
- 11. 170277-31-3.af.
- 12. ta650.af.
- 13. ta 650.af.
- 14. certolizumab pegol.af.
- 15. cimzia.af.
- 16. cdp870.af.
- 17. cdp 870.af.
- 18. 428863-50-7.af.
- 19. 1132819-27-2.af.
- 20. czp.af.

- 21. abatacept.af.
- 22. orencia.af.
- 23. 213252-14-3.af.
- 24. 332348-12-6.af.
- 25. bms188667.af.
- 26. bms 188667.af.
- 27. ctla4ig.af.
- 28. ctla 4ig.af.
- 29. golimumab.af.
- 30. cnto148.af.
- 31. cnto 148.af.
- 32. simponi.af.
- 33. 476181-74-5.af.
- 34. tocilizumab.af.
- 35. atlizumab.af.
- 36. actemra.af.
- 37. roactemra.af.
- 38. 375823-41-9.af.
- 39. tofacitinib.af.
- 40. xeljanz.af.
- 41. tasocitinib.af.
- 42. cp690550.af.
- 43. cp 690550.af.
- 44. 540737-29-9.af.
- 45. rituximab.af.
- 46. rituxan.af.
- 47. mabthera.af.
- 48. 174722-31-7.af.
- 49. atacicept.af.
- 50. 845264 92 8.af.
- 51. unii-k3d9a0icq3.af.
- 52. uniik3d9a0icq3.af.
- 53. taci-fc5.af.
- 54. tacifc5.af.
- 55. taci-ig.af.
- 56. taciig.af.
- 57. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56
- 58. exp rheumatoid arthritis/
- 59. rheumatoid arthritis.tw.
- 60. 58 or 59
- 61. 57 and 60
- 62. (safe or safety or side effect* or undesirable effect* or treatment emergent or tolerability or toxicity or adrs or (adverse adj2 (effect or effects or reaction or reactions or event or events or outcome or outcomes))).tw.
- 63. 61 and 62

Appendix 2 Quality assessment summary of findings

ane/ Interventic al., IFX d., IFX al., IFX d ⁵⁷ TCZ als ADA, TCZ aBT aBT aBT aBT aBT aBT aBT	on Population 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3	NNN Z > > z > > z > z z z z z z z z z z z z	Was the method used to generate the allocation sequence to treatment groups dequate? V U U U U U U U U U U U U U U	Was the allocation of treatment concealed (V/N/U) U U U U U	Were the treatment groups at baseline? (Y/N/U/N/A) N N N	Were patients and study personnel blinded to treatment? (Y/N/U) N N N N N N N N N N N N N N N N N N N	Were participants analysed in their allocated (Y/N/U) (Y/N/U) X X X X X X X X X X X X X X X X X X X	Were all randomised patients included in efficacy (Y/N/U/ MITT/N/A) mITT mITT mITT mITT mITT mITT	Were all patients included in safety (Y/N/U/ mITT/N/A) mITT mITT mITT mITT mITT mITT mITT mIT	Were at least 80% of participants originally randomised included in the final analysis? (Y/N/U) Y Y Y Y Y Y	Free of evidence of selective of outcomes? (Y/N/U) N N N N N
IFX, ABI IFX	2/3 2/3	≻ ≻		⊃ ≻	≻ Z	≻ ≻	≻ ≻		um ≻	- ≻	z ⊃
IFX	2/3	≻	≻	≻	Z	≻	≻	Л	~	~	Л
ADA	2/3 1	≻ Z	> >	× >	> >	z >	≻ >	≻ >	≻ >	> >	≻ Z
AUA	_	Ζ	-	F	F	-	F	-	-	-	2
IFX	-	~	≻	z	×	z	~	Л	Л	×	Л

of tive ting of U)																	ontinued
ts Free d d evide repor repor (Y/N/	≻		≻	≻			≻		≻	Z	≻	Z				z	ō
Were at least 80% of participant originally randomise included ir the final analysis? (Y/NU)	≻	≻	≻	≻	≻		≻	≻	≻	≻	≻	≻	≻	≻	Л	Y	
Were all randomised patients included in safety analyses? (Y/N/U/ mITT/N/A)	Ъ	≻	тIт	≻	z		П	mITT	mITT	тIт	тIт	mITT	≻	mITT	N/A	Y	
Were all randomised patients included in efficacy analyses? (Y/N/U/ mlTT/N/A)	⊐	≻	mITT	~	z	Л		mITT	mITT	~	mITT	~	mITT	mITT	П	Y	
Were participants analysed in their allocated treatment groups? (Y/N/U)	~	≻	~	~	~	~		~	~	~	~	~	~	×	П	×	
Were patients and study personnel blinded to treatment? (Y/N/U)	≻	≻	~	~	z	z	Л	~	~	~	~	~	Z	×	П	N	
Nere the Treatment Jroups ti baseline? Y/N/U/N/A)		~	~	~	~	7	7	~	~	~	~	~	~	7		,	
Vas the Vas the Vas the Vas the Vas the Vas the Vas						2	2							2			
as the ethod eethod seat to location V quence to a eatment t t oups c lequate? a ////J) ((~							~		<i>></i>	ļ				
∠ 8 9 9 9 9 9 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 2 8 2 2 2 8 2	∍	Π	≻					Π		≻		≻				Ο	
NIMA VIMA	≻	≻	Z	≻	≻	z	≻	≻	≻	≻	≻	≻	Z	≻	Z	≻	
ר Population	2/3	2/3	-	2/3	2/3	2/3	-	-	2/3	-	2/3	2/3	-	-	-	2/3	
Intervention	CTZ	ADA	ETN	ADA	etn, ifx	IFX	IFX	ETN	ETN	GOL	GOL	GOL	ADA	ADA	IFX	ETN	
Trial name/	CERTAIN ⁷⁹	CHANGE ⁸⁰	COMET ⁸¹	DE019 ⁸⁴	deFilippis <i>et al.</i> , 2006 ⁸⁵	Durez <i>et al.</i> , 2004 ⁸⁶	Durez <i>et al.</i> , 2007 ¹²⁰	ERA ¹³⁹	ETN study 309 ⁸⁹	GO-BEFORE ⁹⁰	GO-FORTH ⁹¹	GO- FORWARD ⁹²	GUEPARD ⁹³	HIT HARD ⁹⁴	IDEA ⁹⁵	CREATE IIb ⁹⁶	

TABLE 333 QI	uality assessme	ent: summary	of findings	(continued)								
Trial name/	Interventior	n Population	NMM (V/V)	Was the method used to generate the allocation sequence to treatment groups adequate? (Y/N/U)	Was the allocation of treatment concealed adequately? (Y/N/U)	Were the treatment groups at baseline? (Y/N/U/N/A)	Were Were patients and study personnel blinded to treatment? (Y/N/U)	Were participants analysed in their allocated treatment groups? (Y/N/U)	Were all randomised patients included in efficacy analyses? (Y/N/U/ MITT/N/A)	Were all randomised patients included in safety analyses? mITT/N/A)	Were at least 80% of participants originally randomised included in the final analysis? (Y/N/U)	Free of evidence of selective reporting of (Y/N/U)
JESMR ¹⁴⁰	ETN	2/3	≻	П	D	Z	Z	~	mITT	mITT	~	~
Kay <i>et al.</i> , 2008 ⁹⁸	GOL	2/3	Z		Л	Z	~	~	~	mITT	~	Z
Kim <i>et al.,</i> 2007 ⁹⁹	ADA	2/3	≻		Э	~	~	~	mITT	~	~	
Kume <i>et al.,</i> 2011 ¹⁰⁰	ADA, ETN	.	z			~	Z	~	z	N/A	~	Z
Lan <i>et al.</i> , 2004 ¹⁰¹	ETN	2/3	z			~	~	~	mITT	mITT	~	
LARA ¹⁰²	ETN	2/3	≻	П	П	×	Z	×	mITT	×	×	
MEASURE ¹⁰³	TCZ	2/3	Z	П	Л	Л	~	Л	Л	N/A	Л	
Moreland et al., 1999 ¹⁰⁴	ETN	2/3	~	~	~	~	~	~	mITT	mITT	~	
Nishimoto <i>et al.</i> , 2004 ¹⁰⁶	TCZ	2/3	z		Э	~	~	~	~	~	≻	
OPERA ¹⁰⁷	ADA	, -	Z	~	~	~	≻	~	mITT	mITT	×	
OPTIMA ¹⁰⁸	ADA	-	≻	×	×	×	×	×	mITT	mITT	×	~
PREMIER ¹⁰⁹	ADA	-	≻	Л	Л	Z	≻	7	mITT	mITT	×	
Quinn <i>et al.,</i> 2005 ¹¹⁰	IFX	. 	z	D		≻	≻	~			~	
RACAT ¹¹¹	ETN	2/3	≻	\succ	7	7	×	7	Z	z	×	~
REALISTIC ¹¹³	CTZ	2/3	z	Y	Y	Y	n	Y	Y	mITT	Y	Z

Trial name/	Intervention	Population	NMA (V/N)	Was the method used to generate the allocation sequence to treatment groups adequate? (Y/N/U)	Was the allocation of treatment concealed (Y/N/U)	Were the treatment groups at baseline? (Y/N/U/N/A)	Were patients and study personnel blinded to treatment? (Y/N/U)	Were participants analysed in their allocated treatment groups? (Y/N/U)	Were all randomised patients included in efficacy analyses? (Y/N/U/ mlTT/N/A)	Were all randomised patients included in safety analyses? (Y/N/U/ mITT/N/A)	Were at least 80% of participants originally rrandomised included in the final (Y/N/U)	Free of evidence of selective reporting of (Y/N/U)
RED-SEA ¹¹⁴	ADA, ETN	2/3	z	≻	z	7	z	~	mITT	mITT	7	×
SAMURAI ¹¹⁵	TCZ	2/3	≻	Л	~	~	Z	~	mITT	mITT	~	Л
SATORI ¹¹⁶	TCZ	2/3	≻	~	~	~	~	~	mITT	mITT	~	Z
STAR ¹¹⁷	ADA	2/3	≻	D	П	~	~	~	mITT	mITT	~	
START ¹¹⁸	IFX	2/3	≻	П	Л	~	×	~	mITT	Z	≻	П
Swefot ¹¹⁹	IFX	2/3	≻	~	×	~	Z	×	×	×	×	Z
AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
TOWARD ¹²¹	TCZ	2/3	≻	П	Л	~	×	~	mITT	mITT	~	П
Van De Putte et al., 2004 ¹²²	ADA	2/3	~	~	~	~	~	~	~	~	~	
Wajdula 2000 (reported in Chen <i>et al.</i> , 2006 ¹²³)	ETN	2/3	z	J	5	~	~	D	D	D	~	D
Weinblatt <i>et al.</i> , 1999 ¹²⁴	ETN	2/3	7	Л	D	×	×	~	~	¥	×	П
												continued

TABLE 333 Qu	uality assessm	nent: summary	of findings	(continued)								
Trial name/	Interventio	n Population	NMA (V/V)	Was the method used to generate the allocation sequence to treatment groups adequate? (Y/N/U)	Was the allocation of treatment concealed adequately? (Y/N/U)	Were the treatment groups at baseline? (Y/N/U/N/A)	Were Patients and study personnel blinded to treatment? (Y/N/U)	Were participants analysed in their allocated treatment groups? (Y/N/U)	Were all randomised patients included in efficacy analyses? (Y/N/U/ mITT/N/A)	Were all randomised patients included in safety analyses? mITT/N/A)	Were at least 80% of participants originally randomised included in the final analysis? (Y/N/U)	Free of evidence of selective reporting of outcomes? (Y/N/U)
Wong <i>et al.</i> , 2009 ¹²⁵	IFX	2/3	z	D	Л	~	~	~	D	N/A	D	Л
Zhang <i>et al.,</i> 2006 ¹²⁶	IFX	2/3	z	D		Z	~	Э	Э		Э	Л
AIM, Abatace, ASSET, Abatace patients in Jap in Patients With IDEA, Remission theumatoid ar Methotrexate i patients with a Notes ABT i.V. = ABT ABT i.V. = ABT ABT i.V. = ABT ABT i.V. = ABT ADA = ADA 46 CTZ = s.c. CTZ ADA = ADA 46 CTZ = s.c. CTZ ETN 25 r GOL = GOL 50 FX = IFX 3 mg/ TC7 = TC7 8 mg/	ot in Inadeque cept Systemic an with Adali ch Rheumatoic on induction c thritis; MEASI and Adalimur an Inadequate $\approx 10 mg/kg in125 mg once0 mg every oth400 mg at wimg every 4 wkg intravenou$	ate responders tr SclErosis Trial; A murmab applying d Arthritis (RA); E Arthritis (RA); E Response inflixir response to me response to me rare week subcut eeks subcutaneou veeks subcutaneou veeks subcutaneou veeks subcutaneou veeks vabcutaneou veeks vabcutaneou veeks vabcutaneou veeks vabcutaneou	 Methotrex: SSURE, Abar StaNdard a \$taNdard a \$tanvard 	ate; ASPIRE, Active tacept Study of Sa nd General Evalua neumatoid Arthritis h-dose intravenou: ing spondylitis; ml inn In Subjects rec STAR, Safety Trial (and 4, and every 4 iollowing an option g every other weel ry 8 weeks thereal	controlled Stu fety in Use with tion study; CRE (etanercept); H s (etanercept); H tr, modified in Fr, modified in piving TNF Inhit of Adalimumab weeks thereaf hal i.v. loading c.	dy of Patients ri other RA ThEr ATE IIb, A 6-m ATE IIb, A 6-m HT HARD, High HARD, High HARD, treat-to- loon to treat- tion Certolizum in Rheumatoid dose of \approx 10 m dose of \approx 10 m escalation perm	eceiving Inflixii apies, CHANG onth Randomi. Induction TH4 target: a doub, r iab pegol; SA1 l arthritis; U, u g/kg based on g/kg based on itted after we	mab for the tra sed, Clinical inver- sed, Double-by erapy with Am ole-blind, randk not applicable; fORI, Study of inclear; Y, yes. i weight range i weight range	aatment of Rhe sstigation in Hi ind, Open Arm ti-Rheumatic D Dmised, contro OPTIMA, OPTI Active controll of response).	umatoid arthr ghly disease-a' n Comparator, rugs (adalimur lied trial in nev mal protocol f ed Tocilizuma ed Tocilizuma	itis of Early ons ffected rheuma Phase IIb, With mab and metho v-onset, treatm or treatment Ir b for Rheumat	et; toid Arthritis n AZD9056, ent-naive, itiation with vid arthritis

APPENDIX 2

Appendix 3 Excluded studies

TABLE 334 Table of excluded studies with rationale for exclusion

Study	Rationale for exclusion
ADJUST	Population: DMARD naive but
Emery P, Durez P, Dougados M, Legerton CW, Becker JC, Vratsanos G, <i>et al.</i> Impact of T-cell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial). <i>Ann Rheum Dis</i> 2010; 69 :510–16. [Erratum published in <i>Ann Rheum Dis</i> 2011; 70 :1519]	moderate–severe (ABT)
AGREE	Population: MTX naive
Westhovens R, Robles M, Ximenes AC, Nayiager S, Wollenhaupt J, Durez P, <i>et al.</i> Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. <i>Ann Rheum Dis</i> 2009; 68 :1870–7	(not licensed for this population) (ABT)
ALLOW	Population: prior biologics
Kaine J, Gladstein G, Strusberg I, Robles M, Louw I, Gujrathi S, <i>et al.</i> Evaluation of abatacept administered subcutaneously in adults with active rheumatoid arthritis: impact of withdrawal and reintroduction on immunogenicity, efficacy and safety (Phase IIIb ALLOW study). <i>Ann Rheum Dis</i> 2012; 71 :38–44	(open-label run-in phase) (ABT)
ARRIVE	Population: previous use of
Schiff M, Pritchard C, Huffstutter JE, Rodriguez-Valverde V, Durez P, Zhou X, <i>et al.</i> The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: the ARRIVE trial. <i>Ann Rheum Dis</i> 2009; 68 :1708–14	antiTNF therapy in all (ABT)
ATTAIN	Population: previous use of
Genovese MC, Becker J-C, Schiff M, Luggen M, Sherrer Y, Kremer J, <i>et al.</i> Abatacept for rheumatoid arthritis refractory to tumour necrosis factor alpha inhibition. <i>N Engl J Med</i> 2005; 353 :1114–23	anti i NF therapy in all (ABT)
ATTUNE	Study design: not a RCT. LTE of
Keystone EC, Kremer JM, Russell A, Box J, Abud-Mendoza C, Elizondo MG, <i>et al.</i> Abatacept in subjects who switch from intravenous to subcutaneous therapy: results from the phase IIIb ATTUNE study. <i>Ann Rheum Dis</i> 2012; 71 :857–61	
TAMARA	Not a RCT (single-arm study)
Burmester GR, Feist E, Kellner H, Braun J, Iking-Konert C, Rubbert-Roth A. Effectiveness and safety of the interleukin 6-receptor antagonist tocilizumab after 4 and 24 weeks in patients with active rheumatoid arthritis: the first phase IIIb real-life study (TAMARA). <i>Ann Rheum Dis</i> 2011; 70 :755–9	(TCZ)
ACT-SURE	Not a RCT (TCZ)
Bykerk VP, Ostor AJ, Alvaro-Gracia J, Pavelka K, Ivorra JA, Graninger W, et al. Tocilizumab in patients with active rheumatoid arthritis and inadequate responses to DMARDs and/or TNF inhibitors: a large, open-label study close to clinical practice. Ann Rheum Dis 2012; 71 :1950–4	
C87014	Intervention (not licensed dose)
Choy E, McKenna F, Vencovsky J, Valente R, Goel N, Vanlunen B, <i>et al.</i> Certolizumab pegol plus MTX administered every 4 weeks is effective in patients with RA who are partial responders to MTX. <i>Rheumatology</i> 2012; 51 :1226–34	

continued

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Study	Rationale for exclusion
CanACT	Not a RCT (ADA)
Haraoui B, Cividino A, Stewart J, Guerette B, Keystone EC. Safety and effectiveness of adalimumab in a clinical setting that reflects Canadian standard of care for the treatment of rheumatoid arthritis (RA): results from the CanACT study. <i>BMC Musculoskelet Disord</i> 2011; 12 :261	
Chen HA, Lin KC, Chen CH, Liao HT, Wang HP, Chang HN, et al. The effect of etanercept on anti-cyclic citrullinated peptide antibodies and rheumatoid factor in patients with rheumatoid arthritis. <i>Ann Rheum Dis</i> 2006; 65 :35–9	Study investigating serum levels of anticyclic citrullinated peptide antibodies and rheumatoid factor: excluded outcomes (ETN)
Chen D-Y, Chou S-J, Hsieh T-Y, Chen Y-H, Chen H-H, Hsieh C-W, <i>et al.</i> Randomised, double-blind, placebo-controlled, comparative study of human anti-TNF antibody adalimumab in combination with methotrexate and methotrexate alone in Taiwanese patients with active rheumatoid arthritis. <i>J Formos Med Assoc</i> 2009; 108 :310–19	Participants on MTX, unclear if had inadequate response, 12-week study, $n = 47$ (ADA)
Choy EH, Hazleman B, Smith M, Moss K, Lisi L, Scott DG, <i>et al.</i> Efficacy of a novel PEGylated humanised anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomised, dose-escalating trial. <i>Rheumatology</i> 2002; 41 :1133–7	Intervention: not licensed dose (CTZ)
Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y, Bird H, <i>et al.</i> Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomised, double-blind, placebo-controlled, dose-escalation trial. <i>Arthritis Rheum</i> 2002; 46 :3143–50	Not in line with licensed indications
DART	Not a RCT (ADA, ETN, IFX)
Moots RJ, Haraoui B, Matucci-Cerinic M, Van Riel PLCM, Kekow J, Schaeverbeke T, <i>et al.</i> Differences in biologic dose-escalation, non-biologic and steroid intensification among three anti-TNF agents: evidence from clinical practice. <i>Clin Exp Rheumatol</i> 2011; 29 :26–34	
Doseflex	Population: prior biologics
Furst D, Shaikh S, Greenwald M, Bennett B, Staelens F. Evaluation of two dosing regimens of certolizumab pegol for maintenance of clinical response in patients with active rheumatoid arthritis: primary results from doseflex, a phase IIIB study. <i>Ann Rheum Dis</i> 2012; 71 :513	(open-laber run-in) (CTZ)
Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, <i>et al.</i> Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. <i>Lancet</i> 1994; 344 :1105–10	Not in line with licensed indications (IFX)
RADIATE	Biologic-experienced population
Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, <i>et al.</i> IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. <i>Ann Rheum Dis</i> 2008; 67 :1516–23	
FAST4WARD	Intervention: not licensed dose
Fleischmann R, Vencovsky J, van Vollenhoven RF, Borenstein D, Box J, Coteur G, <i>et al.</i> Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD study. <i>Ann Rheum Dis</i> 2009; 68 :805–11	

Study	Rationale for exclusion
Fleischmann R, Cutolo M, Genovese MC, Lee EB, Kanik KS, Sadis S, <i>et al.</i> Phase Ilb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. <i>Arthritis Rheum</i> 2012; 64 :617–29	Approximately 10% of participants had prior biologics, fewer than 22 weeks of ADA treatment (10 weeks ADA then switch to TOF), so not included as additional evidence
OPPOSITE	Biologic-experienced population
Furst DE, Gaylis N, Bray V, Olech E, Yocum D, Ritter J, <i>et al.</i> Open-label, pilot protocol of patients with rheumatoid arthritis who switch to infliximab after an incomplete response to etanercept: the opposite study. <i>Ann Rheum Dis</i> 2007; 66 :893–9	
Genovese MC, Sebba A, Rubbert-Roth A, Scali JJ, Alten R, Kremer JM, <i>et al.</i> Long-term safety of tocilizumab in patients with rheumatoid arthritis and a mean treatment duration of 3.7 years. <i>Arthritis Rheum</i> 2012; 64 :1640	Pooled data excluded
Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, <i>et al.</i> Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. <i>Arthritis</i> <i>Rheum</i> 2004; 50 :1412–19	Comparators unlicensed as ETN in combination with anakinra
Hall S, Fleischmann R. Tocilizumab inhibits radiological progression and improves physical function in rheumatoid arthritis (RA) patients at 2 years with increasing clinical efficacy over time. <i>Intern Med J</i> 2010; 40 :13	Insufficient details on data-analyses and no useable pre-withdrawal data (TCZ)
HIKARI (NCT00791921)	Study design: no separate
Yamamoto K, Takeuchi T, Yamanaka H, Ishiguro N, Tanaka Y, Eguchi K, <i>et al.</i> Efficacy and safety of certolizumab pegol without methotrexate co-administration in Japanese patients with active rheumatoid arthritis. Arthritis and Rheumatism Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals, Chicago, IL, 4–9 November 2011	concomitant cDMARDs and monotherapy (CTZ)
RESTART	All patients received IFX prior to
Ingham M, Tang L, Decktor D, Bolce R, Wang J. Benefits in patient reported outcomes supporting a 'treat to target' paradigm for infliximab-treated RA patients previously inadequately responsive to prior anti-TNF treatment. <i>Value Health</i> 2012; 15 :A42–3	candomisation to range of IFX doses (not comparable with other trial populations at baseline) (IFX)
Johnsen AK, Schiff MH, Mease PJ, Moreland LW, Maier AL, Coblyn JS, <i>et al.</i> Comparison of 2 doses of etanercept (50 vs 100 mg) in active rheumatoid arthritis: a randomised double blind study. <i>J Rheumatol</i> 2006; 33 :659–64	Comparator unlicensed dose (ETN)
Kaufman J, Seel S, Roske A-E. Comparison of tocilizumab and TNF inhibitor therapy in rheumatoid arthritis. <i>Arthritis Rheum</i> 2011; 63 :S1271	Not a RCT (TCZ)
Kavanaugh A, St Clair EW, McCune WJ, Braakman T, Lipsky P. Chimeric anti-tumour necrosis factor-alpha monoclonal antibody treatment of patients with rheumatoid arthritis receiving methotrexate therapy. <i>J Rheumatol</i> 2000; 27 :841–50	Not in line with licensed indications (IFX)
Kellner H, Kellner W. Tocilizumab improves in rheumatoid arthritis patients with longstanding but still active disease the clinical disease activity (DAS28) and ameliorates MRI findings within the first three months of therapy. <i>Arthritis Rheum</i> 2011; 63 :S951	Pre-treatment with biologics (TCZ)
Keystone EC, Schiff MH, Kremer JM, Kafka S, Lovy M, DeVries T, <i>et al.</i> Once-weekly administration of 50 mg etanercept in patients with active rheumatoid arthritis: results of a multicenter, randomised, double-blind, placebo-controlled Trial. <i>Arthritis Rheum</i> 2004; 50 :353–63	Cannot distinguish results between monotherapy and combination therapy, half of participants in each of three treatment arms given MTX, half not, 8-week RCT stage of 16-week study (ETN)
	continued

Study	Rationale for exclusion
Khraishi <i>et al</i> . Long-term efficacy of tocilizumab (TCZ) in patients with rheumatoid arthritis (RA). <i>Ann Rheum Dis</i> 2011; 70 :472	Pooled data excluded (TCZ)
Kume K, Amano K, Yamada S, Hatta K. Tocilizumab improves arterial stiffness compared with abatacept in patients with TNF blockers-resistant active rheumatoid arthritis. An open label randomised controlled trial. <i>Arthritis Rheum</i> 2011; 63 :S147	All had prior biologics (TCZ)
Kume K, Amano K, Yamada S, Hatta K. Tocilizumab monotherapy improves bone mineral density as well as TNF blockers plus methotrexate with methotrexate-resistant active rheumatoid arthritis: an open-label randomised clinical trial. T-BONE trial. <i>Arthritis Rheum</i> 2011; 63 :S396	No useable scope outcome data (TCZ)
NEO-RACo	Dosing interval in induction
Leirisalo-Repo M, Kautiainen H, Laasonen L, Korpela M, Kauppi MJ, Kaipiainen-Seppanen O, <i>et al.</i> Infliximab for 6 months added on combination therapy in early rheumatoid arthritis: 2-year results from an investigator-initiated, randomised, double-blind, placebo-controlled study (the NEO-RACo Study). <i>Ann Rheum Dis</i> 2013; 72 :851–7	phase not in line with licensed indications (IFX)
Lim M, Park S-H, Shim S, Baek H, Yoo D-H. A double-blind, placebo-controlled, multicenter trial of tocilizumab in moderate to severe active RA patients with inadequate response to methotrexate in Korean population. <i>Ann Rheum Dis</i> 2012; 71 :670	Insufficient description of statistical analyses in conference abstract to permit critical appraisal and handling of data (TCZ)
Lisbona MP, Maymo J, Perich J, Almirall M, Perez-Garcia C, Carbonell J. Etanercept reduces synovitis as measured by magnetic resonance imaging in patients with active rheumatoid arthritis after only 6 weeks. <i>J Rheumatol</i> 2008; 35 :394–7	Treatment of tendosynovitis in RA, mostly excluded outcomes, 6-week study (ETN)
Lisbona MP, Maymo J, Perich J, Almirall M, Carbonell J. Rapid reduction in tenosynovitis of the wrist and fingers evaluated by MRI in patients with rheumatoid arthritis after treatment with etanercept. <i>Ann Rheum Dis</i> 2010; 69 :1117–1122	
Lorenz HM, Antoni C, Valerius T, Repp R, Grunke M, Schwerdtner N, <i>et al.</i> In vivo blockade of TNF-alpha by intravenous infusion of a chimeric monoclonal TNF-alpha antibody in patients with rheumatoid arthritis. Short term cellular and molecular effects. <i>J Immunol</i> 1996; 156 :1646–53	Not in line with licensed indications (IFX)
Lorenz HM, Grunke M, Hieronymus T, Antoni C, Nusslein H, Schaible TF, <i>et al.</i> In vivo blockade of tumour necrosis factor-alpha in patients with rheumatoid arthritis: longterm effects after repeated infusion of chimeric monoclonal antibody cA2. <i>J Rheumatol</i> 2000; 27 :304–10	Not in line with licensed indications (IFX)
Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, <i>et al.</i> Therapeutic efficacy of multiple intravenous infusions of anti-tumour necrosis factor monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. <i>Arthritis Rheum</i> 1998; 41 :1552–63	Not in line with licensed indications (IFX)
CHARISMA	Low levels of prior biologics and
Maini RN, Taylor PC, Szechinski J, Pavelka K, Broll J, Balint G, <i>et al.</i> Double-blind randomised controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. <i>Arthritis Rheum</i> 2006; 54 :2817–29	no ACR-EULAR response data at weeks 22–30 for NMA (week 16 data only) (TCZ)
Nakashima Y, Kondo M, Harada H, Horiuchi T, Ishinishi T, Jojima H, <i>et al.</i> Clinical evaluation of tocilizumab for patients with active rheumatoid arthritis refractory to anti-TNF biologics: tocilizumab in combination with methotrexate. <i>Mod Rheumatol</i> 2010; 20 :343–52	Not a RCT (TCZ)
Marcora SM, Chester KR, Mittal G, Lemmey AB, Maddison PJ. Randomised phase 2 trial of anti-tumour necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. <i>Am J Clin Nutr</i> 2006; 84 :1463–72	Treatment of cachexia (ETN)
Markatseli TE, Alamanos Y, Saougou I, Voulgari PV, Drosos AA. Survival of TNF-alpha antagonists in rheumatoid arthritis: a long-term study. <i>Clin Exp Rheumatol</i> 2012: 30 :31–8	Not a RCT (TNF inhibitors)

Study	Rationale for exclusion
Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, <i>et al.</i> Treatment of rheumatoid arthritis with a recombinant human tumour necrosis factor receptor (p75)–Fc fusion protein. <i>N Engl J Med</i> 1997; 337 :141–7	Unlicensed dose (ETN)
Nishimoto N, Ito K, Takagi N. Safety and efficacy profiles of tocilizumab monotherapy in Japanese patients with rheumatoid arthritis: meta-analysis of six initial trials and five long-term extensions. <i>Mod Rheumatol</i> 2010; 20 :222–32	Pooled data excluded
Pavelka K, Jarosova K, Suchy D, Senolt L, Chroust K, Dusek L, <i>et al.</i> Increasing the infliximab dose in rheumatoid arthritis patients: a randomised, double blind study failed to confirm its efficacy. <i>Ann Rheum Dis</i> 2009; 68 :1285–9	All patients received prior biologics (IFX)
Perkins DJ, St Clair EW, Misukonis MA, Weinberg JB. Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumour necrosis factor alpha monoclonal antibody (cA2). <i>Arthritis Rheum</i> 1998; 41 :2205–10	Not in line with licensed indications (IFX)
PRESERVE	All participants on ETN, before
Smolen JS, Nash P, Durez P, Hall S, Ilivanova E, Irazoque-Palazuelos F, <i>et al.</i> Maintenance, reduction, or withdrawal of etanercept after treatment with etanercept and methotrexate in patients with moderate rheumatoid arthritis (PRESERVE): a randomised controlled trial. <i>Lancet</i> 2013; 381 :918–29	
PRIZE	All participants on ETN, before
Etanercept for the Treatment of Rheumatoid Arthritis. (Review of TA Guidance 130, 186, 224, 234 and Part Review of TA Guidance 225 and 247). Multiple Technology Appraisal (MTA). Pfizer Submission. 2013	Tanuomisation
ReACT	Not a RCT, prior biologics (ADA)
Bombardieri S, Ruiz AA, Fardellone P, Geusens P, McKenna F, Unnebrink K, <i>et al.</i> Effectiveness of adalimumab for rheumatoid arthritis in patients with a history of TNF-antagonist therapy in clinical practice. <i>Rheumatology</i> 2007; 46 :1191–99	
Roux CH, Breuil V, Valerio L, Amoretti N, Brocq O, Albert C, <i>et al.</i> Etanercept compared to intraarticular corticosteroid injection in rheumatoid arthritis: double-blind, randomised pilot study. <i>J Rheumatol</i> 2011; 38 :1009–11	Comparator steroid only (ETN)
Smeets TJ, Kraan MC, van Loon ME, Tak PP. Tumour necrosis factor alpha blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. <i>Arthritis Rheum</i> 2003; 48 :2155–62	No scope outcomes
GO-AFTER	Biologic-experienced population
Smolen JS, Kay J, Doyle MK, Landewe R, Matteson EL, Wollenhaupt J, <i>et al.</i> Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. <i>Lancet</i> 2009; 374 :210–21	
STREAM	Participants did not have to have
van Eijk IC, Nielen MMJ, van der Horst-Bruinsma I, Tijhuis GJ, Boers M, Dijkmans BAC, <i>et al.</i> Aggressive therapy in patients with early arthritis results in similar outcome compared with conventional care: the STREAM randomised trial. <i>Rheumatology</i> 2012; 51 :686–94	trial, DAS < 3.2 (ADA)
Takeuchi T, Matsubara T, Nitobe T, Suematsu E, Ohta S, Honjo S, <i>et al.</i> Phase II dose–response study of abatacept in Japanese patients with active rheumatoid arthritis with an inadequate response to methotrexate. <i>Mod Rheumatol</i> 2013; 23 :226–35	Population: prior biologics (ABT)
RISING	All patients received IFX prior to
Takeuchi T, Miyasaka N, Inoue K, Abe T, Koike T. Impact of trough serum level on radiographic and clinical response to infliximab plus methotrexate in patients with rheumatoid arthritis: results from the RISING study. <i>Mod Rheumatol</i> 2009; 19 :478–87	doses (not comparable with other trial populations at baseline) (IFX)
	continued

[©] Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Study	Rationale for exclusion
GO-MONO	Not in line with licensed
Takeuchi T, Harigai M, Tanaka Y, Yamanaka H, Ishiguro N, Yamamoto K, <i>et al.</i> Golimumab monotherapy in Japanese patients with active rheumatoid arthritis despite prior treatment with disease-modifying antirheumatic drugs: results of the phase 2/3, multicentre, randomised, double-blind, placebo-controlled GO-MONO study through 24 weeks. <i>Ann Rheum Dis</i> 2013; 72 :1488–95	indications (monotherapy) (GOL)
Tam LS, Shang Q, Li EK, Wang S, Li RJ, Lee KL, <i>et al.</i> Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis – a randomised trial. <i>J Rheumatol</i> 2012; 39 :2267–75	Insufficient description of cDMARD treatment history (and no ACR/EULAR data at 22–30 weeks) (IFX)
TAME	Comparator RTX
Greenwald MW, Shergy WJ, Kaine JL, Sweetser MT, Gilder K, Linnik MD. Evaluation of the safety of rituximab in combination with a tumour necrosis factor inhibitor and methotrexate in patients with active rheumatoid arthritis: results from a randomised controlled trial. <i>Arthritis Rheum</i> 2011; 63 :622–32	
Taylor PC, Steuer A, Gruber J, Cosgrove DO, Blomley MJK, Marsters PA, <i>et al.</i> Comparison of ultrasonographic assessment of synovitis and joint vascularity with radiographic evaluation in a randomised, placebo-controlled study of infliximab therapy in early rheumatoid arthritis. <i>Arthritis Rheum</i> 2004; 50 :1107–16	Not in line with licensed indications (IFX)
Van De Putte LBA, Rau R, Breedveld FC, Kalden JR, Malaise MG, Van Riel PLCM, <i>et al.</i> Efficacy and safety of the fully human anti-tumour necrosis factor alpha monoclonal antibody adalimumab (D2E7) in DMARD refractory patients with rheumatoid arthritis: a 12 week, phase II study. <i>Ann Rheum Dis</i> 2003; 62 :1168–77	Unlicensed dose (ADA)
van Vollenhoven R, Ducournau P, Wintfeld N, Berger W, Alten R. Health assessment questionnaire-disability index (HAQ-DI) scores in patients with rheumatoid arthritis (RA) treated with tocilizumab plus conventional anti-rheumatic drugs. <i>Value Health</i> 2009;12:A434	Pooled data excluded (TCZ)
Weinblatt ME, Schiff MH, Ruderman EM, Bingham CO III, Li J, Louie J, <i>et al.</i> Efficacy and safety of etanercept 50 mg twice a week in patients with rheumatoid arthritis who had a suboptimal response to etanercept 50 mg once a week: results of a multicenter, randomised, double-blind, active drug-controlled study. <i>Arthritis Rheum</i> 2008; 58 :1921–30	Unlicensed dose (ETN), all prior inadequate response to etanercept
ACT-STAR	High proportion of prior biologic
Weinblatt ME, Kremer J, Cush J, Rigby W, Teng LL, Devenport J, <i>et al</i> . Tocilizumab as monotherapy or in combination with nonbiologic DMARDs: 24-week results of an open-label, clinical practice study (ACT-STAR). <i>Arthritis Care Res</i> 2013; 65 :362–71	(TCZ)
Westhovens R, Cole JC, Li T, Martin M, MacLean R, Lin P, <i>et al.</i> Improved health- related quality of life for rheumatoid arthritis patients treated with abatacept who have inadequate response to anti-TNF therapy in a double-blind, placebo-controlled, multicentre randomised clinical trial. <i>Rheumatology</i> 2006; 45 :1238–46	Population: inadequate response to antiTNF therapy (ABT)
Westhovens R, Houssiau F, Joly J, Everitt DE, Zhu Y, Sisco D, <i>et al.</i> A phase I study assessing the safety, clinical response, and pharmacokinetics of an experimental infliximab formulation for subcutaneous or intramuscular administration in patients with rheumatoid arthritis. <i>J Rheumatol</i> 2006; 33 :847–53	Not in line with licensed indications (IFX)
GO-FURTHER	Unlicensed dose (i.v.
Westhovens R, Weinblatt ME, Han C, Gathany T, Kim L, Mack M, <i>et al.</i> Fatigue is an independent variable predicting physical function and DAS-28 remission for patients with rheumatoid arthritis treated with intravenously administered golimumab: results from a phase 3, placebo controlled clinical trial. <i>Value Health</i> 2012; 15 :A42	

Study	Rationale for exclusion
REACTION	Not a RCT (TCZ)
Yamanaka H, Tanaka Y, Inoue E, Hoshi D, Momohara S, Hanami K, <i>et al.</i> Efficacy and tolerability of tocilizumab in rheumatoid arthritis patients seen in daily clinical practice in Japan: results from a retrospective study (REACTION study). <i>Mod Rheumatol</i> 2011; 21 :122–33	
ROSE	High proportion of prior biologic
Yazici Y, Curtis JR, Ince A, Baraf H, Malamet RL, Teng LL, et al. Efficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: the ROSE study. Ann Rheum Dis 2012; 71 :198–205	use (outside appraisal scope) (TCZ)
ADJUST, Abatacept study to Determine the effectiveness in preventing the development of with Undifferentiated inflammatory arthritis and to evaluate Safety and Tolerability; AGRE Remission and joint damage progression in methotrexate (MTX)-naive patients with Early I AIM, Abatacept in Inadequate responders to MTX; ALLOW, Evaluation of Abatacept Adm AduLts With Active RheumatOid Arthritis: Impact of Withdrawal and Reintroduction on Im Safety; ARRIVE, Abatacept Researched in RA patients with an Inadequate anti-TNF response ATTAIN, Abatacept Trial in Treatment of Anti-TNF Inadequate Responders; ATTUNE, Abatacept Researched in RA patients with an Inadequate anti-TNF response ATTAIN, Abatacept Trial in Treatment of Anti-TNF Inadequate Responders; ATTUNE, Abatacept Researched anti-Rheumatic Interleukin Six Monoclonal Antibody; DAI dosing patterns Assessment: a Retrospective observational study of subjects Treated for rh dosing flexibility; FAST4WARD, eFficAcy and Safety of cerTolizumab pegol – 4 Weekly dos GO-AFTER, GOlimumab After Former anti-tumour necrosis factor alpha Therapy Evaluated OPPOSITE, Open-label, Pilot Protocol of patients with rheumatoid arthritis who Switch to I response to Etanercept; PRESERVE, Study Comparing Etanercept In Combination With Me Rheumatoid Arthritis; PRIZE, Remission Induction with Etanercept Plus Methotrexate in Ear RADIATE, Research on Actemra Determining Efficacy after Anti-TNF failurEs; ReACT, Research Arthritis; REACTION, Retrospective Actemra Investigation for Optimal Needs of RA; RISING	of rheumatoid arthritis in patients E, Abatacept study to Gauge Erosive rheumatoid arthritis; inistered SubcutaneousLy in munogenicity, Efficacy and se to Validate Effectiveness; acept in subjecTs who swiTch reatment of rheumatoid arthritis; RT, Anti-TNF Drug utilization and neumatoid arthritis; Doseflex, sAge in RheumatoiD arthritis; I in RheumatoiD arthritis; nfliximab after an incomplete withotrexate in Subjects With rly Moderate-to-Severe RA; arch in Active Rheumatoid i, impact on radiographic and

clinical response to infliximab therapy concomitant with methotrexate in patients with rheumatoid arthritis by trough serum level in a dose-escalating study; ROSE, Rapid Onset and Systemic Efficacy; STREAM, Strategies in Early Arthritis Management; TAMARA, Tocilizumab And DMARDs: Achievements in Rheumatoid Arthritis; TAME, Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Tolerability and Safety of Rituximab when given in Combination with Methotrexate and Etanercept or Methotrexate and Adalimumab.

Appendix 4 Additional data relating to the included randomised controlled trials

					Duration
			MTX dose	during study	(where
Treatment	arms for which	data extraction	performed	(number of	patients
					Trial design
	Trastment	Treatment arms for which	Treatment arms for which data extraction	Treatment arms for which data extraction performed MTX dose	Treatment arms for which data extraction performed MTX dose (number of during study

head-to-head RCT
-
population
characteristics:
Trial
TABLE 335

Primary and supplementary publication details [author, year, publicatio type (e.g. full text, abstract)]	Kume <i>et al.</i> , 2011 ¹⁰⁰ full text		
Funding	X		
Geographical location	Japan		
Early withdrawal plan reported?	All patients with worsening disease activity (DAS28-ESR > 5.1 or change from baseline of DAS28-ESR > 1 at week 12 were allowed to leave the group, by clinician's judgement		
Primary outcome	Change in cardio-ankle vascular index		
Duration of RCT phase	24 weeks		
Concomitant treatments	R	NR	
MTX dose during study (where applicable) (mg/week)	AM	N/A	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	ADA monotherapy (n = 22 randomised)	ETN monotherapy $(n = 21 \text{ randomised})$	rrted. ubcutaneously.
Trial design (RCT, phase, LTE)	RCT (open label)		able; NR, not repoind twice a week s
Trial name/	Kume et al., 2011 ¹⁰⁰	Kume <i>et al.,</i> 2011 ¹⁰⁰	N/A, not applic ETN = ETN 25 n

	ary and olementary is fauthor, , publication (e.g. full abstract)]	ano et <i>al.</i> , 77 full-text e in -reviewed ial		
	Prim supp deta deta type text,	Bejar 2008 peer		
	l Funding source	Abbott Laborato		
	Geographica location	Ч Ч		
	Early withdrawal plan reported?	Rules for participant withdrawal included job loss, imminent job loss and AEs (at the discretion of the physician). Physicians. Physicians could withdraw patients due to an unacceptably high disease activity		
	Primary outcome	Job loss of any cause and/or imminent job loss at or after week 16		
	Duration of RCT phase	56 weeks		
or PBO	Concomitant treatments	Folate was administered according to regionally agreed according to regionally agreed Guidelines (5 mg six times/week) Stable doses of anti-inflammatory drugs, analgesics and prednisolone (up to 10 mg/day) were maintained in order for study treatment effect to be assessed without to be areased without to be treated during the study with intra-articular injections of MP (up to 80 mg over the course of the study)		
ics vs. DMARD(s)	MTX dose during study (where applicable)	MTX dosage increased from 7.5 mg/week to 25 mg/week by week 12 in the presence of remaining synovitis		
s: population 1 biolog	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO + MTX (<i>n</i> = 73)	ADA + MTX (n = 75)	
al characteristic	Trial design (RCT, phase, LTE)	Multicentre, RCT		
TABLE 336 Triã	Trial name/ study	2008 ⁷⁷ 2008 ⁷⁷	Bejarano et <i>al.</i> , 2008 ⁷⁷	

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

405

Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]	Soubrier <i>et al.</i> , 1999 ⁹³ full-text article in peer-reviewed journal
Funding source	Supported by a grant from the French Society of Rheumatology and the ADA treatment was of charge by Abbott France
Geographical location	France
Early withdrawal plan reported?	Step-up therapy part of intervention groups
Primary outcome	The proportion of patients in low disease activity at week 12 for whom antiTNF was not introduced at 1 year at 1 year
Duration of RCT phase	1 year
Concomitant treatments	Patients were allowed to continue concomitant treatment with corticosteroids initiated before but not after inclusion (maximum daily dose of 10 mg of oral prednisone) and to take NSAIDs and simple intra-articular steroid during the trial. All patients received folic after MTX therapy) after MTX therapy)
MTX dose during study (where applicable)	12 weeks MTX 0.3 mg/kg/week, maximum of 20 mg/week, without escalating dose regimen (then step-up)
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	Initial MTX for 12 weeks, then step-up therapy in both groups based on DAS28 (<i>n</i> = 32) Treatment adjusted every 3 months on the basis DAS28 amouths on the basis DAS28 amouths on the basis activity (DAS28 = 3.2), the treating physician adjusted therapy by proceeding to the next step in the allocated treatment group Initial monotherapy started with MTX (0.3 mg/kg/ week, without escalating dose regimen). In the event of remission (DAS28 < 2.6 for at least 6 months), MTX was tapered distributed addres regimen). In the event of remission (DAS28 < 2.6 for at least 6 months), MTX was tapered distributed addres regimen and the initial dose of MTX, was repring of MTX, the initial dose of MTX, and ADA (40 mg veek), MTX and ADA (40 mg veek), MTX and LEF WITS and LEF
Trial design (RCT, phase, LTE)	R CT, prospective, unblinded
Trial name/	GUEPARD/ Soubrier <i>et al.</i> , 1999 ⁹³

TABLE 336 Trial characteristics: population 1 biologics vs. DMARD(s) or PBO (continued)

Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]		continued
Funding source		
Geographical location		
Early withdrawal plan reported?		
Primary outcome		
Duration of RCT phase		
Concomitant treatments		
MTX dose during study (where applicable)	12 weeks MTX 0.3 mg/kg/week, maximum of 20 mg/week, without escalating dose regimen (then step-up)	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	Initial ADA + MTX ADA 40 mg s.c. every other week 12 weeks, then step-up therapy in both groups based on DAS28 ($n = 33$) Treatment adjusted every 3 months on the basis DAS28 If the patient did not achieve a low disease activity (DAS28 ≤ 3.2), the treatment group the treatment group proceeding to the next step in the allocated treatment group If the DAS28 was < 3.2 at week 12, ADA was stopped. In the event of remission (DAS28 < 2.6 for at least 6 months), MTX was tapered (2, 5 mg/ month) to a maintenance dose of MTX, the initial dose of MTX, the event of relapse, patients restarted ADA 40 mg every of relapse, patients	
Trial design (RCT, phase, LTE)		
Trial name/	GUEPARD ³³	

vs. DMARD(s) or PBO (continued)	Primary and Supplementary aupplementary publication during study where Concomitant of RCT Primary Early withdrawal Geographical Funding type (e.g. full applicable) treatments phase outcome plan reported? location source text, abstract)]		15 mg/week Folic acid 10 mg/week, 24 weeks DAS28 at No Germany Germany Detert <i>et al.</i> , stable dose of ≤10 mg/day ≤10 mg/day Prednisone or equivalent permitted Predicitien and Research (ADA Provided by Abbott under unconditional scientific grant)				
	Early with		°Z				
	Primary outcome		DAS28 at week 48				
	Duration of RCT phase		24 weeks				
) or PBO (continued)	Concomitant treatments		Folic acid 10 mg/week, stable dose of ≤10 mg/day prednisone or equivalent permitted				
cs vs. DMARD(s	MTX dose during study (where applicable)		15 mg/week				
s: population 1 biologic	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	inefficacy (DAS28 > 3.2 after 12 weeks of treatment), ADA was increased (40 mg/week) for 12 weeks. After 12 weeks of effective therapy, ADA was decreased (40 mg week) other week) for 12 weeks and stopped if successful. In the event of ailure on ADA 40 mg/week, ETN (25 mg 40 mg/week, ETN (25 mg 40 mg/week, ETN (25 mg 40 mg/week, ETN (25 mg 40 mg/week, ETN (22 weeks fi successful ailor 12 weeks. If he treatment was initial 12 weeks, the same regimen was applied according to the protocol indicated above	MTX + PBO (<i>n</i> = 85 randomised)				
al characteristic	Trial design (RCT, phase, LTE)		RCT				
TABLE 336 Tri	Trial name/ study		HIT HARD ⁹⁴	20			
וd זרמר thor, full sct)]	text		<i>et al.,</i> -text	<i>I.</i> , tract	, tract	əl., tract	ntinued
--	--	--	---	--	--	---	---------
Primary ar supplemer publicatior details [au /ear, publi type (e.g. 1	Horslev-Pet 2013 ¹⁰⁷ full 3aper 3aper		Kavanaugh 2013 ¹⁰⁸ full [.] 3aper	Peterfy <i>et a</i> . 2010 ¹⁵⁰ abs	Emery <i>et al.</i> 2011 ^{1s4} abs	Smolen <i>et é</i> 2010 ¹⁴² abs	CO
F F Funding Source	Abbott Laboratories, Denmark (who also provided free ADA and PBO). Triamcinolone Neda Pharmaceuticals, Denmark		Abbott Laboratories				
Geographical location	Denmark		North and South America, Europe, Africa,	and Australia			
Early withdrawal plan reported?	Treatment escalation – HCQ or SSZ given at 3 months if DAS28-CRP ≥ 3.2 and ≥ 1 swollen joint or 4 mg of triamcinolone had been given monthly for a consecutive months. If low disease activity or a chieved by 6 months patient treated as a non-responder, excluded and open-label biologics (not ADA)		N				
Primary outcome	Proportion of patients in each group achieved low disease activity (DAS28-CRP < 3) at 12 months at 12 months		Composite of DAS28(CRP) < 3.2 at week	radiographic progression	to week 78		
Duration of RCT phase	12 months		26 weeks				
Concomitant treatments	Folic acid (5–10 mg/week) and oral calcium with vitamin D (1000 mg calcium + 800 IU vitamin D daily). Alendronate (70 mg/week) initiated at abseline and mild at abseline and mild at abseline and mild at abseline and mild artoffessic (but not NSAIDs, muscle relaxants or other analgesics) were permitted		NSAIDs (79%), corticosteroids (46%)				
MTX dose during study (where applicable)	Dose escalated from 7.5 mg/week at baseline to 15 mg/week at 20 mg/week after 2 months (or highest tolerated dose)		Titrated to 20 mg/veek by week 8				
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO + steroid (n = 91 randomised)	ADA + MTX + steroid (<i>n</i> = 89 randomised)	MTX + PBO (<i>n</i> = 517 randomised)				
Trial design (RCT, phase, LTE)	RCT		RCT (Phase IV)				
Trial name/ study	OPERA/Horslev- Petersen 2013 ^{I07}	OPERA/Horslev- Petersen 2013 ¹⁰⁷	OPTIMA ¹⁰⁸				

TABLE 336 Tri	al characteristic	s: population 1 biologi	cs vs. DMARD(s)	or PBO (continued)						
Trial name/ study	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]
OPTIMA ¹⁰⁸		ADA + MTX (<i>n</i> = 515 randomised)		NSAIDs (78%), corticosteroids (41%)						
PREMIER ¹⁰⁹	RCT	MTX + PBO (<i>n</i> = 257 randomised)	7.5 mg/week for first 4 weeks, increased to	Folic acid, 5–10 mg/ week	2 years	ACR50 response and mean change	Dose escalation (frequency) of ADA or PBO for those	Australia, Europe and North America	Abbott Laboratories	Breedveld <i>et al.</i> , 2006 ¹⁰⁹ full-text paper
			veeks 4–8 if weeks 4–8 if tolerated and to 20 mg/week at			from baseline in modified total Sharp score	not achieving ACR20 response at week 16 or later			Heijde <i>et al.</i> , 2010 ³¹⁰ full-text paper
										Emery <i>et al.</i> , 2009 ³¹¹ full-text paper
										Strand <i>et al.,</i> 2012 ¹⁵⁵ full-text paper
PREMIER ¹⁰⁹		ADA monotherapy + PBO step-up week 16 (<i>n</i> =274 randomised)	N/A							
PREMIER ¹⁰⁹		ADA + MTX step-up week 16 (<i>n</i> = 268 randomised)	7.5 mg/week for first 4 weeks, increased to 15 mg/week at weeks 4–8 if tolerated and to 20 mg/week at week 9							

d itary thor, ull itl]		ntinued
rimary an upplemen ublication letails [aut ear, publi ext, abstrr	mery <i>et al.</i> ull-text artic eer-reviewe ournal	COL
T T T T T T T T T T T T T T T T T T T		
Funding	Wyeth Research	
Geographical location	Europe, Latin America, Asia and Australia	
Early withdrawal	Ŗ	
Primary I outcome I	Coprimary end 1 points were the proportion of patients achieving tremission (DAS28 < 2.6) at week 52 and the change in word fied total Sharp score point erosion score plus JSN baseline to week 52	
Duration of RCT phase	52 weeks	
Concomitant treatments	Stable doses of oral corticosteroids (≤ 10 mg per day of prednisone or an equivalent agent) or a single NSAID were permitted if started at least 4 weeks before baseline and kept constant throughout the first 24 weeks of the study	
MTX dose during study (where applicable)	Starting at 7.5 mg once a week. In patients with tender or swollen joints, the dose was titrated up over 8 weeks to a maximum of 20 mg a week 7.5 mg once a week. In patients with tender or swollen joints, the dose was titrated up over 8 weeks to a maximum of 20 mg a week	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO ($n = 268$) First period comprised two randomised groups: (a) MTX monotherapy in year 1 followed by combination (ETN + MTX) treatment in year 2 ($n = 90$ at start of period 2) (b) MTX monotherapy in year 1 followed by continued MTX monotherapy in year 2 ($n = 99$ at start of period 2) ($n = 99$ at start of period 2) First period comprised two randomised groups: (a) combination ETM + MTX treatment in year 1 followed by continued combination treatment in year 2 ($n = 111$ at start of period 2) (b) combination treatment in year 1 followed by treatment in year 2 ($n = 111$ at start of period 2)	start of period 2)
Trial design (RCT, phase, LTE)	Prospective double-blind RCT RCT	
Trial name/	COMET ^{81–83} Emery <i>et al.</i> , 2010, ⁸² Kekow <i>et al.</i> , 2010 ⁸³ (NCT00195494) COMET ^{81–83}	

Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]	Bathon <i>et al.</i> , 2000 ⁸⁷ full-text paper Bathon and Genovese, 2003 ¹³⁹ full-text paper Kosinski <i>et al.</i> , 2002 ¹⁵⁷ full-text paper		Emery <i>et al.</i> , 2009 ³⁰ full publication	
Funding source	Immunex		Centocor Research and Development and Schering- Plough Research Institute)	
Geographical location	X		Multicentre, multinational [90 sites across Europe/ Australia/New Zealand ($n = 34$), Asia ($n = 2$), North American ($n = 2$) and Latin America ($n = 10$)]	
Early withdrawal plan reported?	2		2	
Primary outcome	Overall response during the first 6 months		Co-primary end points: ACR50 response at week 24 Change from baseline in modified Sharp/van der Heijde score at week 52	
Duration of RCT phase	12 months		52 weeks	
Concomitant treatments	Folic acid (1 mg/day)		NSAIDs, other analgesics for RA and oral corticosteroids (≤ 10 mg of prednisone/ day or equivalent) permitted if doses stable for ≥ 2 weeks before initiation of study agent and during treatment	
MTX dose during study (where applicable)	Initial dose of 7.5 mg/week escalated to 15 mg/week at week 4 and 20 mg/week at week 8. One 5-mg reduction permitted		19.1 mg/week (SD = 2.7 mg/ week) (week 23)	19.2 mg/week (SD = 2.35 mg/ week) (week 23)
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO (<i>n</i> = 217 randomised)	ETN+ PBO (n= 207 randomised)	PBO + MTX (n = 160)	GOL 50 mg s.c. every 4 weeks + MTX (<i>n</i> = 159)
Trial design (RCT, phase, LTE)	RCT		RCT (Phase III, double blind)	
Trial name/ study	ERA ¹³⁹	ERA/Bathon and Genovese, 2003 ¹³⁹ multicentre	GO-BEFORE ⁹⁰ (EudraCT database no. 2004–003295–10)	GO-BEFORE ⁹⁰

TABLE 336 Trial characteristics: population 1 biologics vs. DMARD(s) or PBO (continued)

Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]	St Clair <i>et al.</i> 2004 ⁷¹ full publication		Goekoop- Ruiterman <i>et al.</i> 2008 ⁷⁸ full publication				continued
Funding source	Centocor		Dutch College of Health Insurances; Schering- Plough				
Geographical location	Multicentre, multinational (122 sites in North America and Europe)		Multicentre, the Netherlands				
Early withdrawal plan reported?	S		No (DAS-steered step-up strategies for all four treatment groups)				
Primary outcome	For radiographic progression of joint damage: change from basseline to week 54 in van week 54 in van der Heijde modification of total Sharp score For physical function: change from baseline in HAQ scores averaged over weeks 30–54		HAQ and modified Sharp/van der Heijde score				
Duration of RCT phase	54 weeks		3 years				
Concomitant treatments	Oral corticosteroids (≤ 10 mg/day of prednisone or equivalent) and NSAIDs maintained at baseline doses. Other DMARDs not allowed during study		Concomitant treatment with NSAIDs and intra-articular injections with corticosteroids permitted				
MTX dose during study (where applicable)	MTX started at 7.5 mg/week and increased (2.5 mg/week every 1-2 weeks) to 15 mg/week by week 8. MTX dose could be adjusted in case of intolerance		DAS-steered step-up strategies for all four treatment groups				
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO + MTX (<i>n</i> = 298 randomised)	IFX i.v. 3 mg/kg at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX (n = 373 randomised)	Sequential monotherapy (n=126 randomised)	Step-up combination therapy (<i>n</i> = 121 randomised)	Initial combination therapy with prednisone $(n = 133 \text{ randomised})$	Initial combination therapy with IFX ($n = 128$ randomised)	
Trial design (RCT, phase, LTE)	RCT (Phase III, double blind)		RCT (phase NR, open label)				
Trial name/ study	ASPIRE ⁷¹	ASPIRE ⁷¹	BeST ⁷⁸	BeST ⁷⁸	BeST ⁷⁸	BeST ⁷⁸	

Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]	Durez <i>et al.,</i> 2007 ¹²⁰ full publication			Nam et <i>al.</i> , 2011 ⁹⁵ conference abstract
Funding source	Schering- Plough			X
Geographical location	Belgium			Multicentre (no further details)
Early withdrawal plan reported?	2			Step-up from week 26 if DAS > 2.4. Other biologics permitted from week 26 (no further details) (data extracted to week 26)
Primary outcome	Evaluation of magnetic resonance imaging scores over time			X
Duration of RCT phase	12 months			78 weeks
Concomitant treatments	Patients receiving NSAIDs required to be receiving stable doses (remaining unchanged during study), i.e. steroids not permitted. Introduction of oral glucocorticosteroids of other DMARDs not permitted			X
MTX dose during study (where applicable)	All patients received MTX at dosage ranging from 7.5 mg/ week (baseline) to 20 mg/week (week 14)			IFX 3 mg/kg at weeks 0, 2, 6, 14, 22 + MTX 10 mg weekly increasing to 20 mg by week 6 with IFX dose with IFX dose modification depending on DAS44 from week 26
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX (<i>n</i> = 14 randomised)	MTX + i.v. methylprednisolone 1 g at weeks 0, 2 and 6 and then every 8 weeks thereafter ($n = 15$ randomised)	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30, 38 and 46 + MTX (<i>n</i> = 15 randomised)	Methylprednisolone 250 mg i.v. at week 0, PBO i.v. at weeks 2, 6, 14 and 22 + MTX Numbers randomised NR (<i>n</i> = 112 patients included across both groups)
Trial design (RCT, phase, LTE)	RCT (Phase IV, single blind)			RCT (phase NR, double blind to week 26)
Trial name/	Durez <i>et al.,</i> 2007 ¹²⁰ (NCT00396747)	Durez <i>et al.,</i> 2007 ¹²⁰	Durez et al., 2007 ¹²⁰	IDEA ⁹⁵

TABLE 336 Trial characteristics: population 1 biologics vs. DMARD(s) or PBO (continued)

Trial name/ study	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full text, abstract)]
IDEA ⁹⁵		IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14 and 22 + MTX (IFX dose modifications permitted according to DAS44 from week 26)								
		Numbers randomised NR $(n = 112 \text{ patients included} across both groups)$								
Quinn <i>et al.</i> , 2005 ¹¹⁰	RCT	MTX + PBO (<i>n</i> = 10 randomised)	7.5 mg/week with escalation up to 15 mg/ week by week 14. Increments up to 25 mg/ week titrated against evidence of active disease	Folic acid 5 mg twice a week	54 weeks	Comparison of magnetic resonance imaging- measured synovitis at week 14 between groups	2	ж Z	Arthritis Research Campaign	Quinn <i>et al.</i> , 2005 ¹¹⁰ full-text paper Haugeberg <i>et al.</i> , 2009 ³¹² full-text paper Bejarano <i>et al.</i> , 2010, ³¹³ full-text
Quinn <i>et al.,</i> 2005 ¹¹⁰		IFX 3 mg/kg + MTX (<i>n</i> = 10 randomised)								
ASPIRE, Active Arthritis (etane IDEA, Remissio rheumatoid art Methorexate & ADA = ADA 40 ETN = ETN 25 m TCZ = TCZ 8 mu	controlled Study rcept); EudraCT, n induction com hritis, JSN, joint. and Adalimumab 1 mg every other ng twice a week gdkg intravenous	 	liximab for the truedulating Author egulating Author ph-dose intravenc ot applicable, NC	eatment of Rheumatoi ities Clinical Trials; HIT sus steroid, followed by us steroid, tollowed by .T, dinicaltrials.gov refe	d arthritis of HARD, High / treat-to-tar erence numb	Early onset; D/ Induction THe get: a double-t er; NR, not rep	4544, Disease Activ rapy with Anti-Rhei Jind, randomised, o orted; OPTIMA, OP orted; OPTIMA, OP	ity Score 44 join umatic Drugs (ac controlled trial in Timal protocol fi	ts; ERA, Early dalimumab ar i new-onset, t or treatment l	Rheumatoid id methotrexate); :reatment-naive, nitiation with

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Schiff <i>et al.,</i> 2008 ⁷⁴ full publication	
Funding source	Bristol-Myers Squibb, USA	
Geographical location	Multinational, multicentre (86 sites)	
Early withdrawal plan reported?	° Z	
Primary outcome	DAS28-ESR ABT vs. PBO at 6 months (not powered with superiority or non-inferiority design to compare two active arms)	
Duration of RCT phase	PBO- controlled phase to day 197	
Concomitant treatments	Permitted days 1-197: oral corticosteroids (\leq 10 mg/day of prednisone or equivalent) (stable \geq 25/58 days prior to randomisation), and/or stable NSAIDs and analgesics. Days 198–365 dose of oral corticosteroids could be modified (\leq 10 mg/day of prednisone or equivalent), HC Q, SSZ, GLD or AZA also permitted	
MTX dose during study (where applicable)	No MTX dose adjustments permitted except due to AEs MTX dose could be altered (to < 25 mg/week) between days 198–365	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO + MTX (with blinded crossover to ABT at day 198) (<i>n</i> = 110 randomised)	IFX 3 mg/kg i.v. administered on days 1 (i.e. week 0), 15 (i.e. week 2), 43 (i.e. week 6) and 85 (i.e. week 12) and every 56 days (i.e. 8 weeks) thereafter (NB: licensed dose 3 mg/kg i.v. at weeks 0, 2, 6 and every 8 weeks thereafter, adjustments in dosage and frequency of administration permitted after week 12 in license) + MTX (n = 165
Trial design (RCT, phase, LTE)	RCT (Phase III, double blind)	
Trial name/study (NCT/sponsor number)	ATTEST ⁷⁴ (NCT00095147)	ATTEST ⁷⁴

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]		Weinblatt <i>et al.</i> , 2013 ¹⁴⁴ full-text paper Fleischmann <i>et al.</i> , 2012 ³¹⁴		continued
Funding source		Bristol-Myers Squibb		
Geographical location		North and South America		
Early withdrawal plan reported?		°2		
Primary outcome		ACR20 response at 1 year		
Duration of RCT phase		2 years (first 12 months' data just published)		
Concomitant treatments		Predisone (mean dose 6.6 mg/day) Corticosteroids (50.9%) SFZ (3.1%) HCQ (13.2%)	Predisone (mean dose 6.4 mg/day) Corticosteroids (50.3%) 5FZ (3.4%) HCQ (10.7%)	
MTX dose during study (where applicable)		15–25 mg/week (or ≥ 7.5 mg/ week in patients intolerant to higher doses) 17.5(6.35) mg/ week at baseline	15–25 mg/week (or ≥ 7.5 mg/ week in patients intolerant to higher doses) 17.3 (6.16) mg/ week at baseline	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	ABT dosed according to weight: patients weighing <60 kg, 60-100 kg or > 100 kg received 500 mg, 750 mg or 1000 mg of ABT respectively. ABT administered i.v. on days 1, 15 and 29 and every 28 days thereafter, up to and every 28 days thereafter, up to and including day 337 + MTX ($n = 156randomised)$	ABT s.c. + MTX (<i>n</i> = 318)	ADA+MTX (<i>n</i> = 328)	
Trial design (RCT, phase, LTE)		RCT (non- inferiority)		
Trial name/study (NCT/sponsor number)	ATTEST ⁷⁴	AMPLE ⁶⁶	AMPLE ¹⁴⁴	

Tr Tr w v (RCT, phase, pe LTE) pe Pragmatic, Al									
Pragmatic, AI	reatment arms for /hich data extraction erformed (number of atients randomised er treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]
randomised, (<i>n</i> parallel group, multicentre, unblinded and non-inferiority trial	DA + CDMARDs n= 60)	66.7% patients on MTX, median dose 20 mg/ week)	There were no constraints on changes in the dose of MTX, use of other DMARDs including previously untried agents, or on use of oral, parenteral or intra-articular corticosteroids once patients were included in the study	52 weeks	Proportion of patients continuing treatment after 52 weeks	Yes	Хŋ	Sponsorship of University Hospital Birmingham NHS Foundation Trust, part supported by a grant from the Queen Elizabeth Birmincham Birmincham	Jobanputra et <i>al.,</i> 2012' ¹⁴ full-text article in peer- reviewed journal
			Other DMARDs:					Charity	
			AZA 1 (1.7%)						
			HCQ 12 (20%)						
			LEF 5 (8.3%)						
			Penicillamine 1 (1.7%)						
			SSZ 13 (21.7%)						
Ξ	TN50+cDMARDs	66.7% patients	Other DMARDs:						
	1=00)	dose 17.5 mg/	AZA 1 (1.7%)						
		MCCN/	HCQ 1 (1.7%)						
			LEF 8 (13.3%)						
			Penicillamine 0						
			SSZ 8 (13.3%)						

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Gabay <i>et al.</i> , 2013 ⁴⁸ full publication		deFilippis <i>et al.,</i> 2006 ⁸⁵ full-text paper		
Funding source	Roche		N		
Geographical location	Multicentre, multinational		Sicily		e).
Early withdrawal plan reported?	Yes		O		iot reported. ght range. 2 if lack of respons
Primary outcome	Mean change from baseline in DAS28 at 24 weeks		ACR20, ACR50, ACR70 and HAQ improvement		r number; NR, r g based on weig ed after week 1
Duration of RCT phase	24 weeks		54 weeks		.gov reference e of ≈10 mg/k; Ilation permitt
Concomitant treatments	All DMARDs washed out before baseline (all ≥ 2 weeks, LEF ≥ 12 weeks or after standard washout)		Prednisone (maximum dosage 10 mg/day)		ole; NCT, clinicaltrials weeks thereafter. onal i.v. loading dose after (with dose esca
MTX dose during study (where applicable)	NA	N/A	Between 10 mg/week and 12.5 mg/week	Between 10 mg/week and 12.5 mg/week	N/A, not applical d 4, and every 4 ollowing an opti ry 8 weeks there
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA (<i>n</i> = 163 randomised)	ADA + PBO (<i>n</i> = 163 randomised)	ETN + MTX (<i>n</i> = 16)	IFX + MTX (n = 16)	i week subcutaneously, iously on weeks 0, 2 an week subcutaneously, i veek subcutaneously. subcutaneously. it weeks 0, 2, 6 and eve v every 4 weeks.
Trial design (RCT, phase, LTE)	RCT (Phase IV, double blind)		RCT		ot 50 mg once a mg/kg intraver 5 mg once per ng every other v intravenously a intravenously a intravenously
Trial name/study (NCT/sponsor number)	ADACTA ⁵⁸ (NCT01119859)	ADACTA ⁵⁸	deFilippis <i>et al.</i> , 2006 ⁸⁵	deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN50, etanercer ABT i.v. = BT \approx 10 ABT s.c. = ABT 12 ADA = ADA 40 m ETN = ETN 25 mg/kg IFX = IFX 3 mg/kg TCZ = TCZ 8 mg/kg

Primary and supplementary publication details [author, year, publication type (e.g. full, burce abstract)]	rs Russell <i>et al.</i> , 2007 ⁶¹ Kremer <i>et al.</i> , 2006 ⁶²		rs Conaghan e <i>t al.</i> , 2013 ⁷⁵ full-text paper		rs Weinblatt <i>et al.</i> , 2006 ⁷³ full-text paper
Funding so	ae Bristol-Myer Squibb		Bristol-Myers Squibb		Bristol-Myers Squibb
Geographical location	USA and Euro (including UK)		Europe		NR
Early withdrawal plan reported?	X		2		No
Primary outcome	Health-related quality of life		Reduction in wrist synovitis score from mean magnetic resonance imaging scores at baseline and month 4		Safety
Duration of RCT phase	12 months		4 months		1 year
Concomitant treatments	Patients were permitted to continue taking oral corticosteroids, provided that the prescribed dose was reduced to the equivalent of 10 mg of prednisone daily for 28 days		MTX (100%), oral and/or injectable corticosteroids (60.9%), low-dose oral corticosteroids (52.2%), NSAIDs (87.0%)	MTX (100%), oral and/or injectable corticosteroids (70.4%), low-dose oral corticosteroids (59.3%), NSAIDs (81.5%)	MTX, HCQ, chloroquine, SSZ, LEF, GLD, AZA (ETN, IFX, ADA)
MTX dose during study (where applicable)	15.7 (SD 3.5) mg/week	16.1 (SD 3.6) mg/week	10–25 mg/week, mean dose at baseline 17.3 (SD 4.2) mg/week	10–25 mg/week, mean dose at baseline 16.9 (SD 4.6) mg/week	NR
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	МТХ + РВО (<i>n</i> = 219)	ABT i.v.+ MTX (<i>n</i> =433)	PBO + MTX (n = 23 randomised)	ABT i.v. ($\approx 10 \text{ mg/kg}$) + MTX ($n = 27 \text{ randomised}$)	PBO + cDMARDs (<i>n</i> = 482 treated)
Trial design (RCT, phase, LTE)	Randomised, double-blind, PBO-controlled trial Confirmatory Phase III		RCT (Phase IIIb)		RCT
Trial name/study (NCT/sponsor number)	AIM ^{61,62} (NCT00048568)	AIM ⁶¹	ASSET ⁷²	ASSET ⁷²	ASSURE ⁷³

TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO

imary and upplementary blication stalis [author, sar, publication pe (e.g. full, ostract)]	ın Vollenhoven al., 2011 ⁷⁶ Il-text article in eer-reviewed urnal		iyasaka, 2008°0 II-text article in eer-reviewed urnal		continued
Pr St d d d V V Funding source al	Merck Serono, ve Geneva, Geneva, Switzerland and fu EMD Serono, pu Rockland, MA, jo which are affiliates of Merck KGaA, Darmstadt, Germany		Abbott, Osaka, M Japan, and Eisai, fu Tokyo, Japan po jo		
Geographical location	Europe and USA		Japan		
Early withdrawal plan reported?	N		Patients who experienced an increase in disease activity or who had less than 10% reduction in tender joint counts and swollen joint counts compared with baseline after at least 8 weeks of treatment stopped study therapy with ADA/PBO and were switched to an open-label rescuel include higher doses of steroids, NSAIDs, or CDMARDs		
Primary outcome	Proportion of patients with 20% improvement in disease severity according to the ACR criteria, as assesed using the CRP level (ACR20-CRP)		ACR20 response rate at week 24		
Duration of RCT phase	25 weeks		24 weeks		
Concomitant treatments	Allowed steroids unless prednisone dosage > 10 mg/day (or equivalent) or change in steroid or NSAID dosing regimen ≤28 days before study day 1		Steroids allowed		
MTX dose during study (where applicable)	Z	NR	Υ.Υ Υ.Υ	N/A	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO (<i>n</i> = 76)	ADA + MTX ($n = 79$)	PBO (<i>n</i> = 87)	ADA monotherapy $(n = 91)$	
Trial design (RCT, phase, LTE)	Phase II, randomised, PBO-controlled trial		Phase I//II, multicenter, double-blind, PB0- controlled trial		
Trial name/study (NCT/sponsor number)	AUGUST II ³⁶ (NCT00595413)	AUGUST II ⁷⁶	Miyasaka, 2008 ^{ao}	CHANGE ⁸⁰	

	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Keystone <i>et al.</i> , 2004 ^{ad} full-text article in peer- reviewed journal	
	Funding source	Abbott Laboratories, Abbott Park, IL	
	Geographical location	USA and Canada	
	Early withdrawal plan reported?	At week 16 or thereafter, patients who were not achieving an ACR20 response (improvements of at least 20% in the ACR core criteria) were allowed to receive 'rescue' treatment with a traditional DMARD at the discretion of their treating physician	
	Primary outcome	Radiographic progression at week 52 (total Sharp score by a modified method), clinical response at week 24 [improvements of at least 20% in the ACR core criteria (ACR20)], and physical function at week 52 (disability index of the HAQ)	
	Duration of RCT phase	52 weeks	
	Concomitant treatments	Doses and routes of administration of concomitant RA therapies, such as MTX, conticosteroids and NSAIDs were kept constant throughout the study Oral corticosteroids, if used previously, were allowed at a maximum prednisone-dose equivalent of 10 mg/day	
)	MTX dose during study (where applicable)	16.7 (4.1) mg/week	16.7 (SD 4.5) weekly dose mg/kg
-	Treatment arms for which data extraction performed (number of patients treatment arm)	MTX + PBO (n=200)	ADA + MTX (<i>n</i> =207)
	Trial design (RCT, phase, LTE)	Phase III, multicenter, double-blind, PBO-controlled study	
	Trial name/study (NCT/sponsor number)	DE019/Keystone <i>et al.</i> , 2004 ⁸⁴ (NCT00195702)	DE019 ⁸⁴

TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO (continued)

imary and bileation tails [author, tails [author, er, publication pe (e.g. full, stract)]	ist et al. 103 ¹¹⁷ full-text ticle in eer-eviewed urnal							continued
Pr su de de ty ty Funding source at	Abbott Fu Laboratories, 20 Abbott Park, IL ar pe							
Geographical location	USA							
arly withdrawal Jan reported ?	۲. ۲.							
Primary outcome	Frequencies of AEs, 1 serious AEs, severe or life-threatening AEs, AEs leading infection.or serious infection serious infection							
Duration of RCT phase	24 weeks							
Concomitant treatments	Patients continued to receive their baseline doses of standard antirheumatic therapy, which could include traditional DMARD, low-dose conticosteroids (prednisone equivalent dose < 10 mg/day), NSAID, and/or analgesiss. Treatment with traditional DMARDs permitted during the study unicluded chloroquine, HCO, LEF, MIT, parenteral GLD, oral GLD, SSZ, or any corticosteroids, NSAID, and/or analgesics must have bees of traditional DMARDs, corticosteroids, NSAID, and/or analgesics must have bees stable for at least 28 days before screening							
MTX dose during study (where applicable)	Number of traditional DMARDs: 0 DMARDs, <i>n</i> =48 (15.1%) 1 DMARD, <i>n</i> =172 (54.1%) 2 DMARDs, <i>n</i> =84 (26.4%) 3+ DMARDs, <i>n</i> =14 (4.4%) Mean number of DMARDs 1.2	Number of traditional DMARDs:	0 DMARDs, <i>n</i> =57 (17.9%)	1 DMARD, <i>n</i> =184 (57.9%)	2 DMARDs, <i>n</i> =66 (20.8%)	3+ DMARDs, <i>n</i> =11 (3.5%)	Mean number of DMARDs 1.1	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO+cDMARDs (n=318)	ADA + cDMARDs (<i>n</i> = 318)						
Trial design (RCT, phase, LTE)	Randomised, double-blind, PBO-controlled trial							
Trial name/study (NCT/sponsor number)	2003 ¹¹⁷	STAR ¹¹⁷						

lary and blementary ication ilis [author, ', publication : (e.g. full, ract)]	De Putte 7, 2004 ¹²² Jublication		blatt <i>et al.,</i> ⁸⁶ full-text le in peer- swed journal	
Prin Supp pub deta deta year type type	Van et a full		wries 2000 III artic euticals revie	
l Funding	Abbott		Abbott Laboratu and Kno Pharmae	
Geographica location	Multicentre, multinational (Europe, Canada, Australia)		USA and Canada	
Early withdrawal plan reported?	Yes (ADA or PBO patients with increased inflammatory synovitis or <10% or <10% inprovement in tender joint counts and swollen joint counts after > 8 weeks treatment could enter rescue andy drug could be discontinued and doses of NSAIDs/ doses of NSAIDs/ increased/other increased/other DMARDs initiated at physician's discretion)		Patients who failed to meet or to maintain an ACR20 response but had received study drug fubA or PBO) for at least 16 weeks were eligible to remain in the study or to roll over to an open-labe continuation study with ADA	
Primary outcome	ACR20 response at week 26		ACR criteria for 20% improvement (ACR20) at 24 weeks	
Duration of RCT phase	26 weeks		24 week	
Concomitant treatments	Use of NSAIDs and oral corticosteroids before study permitted at stable doses (up to 10 mg/day of prednisolone or equivalent). Analgesics permitted (not within 12 hours of study visits)		Salicylates, NSAIDs and corticosteroids (maximum daily dose of 10 mg of oral prednisone or equivalent) Folic acid or leucovorin was permitted	
MTX dose during study (where applicable)	X	NR	16.5 (SD 5.0) mg/ week	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO s.c. (<i>n</i> = 110 randomised)	ADA monotherapy $(n = 113 \text{ randomised})$	MTX + PBO (<i>n</i> =62)	
Trial design (RCT, phase, LTE)	RCT (Phase III, double blind)		Randomised, double-blind, PBO-controlled trial Phase I//II	
Trial name/study (NCT/sponsor number)	Van De Putte et al., 2004 ¹²²	Van De Putte et al., 2004 ¹²²	ARMADA ^{69,70}	A D M J A D A ⁶⁹

TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO (continued)

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Kim et al., 2007 ⁹⁹ full-text article in peer-teviewed journal		Smolen et <i>al.</i> , 2011 ⁹³ abstract Emery <i>et al.</i> , 2012 ³¹⁵ abstract		Weinblatt <i>et al.,</i> 2012 ¹¹³ abstract		continued
Funding source	Abbott Laboratories, Abbott Park, IL		UCB		UCB		
Geographical location	Republic of Korea		N		USA, Canada and Europe		
Early withdrawal plan reported?	Beginning at week 18, patients with documented non-response could discontinue their double-blind study medication and switch to rescue therapy with open-label ADA 40 mg s.c. every other week		Patients in Clinical Disease Activity Index remission at weeks 20 and 24 stopped CTZ and were monitored to week 52		N/A (12-week study)		
Primary outcome	20% improvement in the ACR response criteria (ACR20) at week 24		% patients in Clinical Disease Activity Index remission (≤2.8)		ACR20 at 12 weeks		
Duration of RCT phase	24 weeks		52 weeks		12 weeks		
Concomitant treatments	٣		Existing cDMARDs	Existing cDMARDs	MTX, LEF, SSZ, chlorquine, HCQ, AZA, GLD, steroids, NSAIDs	MTX, LEF, SSZ, chlorquine, HCQ, AZA, GLD, steroids, NSAIDs	
MTX dose during study (where applicable)	16.3 (3.4) mg/week	16.6 (3.3) mg/week	N/A	N/A	N/A		
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO rescue week18 (n = 65)	ADA + MTX (<i>n</i> =63)	PBO + cDMARDs ($n = 98$ randomised)	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + DMARDs $(n = 96 \text{ randomised})$	PBO + existing cDMARDs	CTZ 400 mg weeks 0, 2, 4 then 200 mg every 2 weeks + existing cDMARDs	
Trial design (RCT, phase, LTE)	Phase III, randomised, double-blind, PBO-controlled study		RCT (Phase IIIb)		RCT (Phase III)		
Trial name/study (NCT/sponsor number)	Kim et <i>al.</i> , 2007 ⁹⁹	Kim <i>et al.</i> , 2007 ⁹⁹	CERTAIN ⁷⁹ (NCT00674362)	CERTAIN ⁷⁹	REALISTIC ¹¹³	REALISTIC ¹¹³	

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	van Riel <i>et al.</i> , 2006 ⁵⁹ full-text article in peer- reviewed journal van Riel <i>et al.</i> , 2008 ⁵⁰ full-text article in peer- reviewed journal			Keystone <i>et al.</i> , 2012 ⁹⁶ full-text article in peer- reviewed journal
Funding source	Wyeth Research			AstraZeneca
Geographical location	60 centres in eight countries (Denmark, Finland, France, Germany, the Netherlands, Turkey, UK and Spain)			Canada and UK
Early withdrawal plan reported?	R			ж
Primary outcome	The primary efficacy measure was the proportion of evaluable patients in each treatment group who achived an improvement of > 1.2 units in DAS28 from baseline to week 16			The proportion of patients meeting ACR 20% ACR 20% (ACR20) at response criteria (ACR20) at 6 months (based on 28 joint counts)
Duration of RCT phase	16 weeks			6 months
Concomitant treatments	NSAIDs and corticosteroids allowed			Concurrent treatment with stable doses of NSAIDs and/or prednisone (maximum 10 mg daily) was allowed throughout the study
MTX dose during study (where applicable)	NA	MTX (≥ 12.5 mg/ week orally or by injection)	Median 15 mg/week	Patients were required to have received MTX for ≥ 6 months (the dose must have been stable between 5 and 25 mg/week for ≥ 6 weeks) or subhasalazine for ≥ 16 weeks (at a stable dose of 0.5–3g/day for ≥ 6 weeks) prior to randomisation
Treatment arms for which data extraction performed (number of patients trandomised per treatment arm)	ETN monotherapy ($n = 160$) ($n = 159$) received treatment and provided data)	ETN + MTX (<i>n</i> = 155)		DMARD + PBO (n = 65)
Trial design (RCT, phase, LTE)	Prospective, 16 week, randomised, open-label, parallel group, outpatient study			Phase Ilb study was a randomised, double-blind, PBO controlled, parallel-group multicentre trial (with an open-label ETN treatment group) to evaluate the efficacy of four doses of AZD90556 administered for 6 months on background MTX or sulphasalazine
Trial name/study (NCT/sponsor number)	ADORE ^{59,60}	ADORE ⁵⁹		CREATE IIb ⁹⁶ [D1520C00001; NCT00520572 (Phase IIa and IIb trials)] trials)]

TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO (continued)

Trial name/study (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]
CREATE IIb ⁹⁶		ETN50+DMARD (<i>n</i> =64)								
		Note either MTX across both arms (89.8%) or 552 (9.7%) used as DMARD (not both)								
ETN study 309 ⁸⁹	Randomised, double-blind, controlled trial	SSZ + PBO (n = 50)	SSZ dose (g/day), mean (SD) 2.1 (0.4)	Patients were permitted stable doses of oral corticosteroids (10 mg/day of prednisone or prednisone or NSAID, simple analgesics with no anti-inflammatory action or daily doses of aspirin (300 mg) during the study	2 years	Percentage of patients achieving > 20% improvement as assessed by the ACR20 response at week 24	Я	Europe (including UK), Australia, USA	Wyeth Research, Collegeville, PA	Combe <i>et al.</i> , 2006 ⁵⁸ full-text article in peer- reviewed journal Combe <i>et al.</i> , 2009 ⁵⁸ full-text article in peer- reviewed journal
ETN study 309 ⁸⁹		ETN + PBO (<i>n</i> = 103)	N/A							
ETN study 309 ⁸⁹		ETN + SSZ (<i>n</i> = 101)	SSZ dose (g/day), mean (SD) 2.1 (0.5)							
JESMR ¹⁴⁰	RCT (Phase IV)	ETN monotherapy (n = 74 randomised)	7.0 (1.4) mg/week	Folic acid (37.7%), corticosteroids (46.4%)	52 weeks	Good EULAR response and ACR50 response at week 24	<u>0</u>	Japan	Japanese Ministry of Health, Labour and Welfare	Kameda <i>et al.</i> , 2010 ³¹⁶ full-text paper Kameda <i>et al.</i> , 2011 ¹⁴⁰ full-text paper
JESMR ¹⁴⁰		ETN + MTX 6–8 mg/ week (<i>n</i> = 77 randomised)	7.4 (1.1) mg/week	Folic acid (52.1%), corticosteroids (60.3%)						
Lan et <i>al.</i> , 2004 ^{10:}	h RCT, double blind	PBO + MTX (n=29)	12.5–20 mg/week	NSAIDs, aspirin and corticosteroids were allowed	12 weeks	Reduction of tender and swollen joint counts by 20% (ACR20), 50% at 12 weeks	NR	Taiwan	Wyeth-Ayerst Ltd, Taiwan branch	Lan <i>et al.</i> , 2004 ¹⁰¹ full-text article in peer-reviewed journal
										continued

		-	b	;						
	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]
1 ¹⁰¹		ETN + MTX (<i>n</i> =29)								
(4)	Randomised, open-label, active- comparator study	MTX + DMARD (<i>n</i> = 142)	14.4 (3.9) mg/week	Х	24 weeks	Proportion of subjects achieving ACR50 criteria at week 24	R	Latin American region (Argentina, Chile, Colombia, Mexico, Panama)	Wyeth	Machado et al., 2012 ¹⁰² conference abstract
	Phase IV									
		ETN50+MTX (<i>n</i> = 281)	14.1 (3.8) mg/week							
<i>al.</i> , ss	Confirmatory, Phase III, randomised, double-blind, PBO-controlled trial	PBO (<i>n</i> = 80)	N/A	Corticosteroids and NSAIDs allowed	6 months	20% and 50% improvement ACR, at 3 months and 6 months	R	USA	Immunex Corp, Seattle, WA	Moreland <i>et al.</i> , 1999 ¹⁰⁴ full-text article in peer- reviewed journal Mathias <i>et al.</i> , 2000 ¹⁰⁵ full-text article in peer- reviewed journal
<i>al.,</i> hias		ETN+PBO (<i>n</i> =78)	N/A							

TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO (continued)

rimary and upplementary publication letails [author, leta: publication ype (e.g. full, bstract)]	2)'Dell <i>et al.</i> , 2013' ¹¹² full-text irticle in peer- eviewed journal 2)'Dell <i>et al.</i> , 2012' ¹¹ onference ibstract			nformation taken rom a published HTA report that lad access to nanufacturer trial	eports .hen <i>et al.</i> , 2006 ¹²³		continued
F F C C C C C C C C C C C C C C C C C C	Supported by the Cooperative Studies Program, a Studies Program, a Department of Veterans Affairs Office of Research and Development and the Canadian Institutes for Health agreement with the National Institutes of Health-American Recovery and Reinvestment Act			= + + + + +			
Geographical location	USA and Canada			Europe, multicentre			
Early withdrawal plan reported?	Part of study design – if the score on the DAS28 decreased (indicating improvement) by 1.2 or more by 24 weeks, the initial therapy was continued. If the score on the DAS28 decreased by < 1.2, the participant was switched to the alternative regimen			N/A (12-week study)			
Primary outcome	The originally proposed primary outcome was the difference in the proportion of participants who had a DAS28 of \leq 3.2 at week 48. In response to unexprectedly low enrolment, the protocol was amended in October 2008 to change the primary outcome from a binary outcome to a continuous outcome in order to increase the power of the study			Change from baseline in the number of swollen and painful joints at 3 months			
Duration of RCT phase	48 weeks			12 weeks			
Concomitant treatments	Participants continued to receive non-steroidal anti-inflammatory agents and prednisone (≤ 10 mg/day) at stable doses						
MTX dose during study (where applicable)	19.5 (5.0) mg/week	19.7 (4.5) mg/week					
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + S5Z + HCQ (n = 178) Potential to switch groups at week 24	ETN50 + MTX (<i>n</i> = 175)	Potential to switch groups at week 24	PBO (<i>n</i> = 105)		ETN (<i>n</i> =111)	
Trial design (RCT, phase, LTE)	Randomised, double-blind, PBO-controlled, non-inferiority trial			RCT, multicentre, double blind			
Trial name/study (NCT/sponsor number)	RACAT, ¹¹¹ O'Dell <i>et al.</i> , 2013 ¹¹² (NCT00405275)	RACAT ¹¹¹		Wajdula 2000 (reported in Chen <i>et al.</i> , 2006 ¹²³) European	Etanercept Investigators Group protocol 0881A1–300-EU	Wajdula 2000 (reported in Chen et al., 2006 ¹²³)	

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Weinblatt et al., 1999 ¹²⁴ full-text article in peer- reviewed journal Kremer et al., 2003 ¹⁶⁰ full-text article in peer- reviewed journal		Kim et al., 2012 ⁶⁷ full-text article in peer-reviewed journal Bae et al., 2013 ⁶⁸ full-text article in peer-reviewed journal		Tanaka <i>et al.</i> , 2012 ⁹¹ full-text paper	
Funding source	Supported by Immunex		Wyeth		Centocor Research & Development Inc., Janssen Pharmaceuticals K.K. and Mitsubishi Tanabe Pharmaceutical Corporation	
Geographical location	Multicentre, USA		Asia – Pacific region		Japan	
Early withdrawal plan reported?	Condition not described; patients who received intra-articular injections of corticosteroids during the study were counted as having or not having a response according to their overall evaluation		X		Patients with < 20% improvement from baseline in tender joint counts and swollen joint counts at week 14 could enter double-blind early escape where the dose was increased (or added in PBO arm)	
Primary outcome	ACR criteria for a 20% improvement in measures of disease activity (ACR20) at 24 weeks		ACR response area under the curve over 16 weeks		ACR20 response at week 14	
Duration of RCT phase	24 weeks		16 weeks		24 weeks	
Concomitant treatments	NSAIDs and corticosteroids allowed		NSAIDs or corticosteroids were allowed, but not multiple NSAIDs, and any increase in dosage of baseline NSAID or corticosteroid		Concurrent NSAIDs, analgesic and oral corticosteroids (≤10 mg of prednisolone/day or equivalent) allowed with stable doses ≥2 weeks prior to and during the study	
MTX dose during study (where applicable)	Stable dose 12.5–25 mg/week		6.9 (8.5) mg/week	6.5 (7.3) mg/week	X	R
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO (<i>n</i> = 30)	ETN + MTX ($n = 59$)	MTX + DMARD (SSZ, HCQ or LEF) (n = 103)	ETN + MTX (n = 197)	PBO every 4 weeks + MTX 6–8 mg/week (<i>n</i> = 90 randomised)	GOL 50 mg s.c. every 4 weeks+MTX 6–8 mg/week (n=89 randomised)
Trial design (RCT, phase, LTE)	Blind blind		Open-label, active- comparator, parallel-design, multicentre RCT		RCT (Phase II/III)	
Trial name/study (NCT/sponsor number)	Weinblatt et al., 1999 ¹²⁴	Weinblatt <i>et al.</i> , 1999 ¹²⁴	APPEAL ^{67,68}	APPEAL ⁶⁸	GO-FORTH ⁹¹	GO-FORTH ⁹¹

Trial name/study (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]
GO-FORWARD ⁹² (NCT00264550)	RCT (Phase III, double blind)	PBO s.c. every 4 weeks + MTX (n = 133 randomised)	Mean (SD) 17.0 (2.75)mg/week Median 15.0 (IQR 15.0–20.0)	Patients receiving NSAIDs or other analgesics for RA required to have been taking stable dose for at least 2 weeks before first dose of study agent Patents receiving oral corticosteroids required to have been taking stable dose equivalent to 10 mg/ day or less of prenisone for at least 2 weeks before first dose of study drug	Double-blind, PBO-controlled phase to week open-label extension up to 5 years	Two co primary end points: proportion of patients achieving ACR20 response at week 14 and week 14 and baseline in HAQ-DI baseline in HAQ-DI score at week 24	Yes	Multinational, multicentre (60 sites over 12 countries)	Centocor	Keystone <i>et al.</i> , 2009 ²¹⁶ full publication, results to week 24 Keystone <i>et al.</i> , 2010 ⁹² full publication, results to week 52
GO-FORWARD ⁹²		GOL 50 mg s.c. every 4 weeks + MTX (<i>n</i> = 89 randomised)	Mean (SD) 17.4 (3.00) mg/week Median 15.0 (IQR 15.0–20.0) mg/week							
Kay <i>et al.</i> , 2008 ⁹⁶ (NCT00207714)	R.C.T (Phase II, double blind)	PBO s.c. + MTX (n = 35 randomised)	All patients continued to receive stable doses of MTX (at least 10 mg/ week) through end of study	Oral corticosteroids permitted at stable pre-study dosage not exceeding equivalent 10 mg prednisone per day Commercially available NSAIDs pre-study dose Folic acid at stable dosage of at least 5 mg every week for at least 4 weeks before first study drug dose dose	52 weeks	Proportion of patients meeting ACR 20% improvement criteria (achieving an ACR20 response) at week 16	Yes	Multicentre [40 study sites, geographical location(s) not stated]	Centocor	Kay et al., 2008 ⁹⁶ full publication
										continued

Activities Accision of particular submentances Constituent manue Constituent constituent and constituent Constituent manue	ā l	l characterist	ics: populations 2 a Treatment arms for which data	and 3 biologics vs.	DMARD(s) or PBO	(continued)					Primary and supplementary
OL Somg sc. eery t+reetch(k) 7.4 (SD = 2.2) Patients laking the schoumsch (k) 7.4 (SD = 2.2) Patients laking subschoumsch (k) 14 weeks ACR20 respone at No Multicente, Ni Ni 80-+ MTX (n) 7.4 (SD = 2.2) Nature school and school	Trial design (RCT, phase, LTE)		extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	publication details [author, year, publication type (e.g. full, abstract)]
RBO+MIX (n. ar) protects 7.4 (SD=2.2) (monolections) Patients taking moweek 14 weeks on concostone ACR20 resonse at week 14 No Multicentre, lapan NR a7, patients received one or more infusions) moweek 14 weeks 14 week 14 by meeks on concostone by meeks of productions of productions of entro. NR Multicentre, week 14 NR FX 3mg/kg iv. at study entry 7.1 (SD=1.9) xeeks for at stable does for at doe or more initiation of new veek 3.0 No No No R90 iv.+MTX Median I5 Patients received at concostencids for at			GOL 50 mg s.c. every 4 weeks + MTX (<i>n</i> = 35 randomised)								
IFX 3mg/kg iv. at mg/veek 6+MTX mg/veek 6+MTX meets 0. 2 and mg/veek 49 partimet receiving 54-week ACR20 response at No Multicentre, infusions) PBO iv.+MTX Median 15 Patients receiving 54-week aver 600 v.+MTX meet and multipation of new multinational 100 mg/kg or less of not new initiation of new ng/week and must or have trade dose for at a drug so rincreased either drug for at least 4 weeks before at tweeks and multipational tweek 30 without and multipation of new initiation of new initiation of new initiation of new initiation of new ng/week and must or have trade dose for at a drug so rincreased either drug for at least 4 weeks before at screening) week 30 week	RCT (phase NR, double blind)		PBO + MTX (<i>n</i> randomised NR, 47 patients received one or more infusions)	7.4 (SD=2.2) mg/week	Patients taking NSAIDs, folic acid or corticosteroids (10 mg/day or less of prednisolone equivalent) required to have received stable dose for at least 4 weeks before study entry	14 weeks	ACR20 response at week 14	2	Multicentre, Japan	X	Abe et al., 2006 ⁵⁶ full publication
(<i>n</i> randomised NR, 49 patients received one or more infusions) PBO is <i>n</i> +MTX Median 15 Patients receiving 54-week ACR20 response at No Multicentre, (<i>n</i> = 88 randomised) (10R 12.5-17.5) oral controlled week 30 without mg/week (10 mg/g or less of RCT with LTE requiring a surgical mg/week initiation of new ini			IFX 3 mg/kg i.v. at weeks 0, 2 and 6+MTX	7.1 (SD=1.9) mg/week							
PBO i.v.+ MTX Median 15 (n=88 randomised) Patients receiving (QR 12.5-17.5) Eatients receiving oral corticosteroids mg/week 54-week andomised) ACR20 response at week 30 without No Multicentre, multinational Centocd (n=88 randomised) (QR 12.5-17.5) oral corticosteroids mg/week PBO-controlled week 30 without ACR20 response at week 30 without Multicentre, multinational Centocd ng/week (QR 12.5-17.5) oral corticosteroids PBO-controlled week 30 without week 30 without Multicentre, multinational Centocd ng/week nrsAlbs required to have stable dose for at either drug for at least 4 weeks before to 102 week 30 No Multicentre, multinational Centocd A weeks before either drug for at least 4 weeks before ACR20 response at week 30 ACR20 response at baseline dose of MTX ACR20 response at week 30 ACR20 response at baseline dose of MTX ACR20 response at baseline dose of MTX			(<i>n</i> randomised NR, 49 patients received one or more infusions)								
Patients received baseline dose of MTX or corticosteroids during study	RCT (Phase III, double blind)		PBO i.v. + MTX (n= 88 randomised)	Median 15 (IQR 12.5–17.5) mg/week	Patients receiving oral corticosteroids (10 mg/kg or less of prednisone equivalent) or NSAIDs required to have stable dose for at least 4 weeks before screening (and must not have received either drug for at least 4 weeks before screening)	54-week PBO-controlled RCT with LTE to 102 weeks to	ACR20 response at week 30 without requiring a surgical joint procedure, initiation of new antirheumatic drugs or increased in antirheumatic drugs week 30 week 30	2	Multicentre, multinational	Centocor	Maini et al., 1999 ⁷⁵ full publication
					Patients received baseline dose of MTX or corticosteroids during study						

nd intary uthor, full,		/, 2004 ⁸⁶ ttion		ull-text		ontinued
Primary al suppleme publicatio details [au year, publ type (e.g. abstract)]		Durez <i>et al</i> full publica		Westhove 2006 ¹¹⁸ fu paper		U
Funding source		Schering-Plough		Centocor Research and Development Inc.		
Geographical location		Belgium		R		
Early withdrawal plan reported?		° Z		No, but dose escalation from 22 weeks if $< 20\%$ improvement in swollen joint counts and tender joint counts or $\geq 50\%$ discontinuation in improvement in combined swollen joint counts and tender joint counts		
Primary outcome		ĸ		Occurrence of a serious infection within 22 weeks of initiating therapy		
Duration of RCT phase		14 weeks		1 year (22 weeks before dose escalation commenced)		
Concomitant treatments		Oral glucocorticoid doses remained unaltered during steroids not permitted Introduction of new NSAID or DMARD not permitted		MTX only (70.0%), MTX + one DMARD (25.3%), MTX + two DMARDs (4.4%), NSAIDs (39.4%), corticosteroids (59.2%), narcotics/ opioid analgesics (6.1%)	MTX only (70.8%), MTX + one DMARD (24.4%), MTX + two DMARDs (4.7%), NSAIDs (43.3%), corticosteroids (59.2%), narcotics/ opioid analgesics (5.8%)	
MTX dose during study (where applicable)	Median 15 (IQR 12.5–17.5) mg/week	Median 12.5 (range 10–15) mg/week	Median 15 (range 10–15) mg/week	Median 15.0 (IQR 10–15) mg/week	Median 15.0 (IQR 10–18) mg/week	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX (n = 86 randomised)	Single i.v. infusion of 1 g of MP (sodium hemisuccinate) at week $0 + MTX$ (n = 14 randomised)	IFX 3 mg/kg at weeks 0, 2 and 6+MTX (<i>n</i> =12 randomised	PBO+ MTX (n = 363 randomised)	IFX 3 mg/kg + MTX (n= 360 randomised)	
Trial design (RCT, phase, LTE)		RCT (Phase NR, open label)		RCT		
Trial name/study (NCT/sponsor number)	АПТRACT ⁷⁵	Durez <i>et al.</i> , 2004 [%]	Durez <i>et al.,</i> 2004 ⁸⁶	START ¹¹⁸	START ¹¹⁸	

TABLE 338 Tri.	al characteristi	cs: populations 2 a	and 3 biologics vs.	DMARD(s) or PBO	(continued)					
Trial name/study (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients treatment arm)	MTX dose during study (where applicable)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]
Swefot ¹¹⁹ (WHO database number CT20080004)	RCT (Phase NR, open label)	SSZ (1000 mg twice daily orally) +HCQ (400 mg daily orally) +MTX (with orally) +MTX (with optional increase to SSZ 1500 mg twice daily if ineffective and cDMARD adjustment in event of toxicy with potential switch to CYC (five switched to CYC, included in primary analyses) (n =130)	Up to 20 mg/week	If patients were receiving glucocorticoids, dose was required to be stable for at least 4 weeks at no more than 10 mg daily of prednisolone (or equivalent)	2 years	EULAR good response at 12 months	Dose adjustments permitted (see left)	Multicentre (15 rheumatology units), Sweden	Swedish Rheumatism Association Schering-Plough	van Vollenhoven et al., 2009, ¹¹⁹ van Vollenhoven et al., 2012 ¹⁴⁷ full publication
Swefot ¹¹⁹		IFX 3 mg/kg i.v. at weeks 0, 2, 6 and every 8 weeks thereafter with optional increase to IFX every 6 weeks thereafter (in event of toxicity, optional switched to ETN, included in pirmary analyses)+ MTX (n = 128)								
Wong et al., 2009 ¹²⁵	RCT (Phase NR, double blind)	PBO+ MTX (with crossover to open- label IFX at week 24) (<i>n</i> = 9)	ĸ	All antirheumatic medications kept stable for at least 4 weeks before and during study (unless dose alterations were clinically indicated)	56 weeks	Vascular ultrasound assessments at weeks 24 and 56	Yes (PBO patients could escape to open-label IFX at week 16)	ž	Centocor Pty Ltd Arthritis Foundation of Australia	Wong <i>et al.</i> , 2009 ¹²⁵ full publication
Wong <i>et al.</i> , 2009 ¹²⁵		IFX 3 mg/kg at weeks 0, 2, 6 and 8 weeks thereafter + MTX (n = 17)								

rimary and upplementary ublication teatis (author, ear, publication ype (e.g. full, bstract))	hang <i>et al.</i> , 006 ⁷⁵⁶ full ublication		ougados <i>et al.,</i> 013 ⁵⁷ full ublication		Acinnes et <i>al.</i> , 011 ¹⁰³ onference bstract		continued
Funding source			Roche		Lead author: 1 grant/research 2 support from 6 Roche a		
 Geographical	Multicentre (five centres), China		ĸ		UK, USA, Canada		
Early withdrawal plan reported?	N		2		Yes (27 patients in PBO arm entered early escape treatment with open-label TCZ at week 16)		
Primary outcome	R		% patients in remission according to DAS28-ESR (DAS28 < 2.6) at week 24		R		
Duration of RCT phase 1	18 weeks		2 years		24 weeks 1 double-blind phase of 2-year study		
Con comitant treatments	Glucocorticosteroid dose required to be stable for 4 weeks before screening and dosage not permitted to exceed 10 mg/day of prednisone or equivalent		Oral corticosteroids (≤10 mg/day of prednisone or equivalent) and NSAIDs permitted if doses had been stable for at least 25 of 28 days before start of study agent		NR		
MTX dose during study (where applicable)	Stable dose of MTX continued during study		Patients received mean weekly doses of MTX/PBO ranging from: TCZ 8 mg/kg i.v. every 4 weeks + mg/week; TCZ 8 mg/kg i.v. every 4 weeks + MTX = 15.2–15.9 mg/week		R	NR	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PB0 i.v. + MTX (n = 86)	IFX 3 mg/kg i.v. at weeks 0, 2, 6 and 14 + MTX (n = 87)	TCZ 8 mg/kg i.v. every 4 weeks + oral PBO (n = 277 randomised)	TCZ 8 mg/kg i.v. every 4 weeks+MTX (n=276)	PBO + MTX (n = 69 randomised)	TCZ 8 mg/kg i.v. every 4 weeks + MTX (n = 69 randomised)	
Trial design (RCT, phase, LTE)	RCT (Phase NR, double blind)		RCT (Phase III, double blind)		RCT (Phase NR, double blind)		
Trial name/study (NCT/sponsor number)	Zhang et <i>al.</i> , 2006 ¹²⁶	Zhang <i>et al.,</i> 2006 ¹²⁶	ACT-RAY ⁵⁷ (NCT00810199)	ACT-RAY ⁵⁷	MEASURE ¹⁰³	MEASURE ¹⁰³	

	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Nishimoto et al., 2004 ¹⁰⁶ full publication		Nishimoto <i>et al.</i> , 2007 ¹¹⁵ full-text article in peer- reviewed journal
	Funding source	Chugai Pharmaceutical, Japan		Chugai Pharmaceutical, Tokyo, Japan
	Geographical location	Multicentre, Japan		lapan
	Early withdrawal	2		К
	Primary outcome	ACR20 at week 12		Progression of structural joint damage
	Duration of RCT phase	3 months		52 weeks
	Concomitant treatments	Stable prednisolone (≤ 10 mg/day) and NSAIDs permitted at stable doses No parenteral and/or intra-articular corticosteroids permitted during 4-week washout period before initiation of study agent and during study period		For the conventional DMARD group, the dose, type and combination of DMARDs and/or immunosuppressants, except for antiTNF agents and LEF, could be varied according to discretion of the treating physician
2	MTX dose during study (where applicable)	NA	N/A	 8.0 (±2.1) mg/week 123 patients (85%) received MTX: 81 (56%) received a confination of MTX and a confination of MTX and DMARDs, 42 (29%) received MTX nonortherapy and 20 (14%) received DMARDs and/or mmunosuppressants other than MTX
-	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO i.v. every 4 weeks (<i>n</i> = 53 randomised)	TCZ 8 mg/kg i.v. every 4 weeks (n = 55 randomised)	cDMARDs disease activity (n= 145)
	Trial design (RCT, phase, LTE)	RCT (phase NR, double blind)		Multicentre, X-ray reader- blinded, randomised, controlled trial Phase III
	Trial name/study (NCT/sponsor number)	Nishimoto <i>et al.</i> , 2004 ¹⁶⁶	Nishimoto <i>et al.</i> , 2004 ¹⁰⁶	SAMURAI ¹¹⁵

TABLE 338 Trial characteristics: populations 2 and 3 biologics vs. DMARD(s) or PBO (continued)

Primary and supplementary publication detais [author, year, publication type (e.g. full, abstract)]		Nishimoto et <i>al.</i> , 2009' ^{II6} full publication	continued
Funding source		Chugai Pharmaceutical, Japan	
Geographical location		Single country, multiteentre (25 sites across Japan)	
Early withdrawal plan reported?		2	
Primary outcome		ACR20 response at week 24	
Duration of RCT phase		Double-blind controlled phase to week 24	
Concomitant treatments	Both groups – oral corticosteroids (10 mg of prednisolone per day) were allowed, but the dosage could not be increased during the study Use of one NSAID, including switching to another NSAID, was allowed	Oral corticosteroids permitted at ≤ 10 mg/ day of prednisolone (as worded) (dose increase not permitted) Intra-articular corticosteroid injections (one joint maximum at one treatment) and hyaluronate preparations permitted (switching to another NSAID permitted (switching allowed) DMARDs, i.v. or i.m. corticosteroids, plasmapharesis and surgical treatment not	
MTX dose during study (where applicable)	N/A	8 mg/week (maximum permitted dose in Japan)	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	TCZ i.v. (<i>n</i> = 157)	PBO + MTX (n = 64)	
Trial design (RCT, phase, LTE)		RCT (Phase III, double blind)	
Trial name/study (NCT/sponsor number)	SAMURAI ¹¹⁵	SATORI ¹¹⁶ (NCT00144521)	

	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]		Genovese <i>et al.</i> , 2008 ¹²¹ full publication
	Funding source		Roche
	Geographical location		Multinational (18 countries), multicentre
	Early withdrawal plan reported?		Yes (early escape at week 16 for patients failing to achieve > 20% improvement in both swollen joint counts and tender joint counts adjustment of adjustment of dosage and/or a different DMARD dosage and/or a different DMARD and/or intra-articular/ oral glucocorticoids)
	Primary outcome		ACR20 at week 24
) (continued)	Duration of RCT phase		24 weeks
. DMARD(s) or PBC	Concomitant treatments		Oral glucocorticoids (≤10 mg/day of prednisone or equivalent) and NSAIDs/COX-2 inhibitors permitted for ≥6 weeks for ≥6 weeks
and 3 biologics vs	MTX dose during study (where applicable)		14.7 mg/week
cs: populations 2	Treatment arms for which data extraction performed (number of patients treatment arm)	TCZ 8 mg/kg i.v. every 4 weeks + PBO capsules $(n = 61)$	PBO i.v. every 4 weeks + stable cDMARDs (<i>n</i> = 415 randomised)
al characteristi	Trial design (RCT, phase, LTE)		RCT (Phase III, double blind)
TABLE 338 Tria	Trial name/study (NCT/sponsor number)	SATORI ¹¹⁶	TOWARD ¹²¹

÷:-5 Caa .; A 2 hiolo Ċ latio rictio ť Ļ Trial 0000 L.

2	or, ion		oved		7
ary and Jementar	lication ils [autho ; publicat (e.g. full ract)]		informatic been rem		mumab Highly ek not an
Prim supp	publ deta year type abst		d has h		Adalir th Ran a Wee NR, r NR, r ts with ts with
	l source		rmation remove		ntibody estigati 6-mon gonce number patien patien
	Funding		AiC info has beer		onal A ical invu ot 50 m ot 50 m rence r arthritis
	iical		lation		Monocl E, Clin CREATE anercer iov refe iatoid é
	eograph cation		C inform as been moved		of the I CHANG ase-2; (N50, et Itrials.c Rheum ().
	<u>ہ</u> ق		has Ai ha		ogram apies; (oxygen 09; ETI clinica nab for nab for sponse
	ithdraw oorted?		rmation noved		udy Pri A ThEr Cyclo Study 3 Study 3 e; NCT Dcilizun Dcilizun Dcilizun
	Early w plan rep		AiC info been rer		arch St other R COX-2 ercept : pplicabl olled TC anizatic ght rar 12 if lac
	come		ion noved		NF Reserventh e with 9, Etan 7, not an e contra e contra on we on week
	nary out		informat been rer		Anti-T by in Us aluation ETN30 if Activ Activ Activ based f based after
	Prin		AiC has		//ADA, of Safet eral Eve s (RA); ondyliti ondylity ondylity ondylity ondylity ondylity ermitte ermitte
	ation of phase		mation been bved		te; ARN Study c Arthriti Arthriti ssing sp vTORI, s iis; WH iis; WH iis; WH ation p ation p
	Dura		AiC infor has t remo		notrexa tacept dard ar matoid ankylc gol; SA gol; SA g dose g dose e escal
	ť		cion has	ion has ed	to Meth RE, Aba Ig staN. I Rheurn mab pe imatolic hereafi loadin ith dos
	comitan tments		informat remove	informat remove	inders 1 ASSUF applyin ts With cukinu rtolizur nal i.v. sk. sk.
	Con		is AiC beer	ts AiC beer	e respo is Trial; iumab i Patien URE, se umab i very 4 v n optio ner wee s therea
	e during Jere	eek	ation ha wed	nation ha wed	dequat SclErosi SclErosi Adalim MEASI MEASI MEASI JF Inhib JF Inhib and ev wing a voing a voing a voing a s veeks
	TX dose udy (wł pplicable	0.0 mg/w	C inform een remc	C inform	t in Ina stemic : n with AZD9 AZD9; rral of and 4, ong ev D mg ev every 8 every 8
	ber st ag	15 sed)	he Ai be	nas Ai b€	atacepi cept Systept Systept Systept Systept Systept Systept Systept Signartile that receives a safety 7 that out a solution of the solution o
nt arms h data	on ed (num nts sed per nt arm)	g/kg i.v. veeks + MARDs randomi	mation noved	mation noved	IM, Ab Abatao atients Phase I Phase I Subjec STAR, S Subjec STAR, S aneousl aneousl taneousl taneousl A weel A weel
Treatme for whic	extractic perform of patier randomi treatmer	TCZ 8 m every 4 v stable DI (<i>n</i> = 805	AiC info been ren	AiC infoi been ren	MTX; A ASSET, ASSET, ASSET, iniar; IQF ilar; IQF ilar; IQF ilar; IQF veek veek subcuta subcuta s subcuta v every v every
	gn ase,		lation	. –	eplace thritis; toid Art Compa amuscu EvALua nethotr intrave neeks week week wously enously
	rial des RCT, phá TE)		AiC infom las been emoved		rel or R heuma A heuma A m. intr. T.C, RA nse to r mg/kg 5 mg o g every twice a twice a twice a twice a twice a truravel
	. 5		ion 4 h bavor	ion ioved	dd Enbi Rheumé ected r nd, Opé susly; i. EALIST ≈ 10 A 40 mi 25 mg 25 mg mg/kg 8 mg/kg
	l se/study l'sponse	VARD ¹²¹	informat been ren	informat been rem	ORE, A BE7] in F Base-aff Base-aff ble-blin ble-blin cutane dequate f i.v. = F C s.c. = A = AD, C = S.c. (I = ETN L = GOI L = GOI = IFX 3
	Tria nam (NC num	TOW	AiC has	AiC has	AD (122) AB AB AD AB AD AB AD AD AD AD AD AD AD AD AD AD AD AD AD

ation SCT Pr	Duration Concomitant of RCT treatments phase Pr
onths Ac ac at	Corricosteroids (oral 6 months A and/or injectable): ac 72.1%, mean (SD) at dose 4.8 (4.5) mg/day
	Corticosteroids (oral and/or injectable): 74.6%, mean (SD) dose 5.2 (6.9) mg/day
nonths A a	Addition of another 12 months A DMARD (HCQ, SSZ, a GLD, AZA) and/or
	aujosument in corticosteroids equivalent to <u>5</u> 10 mg/ day of prednisone were permitted. Use of the above not reported

TABLE 339 Trial characteristics: RCTs (ineligible for systematic review) used as additional evidence in NMA sensitivity analyses

ary and ementary cation is [author, publication (e.g. full, act)]	ollenhoven 2012 ¹³³ eviewed al				moto <i>et al.,</i> ²⁹ conference ct		continued
Prima suppl detai year, type abstr	van V <i>et al.</i> , full-te peer-i journa				Yama 2011 ¹ abstra		
Funding source	Supported by Pfizer				N		
Geographical location	Europe, USA, Korea, Latin America				Japan, multicentre		
Early withdrawal plan reported?	Patients in the PBO group who did not have a 20% reduction in the number of swollen and tender joints after 3 months (considered as not having had a response) were randomly assigned to either 5 mg or 10 mg of TOF				Early escape at week 16 for patients who failed to achieve ACR20 response at both weeks 12 and 14		
Primary outcome	20% improvement at month 6 in ACR20; the change from baseline to month 3 in the score on the HAQ-DI (which ranges from 0 to 3, with higher scores indicating greater disability); and the percentage of patients at month 6 who had a DAS28 based on the ESR				ACR20 response at week 12		
Duration of RCT phase	12 months				24 weeks		
Concomitant treatments	Glucocorticoids and lipid-lowering medication allowed				XTM	MTX	
MTX dose during study (where applicable)	7.5–25 mg of MTX weekly, all groups				Я	NR	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX + PBO (<i>n</i> = 108)	TOF5 + MTX (<i>n</i> = 204)	TOF10 + MTX (<i>n</i> = 201)	ADA + MTX (<i>n</i> = 204)	PBO + MTX every 2 weeks ($n = 77$ patients randomised)	CTZ 200 mg + MTX every 2 weeks (<i>n</i> = 82 patients randomised)	
Trial name/study (NCT/sponsor number)	ORAL STANDARD ¹³³ (NCT00853385)	oral standard ¹³³	oral standard ¹³³	ORAL STANDARD ¹³³	JRAPID/Yamamoto <i>et al.</i> , 2011 ¹²⁹ (NCT00791999)	JRAPID ¹²⁹	

	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Kang <i>et al.</i> , 2012 ¹³⁴ abstract		Keystone <i>et al.,</i> 2008 ¹³⁵ full-text paper		Smolen <i>et al.,</i> 2009 ¹³⁶ full-text paper
	Funding source	NR		nCB		UCB
nuninea)	Geographical location	Korea		Я		International
א כשכעושווש לוועוונו	Early withdrawal plan reported?	Patients with no ACR20 response at both weeks 12 and 14 were withdrawn		Early escape at week 16 for patients who failed to achieve ACR20 response at both weeks 12 and 14		Early escape at week 16 for patients who failed to achieve ACR20 response at both weeks 12 and 14
	Primary outcome	ACR20 response at week 24		ACR20 response rate at week 24 and mean change form baseline in modified total Sharp score at week 52		ACR20 response at week 24
auuriorial ev	Duration of RCT phase	24 weeks		52 weeks		24 weeks
iaur review <i>)</i> useu as	Concomitant treatments	MTX	MTX	MTX, oral corticosteroids (≤ 10 mg/day of prednisone or equivalent with stable dose from 4 weeks prior to baseline), NSAIDs/COX-2 inhibitors and analgesics		MTX
וושואלא וטו שומוטו	MTX dose during study (where applicable)	10–20 mg/week	10–20 mg/week	13.4 mg/week	13.6 mg/week	12.2 mg/week
מו מררבו וארואי ער וא לוו ובו	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO + MTX (<i>n</i> = 40 randomised)	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + MTX (n = 81 randomised)	PBO + MTX (<i>n</i> = 199 randomised)	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + MTX (n = 393 randomised)	PBO + MTX (<i>n</i> = 127 randomised)
	Trial name/study (NCT/sponsor number)	RA0025 ¹³⁴	RA0025 ¹³⁴	RAPID1 ¹³⁵	RAPID1 ¹³⁵	RAPID2 ¹³⁶

TABLE 339 Trial characteristics: RCTs (ineligible for systematic review) used as additional evidence in NMA sensitivity analyses (continued)

Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]		Moreland <i>et al.</i> , 2012 ^{sa} full-text article in peer- reviewed journal	continued
Funding source		Supported by Amgen through a grant to the University of Alabarna at Birmingham, AL. The study drugs were provided by Amgen (ETN and PBO), Barr Pharmaccia (SSZ and PBO), Barr Pharmacia (SSZ and PBO). The initial phases of the study were supported by the National Institute for Health tor Health tor Health tor Health the study were supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases	
Geographical location		USA	
Early withdrawal plan reported?		Step-up therapy part of study design	
Primary outcome		An observed-group analysis of DAS28-ESR values from week 48 to week 102	
Duration of RCT phase		102 weeks	
Concomitant treatments	МТХ	For those receiving corticosteroids, the dosage (up to 10 mg/ day of prednisone) had to be stable for at least 2 weeks prior to screening; for those receiving NSAIDs, the dosage had to be stable for at least 1 week prior to screening folic acid at a dosage of 1 mg per day	
MTX dose during study (where applicable)	12.5 mg/week	MTX, which was escalated to a dosage of 20 mg/ week or to a lower dosage if treatment resulted in no active tender/painful or swollen joints by week 12	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + MTX (n = 246 randomised)	MTX monotherapy (ST) (n = 124) ST = step-up from MTX to triple DMARD therapy (MTX + SSZ plus HCQ)	
Trial name/study (NCT/sponsor number)	RAPID2 ¹³⁶	TEAR ⁵³ (SA mixed population) (NCT00259610)	

	imary and pplementary blication tails [author, ar, publication pe (e.g. full, stract)]					arekskog <i>et al.,</i> 104 ⁵⁴ full-text iclo io	ter-reviewed urnal			nes et al., 10 ⁵⁵ fiul	iblication
	Pr su su de de ty ty ty					yeth Research Kli 20	⊒ Dí Dí			iche Joi	nd
	āeographical Fu					iurope, Wi Australia, USA				Aulticentre, Ro	
with allary sea (co	rly withdrawal (-	-
	Ea Iry outcome pli					ric index of NR CR response	AUC) over st 24 weeks			0 at week 24 Nc	
	Duration of RCT phase Prima					52 weeks Nume the Ad	area curve curve the fir			24 weeks ACR2	
	Concomitant treatments					NSAIDs and corticosteroids allowed	5-mg folic acid supplement twice a week			Oral glucocorticoids	 The matrix of the second second
	MTX dose during study (where applicable)					MTX dose [median 10 (IQR 7.5-	[Naaw/Ritt (Drot	MTX dose [median 10 (IQR 7.5– 13.8) mg/week]	MTX dose [median 10 (IQR 7.5– 15.0) mg/week]	7.5–20 mg/week	
	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX monotherapy (SE) $(n = 255)$	SU = step-up from MTX to MTX + ETN	MTX + SSZ + HCQ $(n = 132)$	ETN50 + MTX (<i>n</i> = 244)	MTX monotherapy (<i>n</i> = 228)		ETN monotherapy (<i>n</i> = 223)	ETN + MTX (<i>n</i> = 231)	MTX alone $(n = 284$	
	Trial name/study (NCT/sponsor number)	TEAR ⁵³ (SA mixed population)		TEAR ⁵³ (SA mixed population)	TEAR ⁵³ (SA mixed population)	TEMPO ⁵⁴		TEMPO ⁵⁴	TEMPO ⁵⁴	AMBITION ⁵⁵	(NCT00109408)

TABLE 339 Trial characteristics: RCTs (ineligible for systematic review) used as additional evidence in NMA sensitivity analyses (continued)
ry and ementary ation s [author, publication e.g. full, cty]	n <i>et al.,</i> ¹⁰ full ation			continued
Prima supple public detail year, J type (ce abstra	Kreme 2011 ¹³ public			
Funding sour	Roche			
Geographical location	Multicentre, multinational (14 countries)			
Early withdrawal plan reported?	Yes Rescue therapy at week 16 for patients not achieving ≥ 20% improvement in	tender joint count and swollen joint count. PBO group received TCZ 4 mg/kg + steroids. If 20% improvement persisted after three doses of blinded first- step rescue to accoure therapy, patients received second-step rescue of TCZ 8 mg/kg. If still no response, treatment discontinued		
Primary outcome	Co-primary end points at week 52: change from baseline in total Genant-modified Sharp score and	area under the curve for change from baseline in HAQ-DI		
Duration of RCT phase	52 weeks			
Concomitant treatments	Oral corticosteroids (≤ 10 mg/day prednisone or equivalent) and NSAIDs permitted if doses had been stable for	≥ 6 weeks before study entry		
MTX dose during study (where applicable)	N/A Patients received stable dose of MTX 10–25 mg/ week Mean 15.0	(SD 4.2) mg/week	Mean 15.4 (SD 10.6) mg/week	
Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	TCZ 8 mg/kg i.v. every 4 weeks (n = 288 randomised) PBO i.v. every 4 weeks + MTX (n = 393 randomised)		TCZ 8mg/kg i.v. every 4 weeks+MTX (<i>n</i> = 398 randomised)	
Trial name/study (NCT/sponsor number)	AMBITION ³⁵ LITHE ¹³⁰ (NC T00106535)		LITHE ¹³⁰	

	Primary and supplementary publication details [author, year, publication type (e.g. full, abstract)]	Smolen <i>et al.</i> , 2008 ¹³² full publication			e; N/A, not ubcutaneous (SC) sis; TOF5,
	Funding source	Roche, Chugai Pharmaceutical			interquartile rang Abatacept After S , sensitivity analys
(continued)	Geographical location	Multicentre (73 centres), multinational (17 countries)			utaneously; IQR, nunogenicity of / itoid Arthritis; SA
nsitivity analyses (Early withdrawal plan reported?	Yes Patients not achieving ≥ 20% improvement in both swollen joint count and tender joint count by week 16 eligible for rescue therapy with TCZ 8 mg/kg and steroids if necessary or increase in oral corticosteroid dose (maximum 10 mg/day)			g once a week subci ons, Safety, and Imr Placebo in Rheuma n weight range.
idence in NMA se	Primary outcome	ACR20 at week 24			0, etanercept 50 mg Trough Concentrati Adalimumab versus ≈10 mg/kg based or
dditional ev	Duration of RCT phase	24 weeks			aase 2; ETN5 teady-State ofacitinib or after. ing dose of
matic review) used as a	Concomitant treatments	Oral glucocorticoids (≤ 10 mg/day of prednisone or equivalent) and NSAIDs permitted if doses stable for ≥ 6 weeks before study entry			cept; COX-2, cyclooxyger 554293, Study to Assess S NR, not reported; ORAL, T and every 4 weeks there: wing an optional i.v. load ery other week.
eligible for syste	MTX dose during study (where applicable)	14.8 (4.2) mg/week	14.5 (4.4) mg/week		intravenous abata e number; NCT002 bid Arthritis (RA); N weeks 0, 2 and 4, weeks 0, 2 and 4, ocutaneously, follo utaneously. then 200 mg ev ously. weeks.
aracteristics: RCTs (in	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	PBO i.v. every 4 weeks + MTX (<i>n</i> = 204 randomised)	TCZ 8 mg/kg i.v. every 4 weeks + MTX	(<i>n</i> = 205 randomised)	eous abatacept versus icaltrials.gov reference ubjects Writh Rheumatt F10, tofacitinib 10 mg g/kg intravenously on mg once per week subc every other week subc mg at weeks 1, 2 and <i>i</i> /ce a week subcutane intravenously every 4 v
TABLE 339 Trial ch	Trial name/study (NCT/sponsor number)	OPTION ¹³²	OPTION ¹³²		ACQUIRE, subcutan applicable; NCT, clir Administration to St tofacitinib 5 mg; TO ABT i.v. = BT ≈ 10 m ABT s.c. = ABT 125 ADA = ADA 40 mg CTZ = s.c. CTZ 400 r ETN = ETN 25 mg tw TCZ = TCZ 8 mg/kg i

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receivir steroids at baseline
Kume et al., 2011 ¹⁰⁰	ADA monotherapy	R	85.8	No prior treatment with MTX or biologics. Dosage of all DMARDs had to be stable for ≥ 8 weeks prior to enrolment	NR	NR
Kume <i>et al.</i> , 2011 ¹⁰⁰	ETN monotherapy	N.R.	88.6	No prior treatment with MTX or biologics. Dosage of all DMARDs had to be stable for ≥8 weeks prior to enrolment	NR	NR

TABLE 340 Population characteristics additional information: population 1 head-to-head trial

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	á
	Q
5	Ε
fe	0
5	4
ă	$\triangleleft$
e	
<b>щ</b>	$\triangleleft$
2	
5	$\triangleleft$
Ľ	
Z	$\triangleleft$

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

ADA = ADA 40 mg every other week subcutaneously. ETN = ETN 25 mg twice a week subcutaneously. IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response).

		- -	:			
Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
3ejarano <i>et al.,</i> 2008 ⁷⁷	PBO + MTX (n = 73)	NR	95	MTX naive; mean 0.2 prior cDMARDs	NR	NR
3ejarano e <i>t al.</i> , 2008 ⁷⁷	ADA + MTX (n = 75)	NR	96	MTX naive; mean 0.2 prior cDMARDs	NR	NR
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28 ( $n = 32$ )	NR	77.4	MTX naive; no prior biologics	R	31.3
GUEPARD ⁹³	Initial ADA + MTX 12 weeks, then step-up therapy in both groups based on DAS28 ( $n = 33$ )	NR	70.0	MTX naive; no prior biologics	R	30.3
HIT HARD ⁹⁴	MTX + PBO	NR	69.4	Required to be DMARD naive, mean number of prior DMARDs was 0	NR	NR
HIT HARD ⁹⁴	ADA + PBO	NR	63.2	Required to be DMARD naive, mean number of prior DMARDs was 0	NR	NR
DPERA ¹⁰⁷	MTX + PBO + steroid	NR	74	Active RA by ACR (1987) revised criteria. Excluded if had glucocorticoids within the last 4 weeks or previous DMARD therapy	ĸ	ĸ
DPERA ¹⁰⁷	ADA + MTX + steroid	NR	70	Active RA by ACR (1987) revised criteria. Excluded if had glucocorticoids within the last 4 weeks or previous DMARD therapy	R	R
DPTIMA ¹⁰⁸	MTX + PBO	90% white	89	Patients were excluded if they had received prior MTX, more than two synthetic DMARDs or biologics	79	46
DPTIMA ¹⁰⁸	ADA+MTX	89% white	87	Patients were excluded if they had received prior MTX, more than two synthetic DMARDs or biologics	78	41

TABLE 341 Population characteristics additional information: population 1 biologic vs. DMARD(s) or PBO

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
PREMIER ¹⁰⁹	MTX + PBO	94.4% white	84.0	Required to be MTX naive (and no previous treatment with cyclophosphamide, CYC, AZA or more than two other DMARDs). 31.5% had prior DMARD experience	N/A	35.4
PREMIER ¹⁰⁹	ADA monotherapy + PBO step up week 16	93.5% white	83.5	Required to be MTX naive (and no previous treatment with cyclophosphamide, CYC, AZA or more than two other DMARDs). 33.2% had prior DMARD experience	N/A	36.5
PREMIER ¹⁰⁹	ADA + MTX step-up week 16	93.6% white	85.1	Required to be MTX naive (and no previous treatment with cyclophosphamide, CYC, AZA or more than two other DMARDs). 32.5% had prior DMARD experience	N/A	35.8
COMET ^{81–83}	MTX + PBO ( $n = 268$ )	White 88%	NR	MTX naive; % having prior cDMARDs = 24%	76	50
COMET ⁸¹	ETN + MTX ( $n = 274$ )	White 87%	NR	MTX naive; % having prior cDMARDs = 18%	72	49
ERA/Bathon and Genovese, 2003 ¹³⁹ (multicentre)	MTX + PBO	88% Caucasian	89	Required to be MTX naive. 46% of patients had prior DMARDs, mean number of DMARDs=0.6 (SD 0.7)	80	41
ERA/Bathon and Genovese, 2003 ¹³⁹ (multicentre)	ETN + PBO	86% Caucasian	87	Required to be MTX naive. 40% of patients had prior DMARDs, mean number of DMARDs=0.5 (SD 0.7)	86	39
						continued

DOI: 10.3310/hta20350

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
GO-BEFORE ⁹⁰	PBO + MTX	White = 71.3%; black = 3.8%; Asian = 15.6%; other (no further details) = 9.4%	R	MTX-naive patients. Patients had not received more than three weekly doses of oral MTX as RA treatment. Patients who had previously received IFX, ETN, ADA, RTX, natalizumab or cytotoxic agents excluded. Patients receiving anakinra could participate 4 weeks after receiving last dose. Patients receiving alefacept or efalizumab could participate 3 months after last dose	95.6	68.1
				Previous DMARDs = 83/160 (51.9%)		
				HCQ=26/160 (16.3%)		
				SSZ = 51/160 (31.9)		
				LEF = 12/160 (7.5%)		
				Other DMARDs (no further details) = 26 (16.3%)		
				Anakinra = 0/0 (0.0%)		
				Immunosuppresive agents = 3/160 (1.9%)	Č	
GO-BEFOKE	GUL + MLX	vvrnte = /4.8%; black = 0.6%; Asian = 18.9%;	YZ	(%2.0c) ECI / %2 = 80/159 (20.3%) HCQ= 33/159 (20.8%)	۲ö. –	۵. م
		other (no further details) = 5.7%		SSZ = 36/159 (22.6%)		
				LEF = 13/159 (8.2%)		
				Other DMARDs (no further details) = 29/159 (18.2%)		
				Anakinra = 0 (0.0%)		
				lmmunosuppressive agents = 2/159 (1.3%)		

TABLE 341 Population characteristics additional information: population 1 biologic vs. DMARD(s) or PBO (continued)

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
ASPIRE ⁷¹	PBO + MTX	NR	71	Patients had persistent synovitis $\geq$ 3 months and $\leq$ 3 years, $\geq$ 10 swollen joints, and $\geq$ 12 tender joints	82	38
				All patients were MTX naive. 65–71% were DMARD naive		
				Patients were excluded if any prior treatment with MTX (had to be three or fewer pre-study doses), had received other DMARDs within 4 weeks of entry (or LEF within past 6 months), or had been treated with IFX, ETN, ADA or other antiTNF agent		
				65% DMARD naive		
ASPIRE ⁷¹	IFX i.v. 3 mg/kg at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX	NR	71	71% DMARD naive	85	37
BeST ⁷⁸	Sequential monotherapy (DAS steered)	NR	67	Patients had active disease with $\geq$ 6 of 66 swollen joints, $\geq$ 6 of 68 tender joints and ESR $\geq$ 28 mm/hour or global health score of $\geq$ 20 mm (0–100 VAS)	NR	R
				Exclusion criteria included previous treatment with DMARDs other than antimalarials. (HCQ and chloroquine = antimalarials)		
				Previous antimalarial therapy = $7\%$		
BeST ⁷⁸	Step-up combination therapy (DAS steered)	NR	64	Previous antimalarial therapy = 11%	NR	NR
BeST ⁷⁸	Initial combination therapy with prednisone (DAS steered)	NR	65	Previous antimalarial therapy = 8%	NR	NR
BeST ⁷⁸	Initial combination therapy with IFX (DAS steered)	NR	64	Previous antimalarial therapy = $9\%$	NR	NR
						continued

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
Durez et al., 2007 ¹²⁰	XTM	R	64	MTX-naive population. Patients had not been previously treated with MTX. Exclusion criteria included previous treatment with two or more DMARDs (no further details), MTX or i.v. MP	NR	NR
Durez <i>et al.</i> , 2007 ¹²⁰	MTX + i.v. MP	NR	100		NR	NR
Durez et al., 2007 ¹²⁰	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30, 38, 46 + MTX	NR	67		NR	NR
IDEA ⁹⁵	MP 250 mg i.v. at week 0, PBO i.v. at weeks 2, 6, 14, 22 + MTX	NR	NR	Patients described as DMARD naive (no further details)	NR	NR
IDEA ⁹⁵	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX (IFX dose modifications permitted according to DAS44 from week 26)	N.R.	R		NR	NR
Quinn <i>et al.</i> , 2005 ¹¹⁰	MTX + PBO	NR	60	No prior treatment with DMARDs or oral corticosteroids	NR	NR
Quinn e <i>t al.</i> , 2005 ¹¹⁰	IFX+MTX	NR	70	No prior treatment with DMARDs or oral corticosteroids	NR	NR
ASPIRE, Active control Arthritis (etanercept); 1 intravenous steroid, fo OPTIMA, OPTimal prot ADA = ADA 40 mg eve ETN = ETN 25 mg twici GOL = GOL 50 mg eve IFX = IFX 3 mg/kg intra	ed Study of Patients receiving Infliximab fo HT HARD, High Induction THerapy with Ar Inowed by treat-to-target: a double-blind, r ocol for treatment Initiation with Methotre ery other week subcutaneously. a week subcutaneously. ry 4 weeks subcutaneously. ry 4 weeks subcutaneously.	the treatment of Rheu ri-Rheumatic Drugs (ad ndomised, controlled 1 cate and Adalimumab. :s thereafter (with dose	umatoid arthritis of lalimumab and me trial in new-onset, e escalation permit	Early onset; DASS44, Disease Activity Score 44 joi thotrexate); IDEA, Remission induction comparing treatment-naive, rheumatoid arthritis; N/A, not apl teatment-naive, theumatoid arthritis; N/A, not aplet after week 12 if lack of response).	ints; ERA, Early Ri infliximab and hi plicable; NR, not i plicable; NR, not i	ieumatoid ih-dose eported;

Population characteristics additional information: population 1 biologic vs. DMABD(s) or PBO (continued) TABLE 341

TABLE 342 Populatio	n characteristics additional information	Population 2 Head to	o head trials			
Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
ATTEST ⁷⁴	PBO + MTX	76.4% Caucasian	77.3	MTX ≥ 15 mg/week for ≥ 3 months (stable for ≥ 28 days) and washed out all DMARDs (at least 28 days prior) except for MTX. No prior ABT or antiTNF therapy permitted	84.5	70.0
				MTX = 110/110 (100%)		
				Dose, mg/week = 16.6 (SD 3.7)		
				Duration, months = 23.7 (SD 25.6)		
ATTEST ⁷⁴	IFX 3 mg/kg i.v. administered on days	80.6% Caucasian	84.8	MTX = 164/165 (99.4%)	86.1	71.5
(NCT00095147)	(i.e. week 0), 13 (i.e. week 2), 43 (i.e. week 12)			Dose, mg/week = 16.3 (SD 3.6)		
	and every 30 uays n.e. o weeks) thereafter (NB: licensed dose 3 mg/kg i.v. at weeks 0, 2, 6 and every 8 weeks thereafter, adjustments in dosage and frequency of administration permitted after week			Duration, months= 23.6 (SD 26.8)		
ATTEST ⁷⁴	ABT dosed according to weight:	80.8% Caucasian	87.2	MTX = 156/156 (100%)	85.3	75.6
(NCT00095147)	patients weighing < 60 kg, 60-100 kg, or > 100 kg received 500 mg, 750 mg or 1000 mg of ABT respectively. ABT administered i.v. on days 1, 15 and 29			Dose, mg/week = 16.5 (SD 3.7) Duration, months = 18.3 (SD 20.0)		
	and every 28 days thereafter, up to and including day 337 (156 randomised) + MTX					
						continued

-		-				
Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
AMPLE ⁶⁶	ABT s.c.	80.8% Caucasian	75.5	Inadequate response to MTX, no prior bDMARDs. Concomitant medication included SSZ (3.1%) and HCQ (13.2%)	NR	50.9
AMPLE ⁶⁶	ADA	78.0% Caucasian	77.4	Inadequate response to MTX, no prior bDMARDs. Concomitant medication included SSZ (3.4%) and HCQ (10.7%)	NR	50.3
RED-SEA ¹¹⁴	ADA + cDMARDs (n = 60)	NR	91.7	100% prior MTX	58.3%	On oral prednisolone 33.3%
RED-SEA ¹¹⁴	ETN50 + cDMARDs ( $n = 60$ )	NR	85	100% prior MTX	43.3%	On oral prednisolone 45%
ADACTA ⁵⁸	TCZ + PBO	R	75	Patients with RA of at least 6 months duration and DAS28 > 5.1 who were MTX intolerant or for whom continued treatment with MTX was considered ineffective or inappropriate	NR	55
				Mean number of previous DMARDs=2.0 (SD 1.1)		
				Stopped taking MTX < 2 months before baseline = 99/163 (61%)		
ADACTA ⁵⁸	ADA+ PBO	NR	73	Mean number of previous DMARDs=2.0 (SD 1.1)	NR	57
				Stopped taking MTX < 2 months before baseline = 102/162 (63%)		

TABLE 342 Population characteristics additional information Population 2 Head to head trials (continued)

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN + MTX	R	NR	Non-responder to DMARDs for > 6 months (no further detail reported). All receiving a stable dose of concomitant MTX in 3 months before entering the study	NR	N
deFilippis <i>et al.</i> , 2006 ⁸⁵	IFX + MTX	NR	NR	Non-responder to DMARDs for > 6 months (no further detail reported). All receiving a stable dose of concomitant MTX in 3 months before entering the study		
NR, not reported. ABT i.v. = BT $\approx 10 \text{ mg/k}$ ABT s.c. = ABT 125 mg ADA = ADA 40 mg eve CTZ = s.c. CTZ 400 mg ETN = ETN 25 mg/kg intrav IFX = IFX 3 mg/kg intrav TCZ = TCZ 8 mg/kg intrav	g intravenously on weeks 0, 2 and 4, and 6 once per week subcutaneously, following ry other week subcutaneously. at weeks 1, 2 and 4, then 200 mg every of a week subcutaneously. enously at weeks 0, 2, 6 and every 8 week avenously every 4 weeks.	every 4 weeks thereafte an optional i.v. loading ther week. cs thereafter (with dose	r. dose of ≈10 mg/ escalation permi	kg based on weight range. ted after week 12 if lack of response).		

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
AIM ^{61,62}	MTX + PBO	88.1% white	78.5	100% prior MTX; 8.7% prior cDMARDs other	82.6	68.5
	n=219					
AIM ⁶¹	ABT i.v. + MTX ( <i>n</i> = 433)	87.5% white	81.8	100% prior MTX; 12.2% prior cDMARDs other than MTX	85.5	72.1
ASSET ⁷²	PBO + MTX	82.6% Caucasian	82.6	Non-response to MTX ( $\geq$ 15 mg/week or a maximum tolerated dose of $\geq$ 10 mg/week for $\geq$ 3 months prior to day 1)	87.0	6.09
ASSET ⁷²	ABT i.v. (≈ 10 mg/kg) + MTX	96.3% Caucasian	55.6	Non-response to MTX ( $\geq$ 15 mg/week or a maximum tolerated dose of $\geq$ 10 mg/week for $\geq$ 3 months prior to day 1)	81.5	70.4
ASSURE ⁷³	PBO + cDMARDs	83.3% white	NR	Active disease (functional classes I, II, III, IV ACR) despite one or more biologic and/or NBT, stable dose for ≥ 28 days before trial (split analyses, only nonbiologic extracted)	NR	73.7 (concomitant)
ASSURE ⁷³	ABT + cDMARDs	83.9% white	NR	Active disease (functional classes I, II, III, IV ACR) despite one or more biologic and/or NBT, stable dose for ≥ 28 days before trial (split analyses, only nonbiologic extracted)	NR	71.6 (concomitant)
AUGUST II ⁷⁶	MTX + PBO (n = 76)		83	100% prior MTX	NR	59
AUGUST II ⁷⁶	ADA + MTX (n = 79)		81	100% prior MTX	NR	66
CHANGE ⁸⁰	PBO ( <i>n</i> = 87)	NR	86.2	87.2% prior MTX (91.5% two or more DMARDs across all arms)	NR	NR
CHANGE ⁸⁰	ADA monotherapy ( <i>n</i> = 91)	NR	90.8	87.2% prior MTX	NR	NR
DE019 ⁸⁴	MTX + PBO ( <i>n</i> = 200)	83.0% white	89.5	100% prior MTX; mean 2.4 prior cDMARDs including MTX	NR	49.5
DE019 ⁸⁴	ADA + MTX (n = 207)	83.6% white	81.6	100% prior MTX; mean 2.4 prior cDMARDs including MTX	NR	Across two ADA arms, 44.9%
STAR ¹¹⁷	PBO + cDMARDs $(n = 318)$	85.8% white	62.3	Mean 1.2 prior cDMARDs	63.8	54.4

TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
STAR ¹¹⁷	ADA + cDMARDs $(n = 318)$	89.0% white	63.4	Mean 112 prior cDMARDs	62.3	50.9
Van De Putte <i>et al.,</i> 2004 ¹²²	PBO s.c.	ЛR	81.8	Previous treatment with at least one DMARD had failed, with patients having active RA defined as $\geq$ 12 tender joints (0–68 scale), $\geq$ 10 swollen joints (0–66 scale), and either ESR $\geq$ 28 mm/first hour or CRP $\geq$ 20 mg/l	83.6	67.3
				Patients excluded if had received investigational small molecule drug or biological agent within 2 months or 6 months before screening respectively		
				4-week washout period required for patients taking cDMARDs at time of recruitment		
				Number of cDMARDs = $3.6$ (SD 1.8)		
Van De Putte <i>et al.</i> , 2004 ¹²²	ADA monotherapy	NR	79.6	Number of cDMARDs = 3.8 (SD 1.8)	82.3	68.1
ARMADA ^{69,70}	MTX + PBO ( <i>n</i> = 62)	NR	Rheumatoid factor, IU/litre mean = 321.2 (SD 518.2)	100% prior MTX; mean 3.0 prior cDMARDs including MTX	R	58.1
ARMADA ⁶⁹	ADA + MTX (n = 67)	NR	Rheumatoid factor, IU/litre mean = 269.3 (SD 390.0)	100% prior MTX; mean 2.9 prior cDMARDs including MTX	R	Across all ADA dose arms, 46.4%
Kim <i>et al.</i> , 2007 ⁹⁹	MTX + PBO rescue week 18 $(n = 65)$	NR	82.5	100% prior MTX; 79.3% used two or three cDMARDs	NR	NR
Kim <i>et al.</i> , 2007 ⁹⁹	ADA + MTX (n = 63)	NR	76.9	100% prior MTX; 86.2% used two or three cDMARDs	NR	NR
CERTAIN ⁷⁹	PBO + cDMARDs	NR	67.3	Inclusion criteria of using cDMARD therapy for ≥6 months (and < 10 years). No prior antiTNF use. (AiC information has been removed)	NR	NR
						continued

(continued)	
DMARD(s) or PBO	
! biologic vs.	
al information: population 2	
eristics additione	
opulation charact	
TABLE 343 P	

ame/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
62 <b>N</b> I	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + DMARDs	NR	74.0	Inclusion criteria of using cDMARD therapy for ≥6 months (and < 10 years). No prior antiTNF use. (AiC information has been removed)	NR	NR
TIC ¹¹³	PBO + existing cDMARDs	R	NR overall trial population, 76.5	Inadequate response to one or more DMARDs. Post-hoc analysis of those with DAS28 > 5.1 at baseline, two or more prior cDMARDs and antiTNF naive	NR	R
TIC ¹¹³	CTZ 400 mg at weeks 0, 2, 4 then 200 mg every 2 weeks + existing cDMARDs	R	NR overall trial population, 73.9	Inadequate response to one or more DMARD. Post-hoc analysis of those with DAS28 > 5.1 at baseline, two or more prior cDMARDs and antiTNF naive	NR	R
159,60	ETN monotherapy ( $n = 159$ )	White 158 (99.4%); black 0 (0%); Asian 1 (0.6%)	6.07	100% prior MTX; mean 2.2 other prior DMARDs	74.2	51.6
E 29	ETN + MTX ( <i>n</i> = 155)	White 153 (98.7%); black 2 (1.3%); Asian 0 (0%)	69.5	100% prior MTX; mean 2.3 other prior DMARDs	81.3	56.8
E IIb ⁹⁶	DMARD + PBO (n = 65)	NR	81.5	100% prior MTX or SSZ	NR	NR
'E IIb ⁹⁶	ETN50 + DMARD ( <i>n</i> = 64)	NR	85.9	100% prior MTX or SSZ	NR	NR
udy 309/ e et <i>al.</i> , ⁸ Combe 2009 ⁸⁹	SSZ + PBO ( <i>n</i> = 50)	NR NR	NR	100% prior SSZ; 58% prior cDMARDs other than SSZ	NR	40
udy 309/ e et <i>al.</i> , [®] Combe 2009 [®]	ETN + PBO ( <i>n</i> = 103)	R	NR	100% prior SSZ; 69.9% prior cDMARDs other than SSZ	NR	59.2
udy 309/ 2 et al., 8 Combe 2009 ⁸⁹	ETN + SSZ ( <i>n</i> = 101)	R	R	100% prior SSZ; 58.4% prior cDMARDs other than SSZ	NR	44.6

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks monotherapy	NR	91.5	Non-response to MTX (6–8 mg/week). No prior biologics	NR	46.4
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks + MTX 6–8 mg/week	NR	86.7	Non-response to MTX (6–8 mg/week). No prior biologics	NR	60.3
Lan <i>et al.</i> , 2004 ¹⁰¹	PBO + MTX ( <i>n</i> = 29)	NR	NR	100% prior MTX	NR	NR
Lan <i>et al.</i> , 2004 ¹⁰¹	ETN + MTX ( <i>n</i> = 29)			100% prior MTX	NR	NR
LARA ¹⁰²	MTX + DMARD ( <i>n</i> = 142)	White, 65 (45.8%)	83.8	100% prior MTX	NR	NR
		Mestizos, 34 (23.9%)				
		African-Latin American, 23 (16.2%)				
		Other, 20 (14.1%)				
LARA ¹⁰²	ETN50 + MTX ( <i>n</i> = 281)	White, 134 (47.7%) Mestizos, n (%) 60 (21.4%)	86.1	100% prior MTX		
		African-Latin American, 39 (13.9%)				
		Other, 48 (17.1%)				
Moreland <i>et al.,</i> 1999 ¹⁰⁴	PBO ( <i>n</i> = 80)	89% white	79	90% prior MTX; mean three prior cDMARDs including MTX	84	58
Moreland <i>et al.,</i> 1999 ¹⁰⁴	ETN + PBO ( $n = 78$ )	94% white	79	87% prior MTX; mean 3.3 prior cDMARDs including MTX	67	81
RACAT ¹¹¹	MTX + SSZ + HCQ ( $n = 178$ )	90.4% white	65.7	100% prior MTX	NR	47.2
RACAT ¹¹¹	ETN50 + MTX ( $n = 175$ )	83.4% white	67.2	100% prior MTX		49.7
						continued

			ב הוטוטקור אז. בווי			
Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
Wajdula 2000 (reported in Chen et al., 2006 ¹²³ )	PBO ( <i>n</i> = 111)			Mean 3.5 prior cDMARDs; failed to respond to at least one DMARD	85	71
Wajdula 2000 (reported in Chen et al., 2006 ¹²³ )	ETN ( <i>n</i> = 105)			Mean 3.6 prior cDMARDs; failed to respond to at least one DMARD	86	70
Weinblatt <i>et al.</i> , 1999 ¹²⁴	MTX + PBO, $(n = 30)$	White 83%	06	100% prior MTX	80	70
Weinblatt <i>et al.</i> , 1999 ¹²⁴	ETN 25 mg twice weekly + MTX ( <i>n</i> = 59)	White 76%	84	100% prior MTX	75	53
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ or LEF) $(n = 103)$	NR	NR	100% prior MTX; 30.1% also other cDMARD(s)	NR	NR
APPEAL ⁶⁸	ETN 25 mg twice weekly (licensed dose) + MTX (n = 197)	R	NR	100% prior MTX; 24.4% also other cDMARD(s)	NR	NR
GO-FORTH ⁹¹	PBO every 4 weeks + MTX 6–8 mg/week	R	NR	All patients had received MTX > 6 mg/week for $\geq$ 3 months prior to the start of the study. Other prior DMARDs and biologics not reported	NR	NR
GO-FORTH ⁹¹	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	NR	NR	All patients had received MTX > 6 mg/week for $\geq$ 3 months prior to the start of the study. Other prior DMARDs and biologics not reported	NR	R

TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO (continued)

'ing at								continued
% receiv steroids baseline	65.4							
% receiving NSAIDs at baseline	85.7							
Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	Patients had to have been on stable MTX dose of 15 mg/week or greater but 25 mg/week or less during the 4-week period immediately preceding screening. Must have tolerated at least 15 mg/week for at least 3 months before screening. Patients had active RA defined as $\geq$ 4 of 66 swollen joints, $\geq$ 4 of 68 tender joints and at least two of following criteria: CRP $\geq$ 1.5 mg/dl or ESR $\geq$ 28 mm/hour Median MTX dose (mg/week) = 15.0 (IQR 15.0–20.0)	Duration of previous MTX use (years):	< 1 = 33 (24.8%)	≥1 to <3=30 (22.6%)	≥ 3 = 68 (51.1%)	Patients with previous use of DMARD other than MTX = 94 (70.7%)	(Any previous use of any antiTNF agent, RTX, natalizumab or cytotoxic agents excluded patients from trial participation. In addition, patients should not have taken anakinra; DMARDs other than MTX; or i.v., i.m. or intra-articular corticosteroids within 4 weeks before first dose of study drug or alefacept or efalizumab within 3 months of first dose of study drug)	
Rheumatoid factor (% positive)	81.2							
Ethnicity (where reported)	X							
Treatment arms for which data extraction performed	PBO s.c. every 4 weeks + MTX							
Trial name/study	GO-FORWARD ⁹²							

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	NR	86.5 (77/89)	Median MTX dose (mg/week) = 15.0 (IQR 15.0–20.0)	86.5	75.3
				Duration of previous MTX use (years):		
				< 1 = 20 (22.5%)		
				≥1 to <3=32 (36.0%)		
				≥ 3 = 37 (41.6%)		
				Patients with previous use of DMARD other than $MTX = 70 (78.7\%)$		
Kay <i>et al.</i> , 2008 ⁹⁸ (NCT00207714)	PBO s.c. + MTX	R	NR	All patients treated with MTX at dosage of at least 10 mg/week for $\geq$ 3 months and at stable dosage for $\geq$ 4 weeks before receiving first dose of study drug	NR	NR
				Patients had active RA defined as $\geq$ 6 swollen joints, $\geq$ 6 tender joints and at least two of the following three criteria: CRP $\geq$ 1.5 mg/dl, ESR $\geq$ 28 mm/hour or morning stiffness of $\geq$ 30 minutes		
Kay <i>et al.</i> , 2008 ⁹⁸	GOL 50 mg s.c. every 4 weeks + MTX	NR	NR		NR	NR

TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO (continued)

me/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
)06 ⁵⁶	PBO + MTX	Japanese patients	NR	Eligible patients had received MTX treatment for more than 3 months, with a stable MTX dosage at 6 mg/week or more during the last 4 weeks	95.7	89.4
				Patients had active RA defined as $\geq 6$ of 68 tender joints, $\geq 6$ of 66 swollen joints, and at least two of the following: morning stiffness $\geq 45$ minutes, ESR $\geq 28$ mm/hour, or CRP $\geq 2$ mg/dl. Patients not permitted to use DMARD, immunosuppressive drugs other than MTX, or intra-articular, i.m., i.v. or epidural corticosteroids		
006 ⁵⁶	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 + MTX		NR		89.8	85.7
	PBO i.v. + MTX	White 78/88 (89)	77	Patients had been receiving MTX for at least 3 months with no break in treatment of more than 2 weeks during that period. MTX dose required to have been stable at $\geq 12.5$ mg/week for at least 4 weeks before screening	72	64
				Patients were excluded if they had used a DMARD other than MTX or received intra-articular/IM/V corticosteroids in 4 weeks before screening; received any other agent to reduce TNF		
				Mean number (SD) of previous DMARDs (excluding MTX) = 2.5 (1.4)		
	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX	White 80/86 (93%)	84	Mean number of previous DMARDs (excluding MTX) = 2.8 (SD 1.5)	79	63
						continued

			,			
Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
Durez et al., 2004 ⁸⁶	Single i.v. infusion of MP (sodium hemisuccinate) at	NR	87	Eligible patients had received 15 mg/week MTX treatment (10 mg when tolerance poor)	R	NR
	Week 0 + MLX			Previous treatment with i.v. MP pulse and/or antiTNF agents excluded patients from participation		
				By randomisation, patients had received: MTX (100%), SSZ (85%), GLD salts (79%), HCQ (61%), CYC (58%), D-penicillamine (42%), AZA (30%) and LEF (18%) (authors stated no differences between i.v. MP and IFX arms, no data presented)		
				Previous DMARDs, median 3 (range 1–7)		
Durez <i>et al.</i> , 2004 ⁸⁶	IFX 3 mg/kg at weeks 0, 2 and 6+ MTX	NR	67	Previous DMARDs, median 3 (range 2–6)	NR	NR
START ¹¹⁸	PBO + MTX	R	80.7	All patients had been receiving MTX for at least 6 months prior to randomisation and were permitted to receive stable doses of the following: chloroquine, AZA, penicillarmine, oral/i.m. GLD, HCQ, SSZ, LEF, CYC, oral corticosteroids, NSAIDS. No prior biologics allowed	39.4	29
START ¹¹⁸	IFX 3 mg/kg + MTX	ĸ	82.8	All patients had been receiving MTX for at least 6 months prior to randomisation and were permitted to receive stable doses of the following: chloroquine, AZA, penicillamine, oral/i.m. GLD, HCQ, SSZ, LEF, CYC, oral corticosteroids, NSAIDs. No prior biologics allowed	43.3	59.2

TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO (continued)

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
Swefot ¹¹⁹	SSZ (1000 mg twice daily orally) + HCQ (400 mg daily orally) + MTX	R	65	Patients with early RA (with no previous treatment with DMARDs) were administered MITX (up to 20 mg/week). After 3–4 months, patients who had not achieved low disease activity (having DAS28 > 3), but were able to tolerate MRX were randomised to treatment arms	R	σ
Swefot ¹¹⁹	IFX 3 mg/kg i.v. at weeks 0, 2, 6 and every 8 weeks thereafter + MTX	NR	69		NR	۵
Wong <i>et al.</i> , 2009 ¹²⁵	PBO + MTX (with crossover to open-label IFX at week 24)	NR	7/8	Eligible patients had failed on two DMARDs including MTX. All patients had been receiving MTX ( $\leq$ 25 mg/week)	NR	R
Wong et al., 2009 ¹²⁵	IFX 3 mg/kg at weeks 0, 2, 6 and 8 weeks thereafter + MTX	NR	7/16		NR	NR
Zhang <i>et al.</i> , 2006 ¹²⁶	PBO i.v. + MTX	Chinese patients	NR	Patients had been treated with MTX for at least 3 months at a stable dose (7.5–20 mg/week) for at least 4 weeks	R	R
				Patients who began treatment with other DMARDs within 4 weeks before screening were ineligible. Treatment with other antiTNF agents within 3 months of study entry was not permitted		
				64.0% had previously used drug other than MTX (no other details)		
Zhang <i>et al.</i> , 2006 ¹²⁶	IFX 3 mg/kg i.v. at weeks 0, 2, 6 and 14 + MTX		NR	55.2% had previously used drug other than MTX (no other details)	NR	NR
						continued

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
ACT-RAY ⁵⁷ (NCT00810199)	TCZ 8 mg/kg i.v. every 4 weeks+ oral PBO ( <i>n</i> = 277 randomised)	NR	NR	Subjects had been receiving MTX for at least 12 weeks with stable dose of at least 15 mg/week for at least 6 weeks before starting study treatment	NR	49.1
				Patients were excluded if had any previous use of biological agents as well as any cDMARD drug treatment other than MTX during the month (3 months for LEF) preceding baseline visit		
				Mean MTX dose, mg/week = 16.2 (SD 4.1)		
				Number of prior DMARDs (including MTX before study entry), mean = 1.9 (5D 1.0)		
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every	NR	NR	Mean MTX dose, mg/week = 16.0 (SD 4.4)	NR	48.9
				Number of prior DMARDs (including MTX before study entry), mean = 1.9 (5D 1.1)		
MEASURE ¹⁰³	PBO+MTX	NR	NR	Patients were described as MTX inadequate responders	NR	NR
MEASURE ¹⁰³	TCZ 8 mg/kg i.v. every 4 weeks + MTX	NR	NR		NR	NR

TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO (continued)

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
Nishimoto <i>et al.</i> , 2004 ¹⁰⁶	PBO i.v. every 4 weeks	NR	R	Eligible patients had been treated unsuccessfully (due to lack of efficacy) with one or more DMARD or immunosuppressant	NR	NR
				Active RA defined as ≥ 6 swollen joints, ≥ tender joints and one of the following two criteria: ESR ≥ 30 mm/hour or CRP > 1.0 mg/dl		
				No DMARDs permitted during 4-week washout period before initiation of study agent and during study period		
				Number of failed DMARDs, median = 5 (range $1-10$ )		
Nishimoto <i>et al.,</i> 2004 ¹⁰⁶	TCZ 8 mg/kg i.v. every 4 weeks	NR	NR	Number of failed DMARDs, median = 5 (range $1-11$ )	NR	NR
SAMURAI ¹¹⁵	cDMARDs disease activity ( <i>n</i> = 145)	NR	NR	67% prior MTX	NR	NR
SAMURAI ¹¹⁵	TCZ i.v. ( <i>n</i> = 157)	NR	NR	73% prior MTX	NR	NR
SATORI ¹¹⁶	PBO i.v. every 4 weeks + MTX	NR	NR	Mean number of failed DMARDs = 3.6 (range 1–8)	NR	NR
(NC100144521)				All candidates were treated with MTX 8 mg/week for at least 8 weeks until enrolment. Inadequate response to MTX defined as presence of active disease (as above)		
				Patients not permitted to receive prior antiTNF agents or LEF (within 12 weeks prior to first dose). Patients not permitted to receive DMARDs other than MTX or immunosuppressants (within 2 weeks prior to first dose)		
						continued

rial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
5ATORI ¹¹⁶	TCZ 8 mg/kg i.v. every 4 weeks + PBO capsule	NR	NR	Mean number of failed DMARDs = $3.3$ (range $1-8$ )	NR	NR
TOWARD ¹²¹	PBO i.v. every 4 weeks + stable cDMARDs	72% white; 10% Asian; 8% American Indian/ Natrive Alaskan; 7%	R	Eligible patients had received stable doses of permitted DMARDs (MTX, chloroquine, HCQ, parenteral GLD, SSZ, AZA, and LEF) for ≥8 weeks before study entry	77.1	54.6
				Patients unsuccessfully treated with an antiTNF agent or any cell-depleting therapy were excluded		
				Medication at baseline (%):		
				MTX = 73.9		
				Chloroquine/HCQ = $19.8$		
				SSZ = 14.3		
				LEF = 15.5		
				Parenteral GLD = $0.7$		
				AZA = 2.2		
				Number of background DMARDs at baseline (%):		
				One = 75		
				Two or more = $24$		
				None = 1		
					None = 1	None=1

TABLE 343 Population characteristics additional information: population 2 biologic vs. DMARD(s) or PBO (continued)

Trial name/study	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
TOWARD ¹²¹	TCZ 8 mg/kg i.v. every	72% white; 9%	NR	Medication at baseline (%):	71.4	51.2
	4 weeks + stadie Diviarus	Asian; 10% American Indian/		MTX = 75.8		
		Nauve Alaskan; 4% black; 3%		Chloroquine/HCQ = $20.6$		
		onner		SSZ = 13.1		
				LEF = 12.1		
				Parenteral GLD = 0.2		
				AZA = 2.2		
				Number of background DMARDs at baseline (%):		
				One = 77		
				Two or more=22		
				None = 1		
						continued

	% receiving steroids at baseline	AiC information has been removed	AiC information has been removed	is; CHANGE, Clinical n Randomised, intramuscular; pegol; SATORI, I arthritis.
	% receiving NSAIDs at baseline	AiC information has been removed	AiC information has been removed	with other RA ThErapie CREATE IIb, A 6-month ek subcutaneously, i.m. Inhibitor Certolizumab mumab in Rheumatoic mumab in Rheumatoic
MARD(s) or PBO (continued)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	AiC information has been removed		: Trial; ASSURE, Abatacept Study of Safety in Use v applying staNdard and General Evaluation study; crhritis (RA); ETN50, etanercept 50 mg once a wee ALISTIC, RA EvALuation In Subjects receiving TNF oonse to methotrexate; STAR, Safety Trial of Adali of ≈10 mg/kg based on weight range. f ≈10 mg/kg based on weight range.
2 biologic vs. DI	Rheumatoid factor (% positive)	AiC information has been removed	AiC information has been removed	Systemic SclErosis vith Adalimumab th Rheumatoid A not reported; RE n Inadequate res t thereafter. v. loading dose o v. loading dose o with dose escalat
ormation: population	Ethnicity (where reported)	AiC information has been removed	AiC information has been removed	xate; ASSET, Abatacept ' hritis patients in Japan w AZD9056, in Patients Wi kylosing spondylitis; NR, arthritis patients with a and 4, and every 4 weeks following an optional i. mg every other week. "ery 8 weeks thereafter (
ion characteristics additional inf	Treatment arms for which data extraction performed	Combination cDMARDs	TNF inhibitor + DMARD	nadequate responders to Methotre. Ily disease-affected rheumatoid Art Arm Comparator, Phase Ilb, With <i>i</i> nge, MEASURE, secukinumab in an rolled TOcilizumab for Rheumatoid g/kg intravenously on weeks 0, 2 a mg once per week subcutaneously. wery other week subcutaneously. at weeks 1, 2 and 4, then 200 r ice a week subcutaneously. very 4 weeks subcutaneously. rravenously at weeks 0, 2, 6 and ev ntravenously every 4 weeks.
TABLE 343 Populat	Trial name/study	TACIT ¹⁴¹	TACIT ¹⁴¹	AIM, Abatacept in I investigation in High Double-blind, Open IQR, interquartile ran Study of Active cont ABT i.v. = BT $\approx 10 \text{ m}$ ABT i.v. = BT $\approx 10 \text{ m}$ ABT i.c. = ABT 125 r ADA = ADA 40 mg CTZ = s.c. CTZ 400 r ETN = ETN 25 mg tw GOL = GOL 50 mg e IFX = IFX 3 mg/kg im TCZ = TCZ 8 mg/kg im

TABLE 344 Population	characteristics: trials providing ad	lditional evidence	for the NMA			
Trial name/study	Treatment arms for which data extraction performed	Mean age (years, SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 at baseline (SD) (ESR or CRP where stated)
ACQUIRE ¹²⁷	ABT + PBO + MTX (n = 736)	49.9 (13.2)	84.4	NR	7.6 (8.1)	6.23 (0.85) CRP
ACQUIRE ¹²⁷	ABT + PBO + MTX ( $n = 721$ )	50.1 (12.6)	80.4		7.7 (7.8)	6.20 (0.8) DAS 28-CRP
NCT00254293 ¹³¹	PBO + MTX (n = 119)	54.7 (NR), range 23–80	66	NR	8.9 (8.3)	5.5 (0.87) CRP
NCT00254293 ¹³¹	ABT i.v. (≈ 10 mg/kg) + MTX ( <i>n</i> = 115)	55.8 (NR), range 17–83	75		9.7 (9.8)	5.5 (0.6) CRP
ORAL STANDARD ¹³³	MTX + PBO ( <i>n</i> = 108)	53.7	75.9	Yes	7.9	6.5 ESR; 5.5CRP
ORAL STANDARD ¹³³	TOF5 + MTX ( $n = 204$ )	53.0	85.3		7.6	6.6 ESR; 5.4 CRP
ORAL STANDARD ¹³³	TOF10 + MTX ( <i>n</i> = 201)	52.9	83.6		7.4	6.5 ESR; 5.4 CRP
ORAL STANDARD ¹³³	ADA + MTX (n = 204)	52.5	79.4		8.1	6.4 ESR; 5.3 CRP
JRAPID ¹²⁹	MTX + PBO (n = 77)	51.9 (11.1)	85.7	Yes	5.8 (4.1)	6.5 (0.9) ESR
JRAPID ¹²⁹	CTZ 200 mg every 2 weeks+ MTX ( <i>n</i> = 82)	50.6 (11.4)	84.1		5.6 (4.2)	6.2 (0.8) ESR
RA0025 ¹³⁴	PBO + MTX (n = 40)	51.6 (11.7)	88.9	Yes	6.5 (4.2)	7.33 (1.09) ESR
RA0025 ¹³⁴	CTZ + MTX (n = 81)	50.8 (11.1)	87.5		5.5 (4.6)	7.46 (1.29) ESR
RAPID1 ¹³⁵	PBO + MTX ( <i>n</i> = 199)	52.2 (11.2)	83.9	Yes	6.2 (4.4)	7.0 (0.9) ESR
RAPID1 ¹³⁵	CTZ + MTX ( <i>n</i> = 393)	51.4 (11.6)	82.4		6.1 (4.2)	6.9 (0.8) ESR
RAPID2 ¹³⁶	PBO + MTX ( <i>n</i> = 127)	51.5 (11.8)	84.3	Yes	5.6 (3.9)	6.83 (0.87) ESR
RAPID2 ¹³⁶	CTZ + MTX ( <i>n</i> = 246)	52.2 (11.1)	83.7		6.1 (4.1)	6.85 (0.84) ESR
						continued

	נוומומרנכו וזנוכא. נוומוא מוטעומוווש מענ			(ner		
Trial name/study	Treatment arms for which data extraction performed	Mean age (years, SD)	Sex (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 at baseline (SD) (ESR or CRP where stated)
TEAR ⁵³	MTX monotherapy (ST) $(n = 124)$	49.3	70.2	Yes	0.38	5.8 ESR
	ST = step-up from MTX to triple DMARD therapy (MTX + SSZ + HCQ)					
TEAR ⁵³	MTX monotherapy (SE) $(n = 255)$	48.6	69		0.24	5.8 ESR
	SE = step-up from MTX to MTX + ETN					
TEAR ⁵³	MTX + SSZ + HCQ ( <i>n</i> = 132)	48.8	76.5		0.34	5.8 ESR
TEAR ⁵³	ETN50 + MTX ( <i>n</i> = 244)	50.7	74.2		0.29	5.8 ESR
TEMPO ⁵⁴	MTX monotherapy ( $n = 228$ )	53.0	79	NR	6.8 (5.5)	5.5 (1.2)
TEMPO ⁵⁴	ETN monotherapy ( $n = 223$ )	53.2	77		6.3 (5.1)	5.7 (1.1)
TEMPO ⁵⁴	ETN + MTX ( $n = 231$ )	52.5	74		6.8 (5.4)	5.5 (1.2)
AMBITION ⁵⁵	MTX ( $n = 284$ )	50.0 (12.9)	79	NR	6.2 (7.8)	6.8 (0.9)
(ITT baseline covariate data presented)	(Note that data are presented for the whole trial population as data for the MTX- experienced subgroup was not reported)					
AMBITION ⁵⁵	TCZ monotherapy ( $n = 288$ )	50.7 (13.1)	83		6.4 (7.9)	6.8 (1.0)
LITHE ¹³⁰	PBO + MTX ( <i>n</i> = 393)	51.3 (12.4)	83	Yes	Mean = 9.0 (range 0.5-44.3)	6.5 (1.0)

TABLE 344 Population characteristics: trials providing additional evidence for the NMA (continued)

Trial name/study	data extraction performed	(years, SD)	Sex (% female)	plan reported?	(years, SD)	(ESR or CRP where stated)
LITHE ¹³⁰	TCZ + MTX ( <i>n</i> = 398)	53.4 (11.7)	82		Mean = 9.3 (range 0.6–48.8)	6.6 (1.0)
OPTION ¹³²	PBO + MTX (n = 204)	50.6 (12.1)	78	NR	7.8 (7.2)	6.8 (0.9)
OPTION ¹³²	TCZ + MTX (n = 205)	50.8 (11.8)	85		7.5 (7.3)	6.8 (0.9)
ACQUIRE, subcutaneot Steady-State Trough Cd ORAL, Tofacitinib or Ad ABT i.v. = BT $\approx$ 10 mg/k ABT s.c. = ABT 125 mg ADA = ADA 40 mg evel CTZ = s.c. CTZ 400 mg ETN 25 mg twice TCZ = TCZ 8 mg/kg intr Data are shown to the	is abatacept versus intravenous abata pricentrations, Safety, and Immunogei lalimumab versus Placebo in Rheumai g intravenously on weeks 0, 2 and 4, once per week subcutaneously, follov y other week subcutaneously. at weeks 1, 2 and 4, then 200 mg ev a week subcutaneously. a weeks ubbutaneously.	acept; ETN50, etane inicity of Abatacept toid Arthritis; TOF5, and every 4 weeks wing an optional i.v ery other week. Cce material.	rcept 50 mg once a wee After Subcutaneous (SC tofacitinib 5 mg; TOF10 thereafter. · loading dose of ≈10 m	k subcutaneously; ITT, inte ) Administration to Subject ), tofacitinib 10 mg. ng/kg based on weight ran,	intion to treat; NCT0025. ts With Rheumatoid Arthi ge.	293, Study to Assess itis (RA); NR, not reported;

DOI: 10.3310/hta20350

Trial name/ author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	<i>n</i> (%) receiving NSAIDs at baseline	<i>n</i> (%) receiving steroids at baseline
ACQUIRE ¹²⁷	ABT s.c. + PBO i.v. + MTX	74.7% Caucasian	84.8	Inadequate response to $\geq$ 3 months of MTX at $\geq$ 15 mg/week. Prior biologics in 4.3% of the sample	NR	NR
ACQUIRE ¹²⁷	ABT i.v. + PBO s.c. + MTX	74.5% Caucasian	85.9	Inadequate response to $\geq 3$ months of MTX at $\geq 15$ mg/week. Prior biologics in 6.0% of the sample	NR	NR
NCT00254293 ¹³¹	PBO + MTX	87% white	NR	99.2% prior MTX, 21.0% other prior DMARDs, 2.6% prior antiTNF	NR	67.2
NCT00254293 ¹³¹	ABT i.v. (≈ 10 mg/kg) + MTX	87% white	NR	99.1% prior MTX, 16.5% other prior DMARDs, 2.6% prior antiTNF	NR	60.0
ORAL STANDARD ¹³³	MTX + PBO	Region of origin: North America 28.7%; Latin America 4.7%; Europe 49%; other 18.5%	66.3	100% prior MTX, 54.7% other prior cDMARDs, 8.3% prior TNF inhibitor	NR	66.7
ORAL STANDARD ¹³³	TOF5 + MTX	Region of origin: North America 24.5%; Latin America 3.9; Europe 53.9%; other 17.6%	66.8	100% prior MTX, 53.4% other prior cDMARDs, 5.9% prior TNF inhibitor	NR	61.8
ORAL STANDARD ¹³³	TOF10+MTX	Region of origin: North America 24.9%; Latin America 1.5%; Europe 55.7%; other 17.9%	66.2	100% prior MTX, 57.2% other prior cDMARDs, 7.0% prior TNF inhibitor	NR	64.2
ORAL STANDARD ¹³³	ADA + MTX	Region of origin: North America 25.5%; Latin America 2.9%; Europe 53.9%; other 17.6%	68.2	100% prior MTX, 55.9% other prior cDMARDs, 7.8% prior TNF inhibitor	NR	61.3
JRAPID/Yamamoto <i>et al.</i> , 2011 ¹²⁹	MTX + PBO	R	85.7	Inadequate response to MTX. 19.5% had prior TNF inhibitors	NR	NR
(NCT00791999)						
JRAPID ¹²⁹	CTZ 200 mg every 2 weeks + MTX	NR	86.6	Inadequate response to MTX. 13.4% had prior TNF inhibitors	NR	NR

TABLE 345 Population characteristics additional information: NMA sensitivity analyses trials

ہ (%) eceiving teroids at aseline	R	R	с,	с,	continued
n (%) receiving NSAIDs at s baseline b	NR	NR	Υ Υ	л Ч	
Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	Inadequate response to MTX. Study MTX dose 10–20 mg (minmax.). Prior TNF inhibitors in 13.6%	Inadequate response to MTX. Study MTX dose 10–20 mg (min.–max.). Prior TNF inhibitors in 17.5%	Patients were required to receive MTX for $\geq 6$ months with a stable dosage of $\geq 10 \text{ mg/week}$ for $\geq 2$ months prior to baseline. No biologics within 6 months of baseline (or within 3 months for ETN/AKR) and/or no previous biologics that resulted in severe hypersensitivity or anaphylactic reaction, or response failure to antiTNF agent. Mean (SD) of 1.4 (one previous DMARD). Prior TNF inhibitors in 3.5%	Patients were required to receive MTX for $\geq 6$ months with a stable dosage of $\geq 10 \text{ mg/week}$ for $\geq 2$ months prior to baseline. No biologics within 6 months of baseline (or within 3 months for ETN/ANA) and/or no previous biologics that resulted in severe hypersensitivity or anaphylactic reaction, or response failure to antiTNF agent. Mean (SD) of 1.3 (one previous DMARD). Prior TNF inhibitors in 2.8%	
Rheumatoid factor (% positive)	NR	R	82.8	79.6	
Ethnicity (where reported)	NR	NR	Д	ЛR	
Treatment arms for which data extraction performed	PBO + MTX	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + MTX	PBO + MTX	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + MTX	
Trial name/ author, year	RA0025 ¹³⁴	RA0025 ¹³⁴	RAPID1 ¹³⁵	RAPID1 ¹³⁵	

Trial name/ author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	n (%) receiving NSAIDs at baseline	n (%) receiving steroids at baseline
RAPID2 ¹³⁶	PBO + MTX	R	78.2	Patients were required to receive MTX for $\geq 6$ months with a stable dosage of $\geq 10$ mg/week for $\geq 2$ months prior to baseline. No biologics within 6 months of baseline (or within 3 months for ETN/ANA) and/or no previous biologics that resulted in severe hypersensitivity or anaphylactic reaction, or response failure to antiTNF agent. Mean (SD) of 1.2 (one previous DMARD excluding MTX). Prior antiTNF use in 1.6% patients	ž	8. 5
RAPID2 ¹³⁶	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + MTX	R	77.5	Patients were required to receive MTX for $\geq 6$ months with a stable dosage of $\geq 10 \text{ mg/week}$ for $\geq 2$ months prior to baseline. No biologics within 6 months for of baseline (or within 3 months for ETN/ANA) and/or no previous biologics that resulted in severe hypersensitivity or anaphylactic reaction, or response failure to antiTNF agent. Mean (SD) of 1.2 (one previous DMARD excluding MTX). Prior antiTNF use in 1.6% patients	ž	5
TEAR ⁵³	MTX monotherapy (ST) (n = 124) ST = step-up from MTX to triple DMARD therapy (MTX + SSZ + HCQ)	White 85.5%; African American 11.3%; Hispanic 8.1%	87.1	14.5% prior MTX, 0% prior biologics	ж Х	33.1
TEAR ⁵³	MTX monotherapy (SE) ( <i>n</i> = 255) SE = step-up from MTX to MTX + ETN	White 78.4%; African American 11.4%; Hispanic 12.6%	91	20% prior MTX, 0.8% prior biologics	N	43.5

TABLE 345 Population characteristics additional information: NMA sensitivity analyses trials (continued)

			Rheumatoid	Prior DMARD treatment history (brief description, including	<i>n</i> (%) receiving	<i>n</i> (%) receiving
Trial name/ author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	factor (% positive)	definition of active RA despite previous treatment, where relevant)	NSAIDs at baseline	steroids at baseline
TEAR ⁵³	MTX + SSZ + HCQ ( <i>n</i> = 132)	White 81.1%; African American 8.3%; Hispanic 12.9%	91.7	20.5% prior MTX, 0% prior biologics	NR	43.9
TEAR ⁵³	ETN50 + MTX ( $n$ = 244)	White 77.1%; African American 12.7%; Hispanic 10.7%	88.5	24.6% prior MTX, 0.8% prior biologics	NR	43.0
TEMPO ⁵⁴	MTX monotherapy ( $n = 228$ )	NR	71	42% prior MTX, mean 2.3 prior cDMARDs including MTX	86	64
TEMPO ⁵⁴	ETN monotherapy ( $n = 223$ )	NR	75	42% prior MTX, mean 2.3 prior cDMARDs including MTX	88	57
TEMPO ⁵⁴	ETN + MTX (n = 231)	NR	76	44% prior MTX, mean 2.3 prior cDMARDs including MTX	88	62
AMBITION ⁵⁵ (ITT baseline covariate data presented)	MTX alone	٣	ž	Patients excluded if they had been unsuccessfully treated with an antiTNF agent, had received MTX in the 6 months before randomisation or discontinued MTX due to clinically important adverse effects or lack of efficacy. Patients who had temporarily discontinued MTX owing to side effects or desire to become pregnant and those who discontinued antiTNF agents for reasons other than efficacy (e.g. treatment cost, side effects) could participate in study Patients had active RA defined as $\geq 6$ of 66 swollen joints, $\geq 8$ of 68 tender joints and CRP $\geq 1$ mg/dl or ESR $\geq 28$ mm/hour MTX naive $= 67\%$ Number previous DMARDs/antiTNF agents, mean $= 1.1$ (SD 1.4) Previous use of antiTNF agents $= 7.4\%$ (per-protocol)	X	47
						continued

477

		•				
Trial name/ author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	<i>n</i> (%) receiving NSAIDs at baseline	n (%) receiving steroids at baseline
AMBITION ⁵⁵	TCZ 8 mg/kg i.v. every	NR	NR	MTX naive = 67%	NR	48
	4 WEEKS			Number previous DMARDs/antiTNF agents, mean = 1.2 (SD 1.3)		
				Previous use of antiTNF agents = 8.3% (per protocol)		
LITHE ^{1 30}	PBO i.v. every 4 weeks + MTX	Z	82	Eligible patients who had inadequate responses to MTX [despite receiving MTX for $\geq$ 12 weeks before baseline (stable dose of 10–25 mg/week for $\geq$ 8 weeks)], with active RA defined as $\geq$ 6 swollen joints, $\geq$ 8 tender joints, and either CRP $\geq$ 1 mg/dl or ESR $\geq$ 28 mm/hour, and had $\geq$ radiographically confirmed joint erosion	R	20
				All other DMARDs or biological agents were discontinued before study entry (LEF for $\geq$ 12 weeks, IFX or ADA for $\geq$ 8 weeks and ETN for $\geq$ 2 weeks)		
				Additional exclusion criteria: failure to respond to antiTNF treatment		
				Number of previous DMARDs/antiTNFs, mean = 1.6 (SD 1.5)		
				% with past use of DMARDs=71.2%		
				% with past use of antiTNF agents = 11.5%		

TABLE 345 Population characteristics additional information: NMA sensitivity analyses trials (continued)

me/ year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	<i>n</i> (%) receiving NSAIDs at baseline	<i>n</i> (%) receiving steroids at baseline
	TCZ 8 mg/kg i.v. every 4 weeks + MTX	NR	83	Number of previous DMARDs/antiTNFs, mean = 1.6 (SD 1.4)	NR	62
				% with past use of DMARDs = 75.4%		
				% with past use of antiTNF agents = 10.8%		
22	PBO i.v. every 4 weeks + MTX	R	71	Eligible patients had experienced an inadequate response to MTX, with active RA defined as $\geq 6$ swollen joints, $\geq 8$ tender joints and CRP $\geq 10 \text{ mg/l or ESR} \geq 28  mm/hour. Patients had received MTX for \geq 12 weeks before study entry (with a stable dose of 10–25 mg/week for \geq 8 weeks)$	0	54
				All other DMARDs were discontinued prior to study entry (LEF for $\geq$ 12 weeks, AKR for $\geq$ 1 week, ETN for $\geq$ 2 weeks, and IFX or ADA for $\geq$ 8 weeks)		
				Patients excluded if they had previous unsuccessful antiTNF treatment (discontinuations owing to cost or injection discomfort not excluded)		
				Number of previous DMARDs (not including MTX) = 1.7 (SD 1.5)		
				Previous antiTNF treatment = 19/204 (9%)		
						continued

TABLE 345 Population ch	aracteristics additional inforn	nation: NMA sensitivity ana	llyses trials (co <i>ntinued</i> )					
Trial name/ author, year	Treatment arms for which data extraction performed	Ethnicity (where report	Rheumatoid factor ted) (% positive)	Prior DMARD treatm (brief description, inc definition of active R previous treatment,	ent history Iuding A despite where relevant)	<i>n</i> (%) receiving NSAIDs at baseline	n (%) receiving steroids at baseline	
OPTION ¹³²	TCZ 8 mg/kg i.v. every 4 weeks + MTX	NR	83	Number of previous DN (not including MTX) = 1	AARDs .5 (SD 1.4)	66	55	
				Previous antiTNF treatm (5%)	11/205 nent = 1			
ACQUIRE, subcutaneous a max., maximum; min., min Subjects With Rheumatoid ABT i.v. = BT $\approx$ 10 mg/kg in ABT s.c. = ABT 125 mg onc ADA = ADA 40 mg aevery o CTZ = s.c. CTZ 400 mg at v ETN = ETN 25 mg twice a v IFX = IFX 3 mg/kg intravenc TCZ = TCZ 8 mg/kg intravenc TCZ = TCZ 8 mg/kg intravenc	batacept versus intravenous aba imum; NCT00254293, Study to Arthritis (RA); NR, not reported; travenously on weeks 0, 2 and 4 ther week subcutaneously, foll weeks 1, 2 and 4, then 200 mg 4 veek subcutaneously. veek subcutaneously. ously at weeks 0, 2, 6 and every nously every 4 weeks.	tacept; AKR, anakinra; ANA, Assess Steady-State Trough ( ORAL, Tofacitinib or Adalimu 4, and every 4 weeks thereaft owing an optional i.v. loading every other week. 8 weeks thereafter (with dos urce material.	antinuclear antibody; ETN5 Concentrations, Safety, and umab versus Placebo in Rhe ter. g dose of ≈10 mg/kg based dose of ≈10 mg/kg based e escalation permitted after	, etanercept 50 mg onc Immunogenicity of Abat umatoid Arthritis, TOF5, on weight range. week 12 if lack of respo	e a week subcutane acept After Subcuta tofacitinib 5 mg; TO anse).	ously: ITT, inter aneous (SC) Adr 0F10, tofacitinib	ition to treat; ministration to 10 mg.	
TABLE 346 Disease Activi	ty Score: population 1 head-tr	o-head trial						
Study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28- where stated	.RP <i>n</i> analysed	Mean DAS28 at baseline (SD)	DAS28 I from ba	nean change seline (SD)	
Kume <i>et al.</i> , 2011 ¹⁰⁰	ADA monotherapy	24 weeks	DAS28-ESR	19	5.34 (1.4) ( <i>n</i> = 21)	) -2.12 (0	.38)	
Kume <i>et al.</i> , 2011 ¹⁰⁰	ETN monotherapy	24 weeks	DAS28-ESR	20	5.17 (1.5) $(n = 21)$	) -2.84 (0	.42)	
ADA = ADA 40 mg every o ETN = ETN 25 mg twice a v	ther week subcutaneously. veek subcutaneously.							
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DA528 remission (defined threshold)
----------------------------	-----------------------------------------------------------------	----------------------------------------------------------------	-------------------------------------------	-------------------	--------------------------------	------------------------------------	--------------------------------------------	-------------------------------------------------------
GUEPARD ⁹³	Initial MTX	Week 12	NR	32	DAS28 (ESR) 6.15 (0.88)	R	NR	DAS <2.6, 12.5%
					DAS28 (CRP) 5.85 (0.9)			
GUEPARD ⁹³	Initial ADA + MTX	Week 12	NR	33	DAS28 (ESR) 6.31 (0.78)	R	NR	DAS < 2.6, 36.4%
					DAS28 (CRP) 5.80 (0.8)			
GUEPARD ⁹³	Initial MTX	Week 52	NR	32	NR	NR	NR	DAS < 2.6, 59.4%
	12 weeks, then step-up therapy in both groups based on DAS28							
GUEPARD ⁹³	Initial ADA + MTX	Week 52	NR	33	NR	NR	NR	DAS <2.6, 39.4%
	12 weeks, then step-up therapy in both groups based on DAS28							
HIT HARD ^{94,173}	MTX + PBO	24 weeks (study RCT end point)	DAS28-ESR	85	6.3 (0.9)	3.6 (1.4)	–2.7 (NR)	29.5 (< 2.6)
HIT HARD ⁹⁴	ADA + MTX	24 weeks (study RCT end point)	DAS28-ESR	87	6.2 (0.8)	3.0 (1.2) ^a	–3.2 (NR)	47.9ª (<2.6)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months (primary end point and study RCT end point)	DAS28-CRP	91	5.6 (3.8, 7.0) ⁶	2.6 (1.7, 4.7) ^b	3.0 (NR)	49 (< 2.6)
OPERA ¹⁰⁷	ADA + MTX + steroid	12 months (primary end point and study RCT end point)	DAS28-CRP	68	5.5 (3.8, 7.8) ^b	2.0 (1.7, 5.0) ^{a,b}	–3.5 (NR)	74 ^c (< 2.6)
OPTIMA ¹⁰⁸	MTX + PBO	26 weeks (study RCT end point)	DAS28-CRP	517	6.0 (1.0)	4.1 ( <i>n</i> = 505)	–1.9 (NR)	17 (<2.6)
								continued

TABLE 347 Disease Activity Score: population 1 biologics vs. DMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
OPTIMA ¹⁰⁸	ADA+MTX	26 weeks (study RCT end point)	DAS28-CRP	515	6.0 (1.0)	3.3 ^a ( <i>n</i> = 499)	–2.7 (NR)	34 (< 2.6) ^c
PREMIER ¹⁰⁹	MTX + PBO	1 year (primary end point)	NR	257	6.3 (0.9)	NR	NR	21 (<2.6)
PREMIER ¹⁰⁹	ADA monotherapy + PBO step-up week 16	1 year (primary end point)	NR	274	6.4 (0.9)	NR	NR	23 (<2.6)
PREMIER ¹⁰⁹	ADA+MTX step-up week 16	1 year (primary end point)	NR	268	6.3 (0.9)	NR	NR	43 (<2.6) ^{c (vs. MTX vs. ADA)}
PREMIER ¹⁰⁹	MTX + PBO	2 years (study RCT end point)	NR	257	6.3 (0.9)	NR	NR	25 (<2.6)
PREMIER ¹⁰⁹	ADA monotherapy + PBO step-up week 16	2 years (study RCT end point)	NR	274	6.4 (0.9)	NR	NR	25 (<2.6)
PREMIER ¹⁰⁹	ADA+MTX step-up week 16	2 years (study RCT end point)	NR	268	6.3 (0.9)	NR	NR	49 (<2.6) ^{c (is. MTX vs. ADA)}
COMET ⁸¹	MTX + PBO ( $n = 268$ )	52 weeks	NR	263	6.5 (1.0)	NR	NR	DAS28 < 2.6, 28%
COMET ⁸¹	ETN + MTX (n = 274)	52 weeks	NR	265	6.5 (1.0)	NR	NR	DAS28 < 2.6, 50% ^c
COMET ⁸²	MTX in year 1, MTX in year 2	2 years	NR	130	NR	NR	NR	22%
	n = 99 at start of period 2							
COMET ⁸¹	MTX in year 1, ETN + MTX in year 2	2 years	NR	133	NR	NR	NR	36%ª vs. group given MTX both years
	n = 90 at start of period 2							
COMET ⁸¹	ETN + MTX in year 1, ETN + MTX in year 2	2 years	NR	131	NR	NR	NR	45% ^c vs. group given MTX both years
	n = 111 at start of period 2							
COMET ⁸¹	ETN + MTX in year 1, ETN in year 2	2 years	NR	134	NR	NR	NR	37% ^ª vs. group given MTX both years
	n = 111 at start of period 2							

TABLE 347 Disease Activity Score: population 1 biologics vs. DMARD(s) or PBO (continued)

ig DAS28 defined	11				DAS28 %									ed DAS44 %	continued
% achievir remission ( threshold)	DAS28-ESR	25 ^c	38.8	45	Defined as I < 2.6, 15.0	21.2	NR	NR	NR	NR	NR	NR	NR	DAS (assum < 1.6), 44.6	
DAS28 mean change from baseline (SD)	NR	NR	NR	NR	–2.1 (NR)	–2.6 (NR)	-1.5 (NR)	-1.5 (NR)	–2.2 (NR)	–2.1 (NR)	-1.94 (NR)	-2.53 (NR)	–2.51 (NR)	NR	
Mean DAS28 at follow-up (SD)	NR	NR	NR	NR	4.6 (1.8)	4.0 (1.8) ^c	m	m	2.2	2.2	3.26 (1.3)	2.77 (1.09)	2.79 (0.77)	NR	
Mean DAS28 at baseline (SD)	DAS28-ESR 6.2 (1.17)	DAS28-ESR 6.3 (1.1)	DAS28-ESR 6.2 (1.17)	DAS28-ESR 6.3 (1.1)	6.7 (1)	6.6 (1)	DAS44 4.5 (0.9)	DAS44 4.5 (0.8)	DAS44 4.4 (0.9)	DAS44 4.3 (0.9)	5.2 (0.8)	5.3 (1)	5.3 (1)	NR	
<i>n</i> analysed	160	159	160	159	235	294	126	121	133	128	14	15	15	56	
DAS28-ESR or DAS28-CRP where stated	DAS28-ESR		DAS28-CRP		NR	NR	DAS44	DAS44	DAS44	DAS44	DAS28-CRP	DAS28-CRP	DAS28-CRP	NR	
Assessment time point	24 weeks	24 weeks	52 weeks	52 weeks	54 weeks	54 weeks	6 months	6 months	6 months	6 months	52 weeks (study RCT end point)	52 weeks (study RCT end point)	52 weeks (study RCT end point)	26 weeks	
Treatment arms for which data extraction performed	PBO + MTX	GOL 50 mg s.c. every 4 weeks + MTX	PBO + MTX	GOL 50 mg s.c. every 4 weeks + MTX	PBO i.v. + MTX	IFX i.v. 3 mg/kg at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX	Sequential monotherapy (DAS steered)	Step-up combination therapy (DAS steered)	Initial combination therapy with prednisone (DAS steered)	Initial combination therapy with IFX (DAS steered)	MTX	MTX + i.v. MP	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30, 46 + MTX	MP 250 mg i.v. at week 0, PBO i.v. at weeks 2, 6, 14, 22 + MTX	
Trial name/ study	GO-BEFORE ⁹⁰	GO-BEFORE ⁹⁰	GO-BEFORE ¹⁴³	GO-BEFORE ⁹⁰	ASPIRE ⁷¹	ASPIRE ⁷¹	BeST ⁷⁸	BeST ⁷⁸	BeST ⁷⁸	BeST ⁷⁸	Durez <i>et al.</i> , 2007 ¹²⁰	Durez <i>et al.</i> , 2007 ¹²⁰	Durez <i>et al.</i> , 2007 ¹²⁰	IDEA ⁹⁵	

483

TABLE 347 Dise	ase Activity Score: population 1 bio	ologics vs. DMARD(9	s) or PBO (contin	ued)				
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
IDEA ⁹⁵	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX (IFX dose modifications permitted according to DA544 from week 26)	26 weeks	R	54	R	R	NR	33.3
Quinn <i>et al.</i> , 2005 ¹¹⁰	MTX+PBO	14 weeks (primary end point)	Not stated	10	7.0 (0.9)	6.0 (4.9–6.8) ^{d.e}	-1.0 (NR)	NR
Quinn <i>et al.</i> , 2005 ¹¹⁰	IFX 3 mg/kg + MTX	14 weeks (primary end point)	Not stated	10	6.2 (0.8)	2.9 (2.3–3.8) ^{a.d.e}	3.3 (NR)	NR
Quinn <i>et al.,</i> 2005 ¹¹⁰	MTX + PBO	54 weeks (study RCT end point)	Not stated	10	7.0 (0.9)	4.6 (3.1–5.1) ^{d,e}	–2.4 (NR)	NR
Quinn <i>et al.,</i> 2005 ¹¹⁰	IFX 3 mg/kg + MTX	54 weeks (study RCT end point)	Not stated	10	6.2 (0.8)	2.7 (2.0–3.5) ^{d.e}	–3.5 (NR)	NR
ASPIRE, Active c THerapy with Ai double-blind, ra and Adalimuma ADA = ADA 401 ETN = ETN 25 m GOL = GOL 50 n IFX = IFX 3 mg/k a $p < 0.05$ . b Median (5th, c $p < 0.01$ . d Median (inter e Estimated fro Data are shown	controlled Study of Patients receiving In nti-Rheumatic Drugs (adalimumab and ndomised, controlled trial in new-onse b. mg every other week subcutaneously. g twice a week subcutaneously. g every 4 weeks subcutaneously. g intravenously at weeks 0, 2, 6 and ev 95th centile range). m graphical data. to the level of accuracy available in the	filiximab for the treat methotrexate); IDEA t, treatment-naive, rf very 8 weeks thereaf e source material.	tment of Rheumat , Remission induct neumatoid arthritis ter (with dose esc	oid arthritis of E tion comparing i s; NR, not report si not report alation permitte	arly onset; DAS44, D nfliximab and high-c ied; OPTIMA, OPTim, ed; oPTIMA, OPTim, a after week 12 if la	isease Activity Sco lose intravenous st al protocol for trea protocol for trea ck of response).	re 44 joints; HIT H. eroid, followed by tment Initiation wi	ARD, High Induction treat-to-target: a th Methotrexate

. 5 3 --_ 2 . .

TABLE 348 Dise	ease Activity Score: populations 2 and	d 3 head to head						
Trial name	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
ATTEST ⁷⁴	PBO + MTX	Day 197	DAS28-ESR	110	6.8 (1.0)	5.32 (NR)	-1.48	Defined as DAS28-ESR < 2.6, 2.9%
ATTEST ⁷⁴	IFX + MTX	Day 197	DAS28-ESR	165	6.8 (0.9)	4.55 (NR)	-2.25 ^a	12.8
$ATTEST^{74}$	ABT + MTX	Day 197	DAS28-ESR	156	6.9 (1.0)	4.37 (NR)	-2.53 ^a	11.3
AMPLE ⁶⁶	ABT s.c.	1 year (primary end point)	DAS28-CRP	318	5.5 (1)	3.188	-2.30 (0.08)	43.3 (< 2.6)
AMPLE ⁶⁶	ADA	1 year (primary end point)	DAS28-CRP	328	5.5 (1)	3.188	-2.27 (0.08)	41.9 (< 2.6)
RED-SEA ¹¹⁴	ADA + cDMARDs ( $n = 60$ )	24 weeks	DAS28-CRP	60	5.6 (0.9)	4.16 (NR)	-1.44 (NR)	NR
RED-SEA ¹¹⁴	ETN50 + cDMARDs ( $n = 60$ )	24 weeks	DAS28-CRP	60	5.8 (0.9)	4.04 (NR)	-1.76 (NR)	NR
RED-SEA ^{114,319}	ADA + cDMARDs (n = 60)	12 months	DAS28-CRP	60	Median 5.8 (5.1–6.1) ^b	4.4 (3.1–5.0) ^b	Median –1.4	NR
							Mean –1.54 (1.47)	
RED-SEA ¹¹⁴	ETN50 + cDMARDs ( $n = 60$ )	12 months	DAS28-CRP	60	Median 5.7 رج م_6 جراہ	4.6 (3.5–5.6) ^b	Median –1.1	NR
							Mean –1.34 (1.3)	
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every	24 weeks	DAS28-ESR	163	6.7 (0.9)	3.4 (NR)	-3.3 -	(DAS28 < 2.6)
	4 WEEKS + S.C. LDO ADA							65/163 (39.9%)
ADACTA ⁵⁸	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	DAS28-ESR	162	6.8 (0.9)	5.0 (NR)	–1.8 ^a	17/162 (10.5%) ^a
ETN50, etanerc ABT i.v. = BT $\approx$ ABT s.c. = ABT ADA = ADA 40 CTZ = s.c. CTZ 4 ETN = ETN 25 m IFX = IFX 3 mg/k TCZ = TCZ 8 mg a $p < 0.01$ .	tept 50 mg once a week subcutaneously, 10 mg/kg intravenously on weeks 0, 2 al 125 mg once per week subcutaneously. mg every other week subcutaneously. 400 mg at weeks 1, 2 and 4, then 200 m ig twice a week subcutaneously. cg intravenously at weeks 0, 2, 6 and ever y/kg intravenously every 4 weeks. rquartile range).	NR, not reported. nd 4, and every 4 we following an optiona ng every other week. ery 8 weeks thereaft	eks thereafter. I i.v. loading dose er (with dose esca	e of ≈ 10 mg/kg Ilation permitte	based on weight r d after week 12 if I	ange. ack of response).		

	% achieving DAS28 emission defined hreshold)	DAS28 < 3.2, 3.9%	DAS28 < 2.6, 1.9%	DAS28 < 3.2, 12.5%	DAS28 < 2.6, 23.8% ª	0.0 (< 2.6)	15.4 (< 2.6)	٨R	٨R	5.5 (< 2.6)	26.1 (< 2.6)
	% change from baseline	R N		R N		NR	NR	-9.1	–23.8 ^b	R	R
	DAS28 mean change from baseline (SD)	NR		NR		-0.55 (95% Cl -0.95 to -0.16)	–1.68 (95% Cl –2.15 to –1.2)	-0.7 (1.3)	-1.7 (1.6)	-0.07 (1.20)	-1.12 (1.06)
	Mean DAS28 at follow-up (5D)	NR		NR		4.75 (NR)	3.62 (NR)	6.4 (NR)	5.4 (NR)	4.5	3.38
	Mean DAS28 at baseline (5D)	6.4 (0.1) CRP		6.4 (0.08) CRP		5.3 (0.9)	5.3 (1)	7.1 (0.9)	7.1 (0.8)	4.47 (0.3)	4.53 (0.4)
PBO	n analysed	219		433		22	26	110	113	86	96
vs. DMARD(s) or	DAS28-ESR or DAS28-CRP Where stated	CRP		CRP		DAS28-CRP	DAS28-CRP	NR	NR	DAS28-ESR	DAS28-ESR
2 and 3 biologic	Assessment time point	12 months		12 months		4 months (primary end point and study RCT end point)	4 months (primary end point and study RCT end point)	26 weeks	26 weeks	24 weeks (primary end point and study RCT end point)	24 weeks (primary end point and study RCT end point)
ase Activity Score: populations	Treatment arms for which data extraction performed	MTX + PBO ( <i>n</i> = 219)		ABT i.v. + MTX ( <i>n</i> =433)		PBO + MTX	ABT i.v. (≈ 10 mg/kg) + MTX	PBO s.c.	ADA 40 mg s.c. every other week monotherapy	PBO + cDMARDs	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + DMARDs
TABLE 349 Dise	Trial name/ study	AIM ^{61,62}		AIM ⁶¹		ASSET ⁷²	ASSET ⁷²	Van De Putte <i>et al.</i> , 2004 ¹²²	Van De Putte <i>et al.</i> , 2004 ¹²²	CERTAIN ⁷⁹	CERTAIN ⁷⁹

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
REALISTIC ¹¹³	PBO + existing cDMARDs	12 weeks	DAS28-CRP	29	NR	NR	-0.80 ^c	NR	NR
			DAS28-ESR				-0.80 ^c		
REALISTIC ¹¹³	CTZ 400 mg weeks 0, 2, 4	12 weeks	DAS28-CRP	134	NR	NR	–1.88 ^c	NR	NR
	uterit zoo ittig every 2 weeks + existing cDMARDs		DAS28-ESR				−1.94 ^c		
ADORE ^{59,60}	ETN monotherapy ( $n = 159$ )	16 weeks	ESR	156	6.2 ESR	4.25 (NR)	1.95	NR	DAS28 (4) <2.6, 14.6% ^d
									DAS28 (3) < 2.6, 15.2% ^e
ADORE ⁵⁹	ETN + MTX ( $n = 155$ )	16 weeks	ESR	151	6.3 ESR	4.1 (NR)	2.20	NR	DAS28 (4) < 2.6, 17.3%
									DAS28 (3) < 2.6, 15.1%
CREATE IIb ⁹⁶	DMARD + PBO	24 weeks	NR	65	6.3 (0.76)	5.3 (NR)	-1 (1.2)	NR	NR
CREATE IIb ⁹⁶	ETN50 + DMARD	24 weeks	NR	64	6.4 (0.85)	4.1 (NR)	-2.3 (1.38)	NR	NR
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks monotherapy	24 weeks (primary end point)	Not stated	69	6.1 (95% CI 5.9 to 6.2)	4.1 (95% Cl 3.8 to 4.5)	-2.0 (NR)	NR	10.1 (< 2.6)
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks + MTX 6–8 mg/week	24 weeks (primary end point)	Not stated	73	6.0 (95% CI 5.8 to 6.2)	3.3 (95% Cl 3.0 to 3.5) ^b	-2.7 (NR)	NR	27.4ª (<2.6)
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks monotherapy	52 weeks (primary end point)	Not stated	69	6.1 (0.9)	4.2 (1.5)	-1.9 (NR)	NR	18.8 (< 2.6)
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks + MTX 6–8 mg/week	52 weeks (primary end point)	Not stated	73	6.0 (1.0)	3.0 (1.0) ^b	3.0 (NR)	NR	35.6 ^b (<2.6)
									continued

	•	)							
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
LARA ¹⁰²	MTX + DMARD	24 weeks	ESR	142	5.9 (0.7)	R	NR	NR	DAS < 2.6, 5/142 (3.5%)
									DAS < 3.2, 12.0%
LARA ¹⁰²	ETN50 + MTX	24 weeks		279	5.9 (0.6)	NR	NR	NR	DAS < 2.6, 70/279 (25.1%) ^b
									DAS < 3.2, 47.0% ^b
RACAT ¹¹¹	MTX + SSZ + HCQ	24 weeks	CRP	157	5.8 (0.9)	4.1 (NR)	-1.79 (1.20)	NR	DAS28 ≤2.6, 12.7%
									DAS28 ≤ 3.2, 24.8%
RACAT ¹¹¹	ETN50 + MTX	24 weeks		161	5.9 (0.9)	3.8 (NR)	-2.06 (1.35)	NR	DAS28 ≤2.6, 21.7%ª
									DAS28 ≤ 3.2, 34.8%ª
RACAT ¹¹¹	MTX + SSZ + HCQ ( $n = 178$ )	48 weeks	CRP	154	NR	NR	-2.12 (1.28)	NR	DAS28 ≤2.6, 20.8%
	In analysis <i>n</i> = 154 (of whom 39 switched to ETN)								DAS28 ≤3.2, 37.0%
RACAT ¹¹¹	ETN50 + MTX ( <i>n</i> = 175)	48 weeks		155	NR	NR	-2.29 (1.30)	NR	DAS28 ≤2.6, 25.2%
	In analysis <i>n</i> = 155 (of whom 41 switched to MTX + SSZ + HCQ)								DAS28 ≤ 3.2, 41.9%

TABLE 349 Disease Activity Score: populations 2 and 3 biologic vs. DMARD(s) or PBO (continued)

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DA S28-ESR or DA S28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ	16 weeks	DAS28-ESR	103	6.1 (1.1)	4.4	-1.7 (NR)	27.5	7.8 (<0.26)
		point and study RCT end point)	DAS28-CRP		5.34 (1.1)	3.7	-1.64 (NR)	31.0	21.4 (< 0.26)
APPEAL ⁶⁸	ETN 25 mg twice weekly	16 weeks	DAS28-ESR	197	6.1 (1.1)	3.8 ^b	–2.3 (NR)	38.3 ^b	15.7 (< 0.26)
	(incerised dose) + IVII A	point and study RCT end point)	DAS28-CRP		5.23 (1.1)	3.1 ^b	-2.13 (NR)	40.3 ^b	41.6 ^b (<0.26)
GO-FORTH ⁹¹	PBO every 4 weeks + MTX 6–8 mg/week	14 weeks (primary end point)	DAS28-ESR	88	5.6 (0.99)	5.17 (NR)	-0.43 (1.20)	R	3.4 (<2.6)
GO-FORTH ⁹¹	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	14 weeks (primary end point)	DAS28-ESR	86	5.5 (1.18)	3.52 (NR)	–1.98 (1.25) ^b	R	31.4 ^b (<2.6)
GO-FORTH ⁹¹	PBO every 4 weeks + MTX 6–8 mg/week	24 weeks (study RCT end point)	DAS28-ESR	88	5.6 (0.99)	5.0 (NR)	-0.60 (1.38)	NR	6.8 (< 2.6)
GO-FORTH ⁹¹	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	24 weeks (study RCT end point)	DAS28-ESR	86	5.5 (1.18)	3.45 (NR)	–2.05 (1.23) ^b	NR	34.9 ^b (< 2.6)
GO-FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	14 weeks	DAS28-CRP DAS28-ESR	133	DAS28-CRP 5.458 (4.672–6.09) ^f	NR	NR	NR	1.5
					DAS28-ESR 6.111 (5.260–6.57) ^f				
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	14 weeks	DAS28-CRP DAS28-ESR	89	DAS28-CRP 5.766 (4.628–6.32) ^f	R	R	R	15.7 ^b
					DAS28-ESR 6.105 (5.366–6.940) [†]				
									continued

					100				
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DA S28-ESR or DA S28-CRP where stated	n analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
GO-FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	24 weeks	DAS28-CRP	133	5.458	NR	NR	NR	6.0
			DAS28-ESR		(4.072-0.09) 6.111 (5.260-6.57) ^f				
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	DAS28-CRP	89	5.766 (4.628–6.32) ^f	NR	NR	NR	20.2
			DAS28-ESR		6.105 (5.366–6.940) ^f				
Kay <i>et al.,</i> 2008 ⁹⁸	PBO s.c. + MTX	16 weeks	Both measures reported	35	DAS28-CRP 5.8 (5.2–6.0) ^f	4.8 ^f	DAS28-CRP -1.0 (1.0) -1.0 (-1.8 to -0.0) ^f	NR	DAS28-CRP 0 (DAS28 < 2.6)
					DAS28-ESR 6.3 (5.7–7.0) [†]		DAS28-ESR -1.0 (1.1) -1.0 (-2.0 to 0.0) ^f		DAS28-ESR 0 (DAS28 < 2.6)
Kay <i>et al.,</i> 2008 ⁹⁸	GOL 50 mg s.c. every 4 weeks + MTX	16 weeks	Both measures reported	35	DAS28-CRP 5.9 (5.5–6.9) ^f	3.9 ^f	DAS28-CRP –2.0 (1.3)	NR	DAS28-CRP 11 ^{a,f} (DAS28
					DAS28-ESR 6.4 (5.6–7.3) ^f		–2.0 (–2.6, –1.5) ^c		< 2.6) DAS28-ESR 5.7
							DAS28-ESR –2.1 (1.4)		(9.7 × 825AU)
							-2.2 (-2.8, -1.5) ^{c,b}		
START ¹¹⁸	PBO + MTX	22 weeks (primary end point and study RCT end point)	Not stated	363	NR	4.4 (1.40)	NR	NR	14 (<2.6)

TABLE 349 Disease Activity Score: populations 2 and 3 biologic vs. DMARD(s) or PBO (continued)

ieving ion ed old)	2.6)				19 for :e :nce :%, 1 –2.41%							< 2.6,	< 2.6,		
% ach DAS28 remiss (define thresh	31 ^b (<.	NR	NR	34.8	40.4% ( <i>p</i> = 0.1 absolut differen of 5.65 95% C to 13.7	36.6	45.5 ^a	NR	NR	NR	NR	DAS28 3%	DAS28 59% ^b	NR	NR
% change from baseline	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DAS28 mean change from baseline (SD)	NR	0.3 (NR)	-1.8 (NR)	-3.21 (1.3)	–3.43 (1.3) ^a	-3.74	-3.66	8.0-	-2.7	-0.49 (NR)	–3.75 (NR)	NR	NR	-1.07 (NR)	–3.24 (NR)
Mean DA528 at follow-up (SD)	3.5 (1.4) ^b	6.7	4.4 ^b	3.15 (NR)	2.9 (NR)	2.62 (NR)	2.67 (NR)	NR	NR	5.91 (NR)	2.75 (NR)	NR	NR	5.13 (NR)	2.86 (NR)
Mean DAS28 at baseline (SD)	NR	6.4 (0.8)	6.2 (0.9)	6.36 (1.00)	6.33 (0.98)	6.36 (1.00)	6.33 (0.98)	NR	NR	6.4 (0.9)	6.5 (0.8)	6.4 (0.9)	6.5 (0.8)	6.2 (0.9)	6.1 (0.9)
<i>n</i> analysed	360	NR	NR	267	277	NR	NR	NR	NR	145	157	145	157	64	61
DAS28-ESR or DAS28-CRP where stated	Not stated	NR	NR	DAS28-ESR	DAS28-ESR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Assessment time point	22 weeks (primary end point and study RCT end point)	Week 16	Week 16	24 weeks	24 weeks	52 weeks	52 weeks	12 weeks	12 weeks	24 weeks	24 weeks	52 weeks	52 weeks	24 weeks	24 weeks
Treatment arms for which data extraction performed	IFX 3 mg/kg + MTX	PBO + MTX (with crossover for PBO group to open-label IFX at week 2)	IFX 3 mg/kg at weeks 0, 2, 6 and 8 weeks thereafter + MTX	TCZ + oral PBO	TCZ + MTX	TCZ + oral PBO	TCZ + MTX	PBO + MTX	TCZ + MTX	cDMARDs disease activity	TCZ monotherapy	cDMARDs disease activity	TCZ monotherapy	PBO i.v. every 4 weeks + MTX	TCZ 8 mg/kg i.v. every 4 weeks + PBO capsules
Trial name/ study	START ¹¹⁸	Wong <i>et al.</i> , 2009 ¹²⁵	Wong et <i>al.</i> , 2009 ¹²⁵	$ACT-RAY^{57}$	ACT-RAY ⁵⁷	ACT-RAY ⁵⁷	$ACT-RAY^{57}$	MEASURE ¹⁰³	MEASURE ¹⁰³	SAMURAI ¹¹⁵	SAMURAI ¹¹⁵	SAMURAI ¹¹⁵	SAMURAI ¹¹⁵	SATORI ¹¹⁶	SATORI ¹¹⁶

rable 349 Dise	ise Activity Score: populations	2 and 3 biologic	vs. DMARD(s) or	PBO (continu	led)				
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28-CRP where stated	<i>n</i> analysed	Mean DAS28 at baseline (SD)	Mean DAS28 at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
TOWARD ¹²¹	PBO i.v. every 4 weeks + stable cDMARDs ( <i>n</i> = 415 randomised)	24 weeks	R	413	6.6 (1.0)	5.44 (NR)	-1.16	R	DAS28 < 2.6, 3%
TOWARD ¹²¹	TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs ( <i>n</i> = 805 randomised)	24 weeks	R	803	6.7 (1.0)	3.53 (NR)	–3.17 ^b	R	
(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)
(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)	(AiC information has been removed)
AlM, Abatacept Rheumatoid Arth reported; REALIS Inadequate respondent ABT i.v. = BT $\approx 10$ ABT i.v. = BT $\approx 10$ ABT i.v. = BT $\approx 10$ ABT s.c. = ABT 1 ADT = 5.c. CTZ 40 CTZ = s.c. CTZ 40 GOL = GOL 55 mg/kg TCZ = TCZ 8 mg/kg TCZ = TCZ 8 mg/kg to 2 0.05. b $\rho < 0.01$ . c Least square. d The DAS28 (4)	n Inadequate responders to Me iritis (RA); ASSET, Abatacept Sysi TIC, RA EvALuation In Subjects r onse to methotrexate. Img/kg intravenously on weeks 25 mg once per week subcutaneo of every other week subcutaneously. g every 4 weeks subcutaneously. g every 4 weeks subcutaneously intravenously at weeks 0, 2, 6 cg intravenously every 4 weeks. cg intravenously every 4 weeks.	ihotrexate; CREATE emic SclErosis Trial; eceiving TNF Inhibit eceiving and eve ously, following an usly. 200 mg every othe and every 8 weeks t and every 8 weeks t and every 8 weeks t	IIb, A 6-month Ra ETN50, etanercep or Certolizumab p ry 4 weeks therea optional i.v. loadii r week. r week. hereafter (with do logue Scale of Gei	indomised, Dou egol; SATORI, fter. ng dose of $\approx 10^{-10}$ se escalation p heral Health (G	uble-blind, Open Ar a week subcutaneo Study of Active con Dmg/kg based on w permitted after wee BH VAS), and the nu	m Comparator, F usly, MEASURE, i utolled TOcilizum veight range. k 12 if lack of res umber of tender a	hase IIb, With Az secukinumab in a ab for Rheumato ponse).	D9056, in Patient nkylosing spondyli d arthritis patients ; assessed using th	s With tis; NR, not with an e 28-joint

e DAS28 (3) score, is a function of ESR, tender joint count and swollen joint count, but not GH VAS. f Median (interquartile range). Data are shown to the level of accuracy available in the source material.

÷
Index: population 1
Disability
Questionnaire
Assessment
Health
TABLE 350

<b>ABLE 350</b> Health	Assessment Questionnaire Disability	y Index: population 1	trials				
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
Bejarano et <i>al.</i> , 2008 ⁷⁷	MTX + PBO	Week 56	73	1.3 (0.6)	0.9 (NR)	-0.4 (0.7)	
Bejarano <i>et al.</i> , 2008 ⁷⁷	ADA + MTX	Week 56	75	1.3 (0.6)	0.6 (NR)	-0.7 (0.6)	
GUEPARD ⁹³	Initial MTX	Week 12	32	1.41 (0.74)	0.9 (NR)	-0.51 (95% Cl -0.30 to -0.72)	NR
GUEPARD ⁹³	Initial ADA + MTX	Week 12	33	1.69 (0.59)	0.87 (NR)	-0.82 (95% Cl -0.52 to -1.11)	NR
GUEPARD ⁹³	Initial MTX	Week 52	32	NR	NR	-0.93 (95% CI -0.69 to -1 17)	NR
	12 weeks, then step-up therapy in both groups based on DAS28						
GUEPARD ⁹³	Initial ADA + MTX	Week 52	33	NR	NR	-1.02 (95% CI	NR
	12 weeks, then step-up therapy in both groups based on DAS28						
HIT HARD ⁹⁴	MTX + PBO	24 weeks (study RCT end point)	85	1.3 (0.6)	0.72 (0.6)	-0.58 (NR)	NR
HIT HARD ⁹⁴	ADA + MTX	24 weeks (study RCT end point)	87	1.4 (0.6)	0.49 (0.6)	-0.91 (NR)	NR
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months (primary end point and study RCT end point)	10	1.00 (0.25, 2.31) ^a	0.13 (0, 1.5)ª	–0.63 (–0.82, 0.38)ª	ж
OPERA ¹⁰⁷	ADA + MTX + steroid	12 months (primary end point and study RCT end point)	68	1.13 (0.17, 2.58)ª	0.25 (0, 1.44)ª	-0.88 (-2.46, 0.13)ª	л Ж
OPTIMA ¹⁰⁸	MTX + PBO	26 weeks (study RCT end point)	517	1.6 (0.65)	6.0	-0.66 (0.73) (n = 512)	NR
							continued

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
OPTIMA ¹⁰⁸	ADA + MTX	26 weeks (study RCT end point)	515	1.61 (0.69)	0.7	-0.89 (0.74) (n = 512)	NR
PREMIER ¹⁰⁹	MTX + PBO	1 year (primary end point)	256	1.5 (0.7)	0.7 (0.6)	-0.8 (0.6)	NR
PREMIER ¹⁰⁹	ADA monotherapy + PBO step-up week 16	1 year (primary end point)	272	1.6 (0.6)	0.8 (0.6)	-0.8 (0.7)	NR
PREMIER ¹⁰⁹	ADA + MTX step-up week 16	1 year (primary end point)	266	1.5 (0.6)	0.5 (0.5)	-1.1 (0.6)	NR
PREMIER ¹⁰⁹	MTX + PBO	2 years (study RCT end point)	256	1.5 (0.7)	0.5 (0.6)	(9.0) 6.0-	NR
PREMIER ¹⁰⁹	ADA monotherapy + PBO step-up week 16	2 years (study RCT end point)	272	1.6 (0.6)	0.6 (0.6)	(9.0) (0.6)	NR
PREMIER ¹⁰⁹	ADA + MTX step-up week 16	2 years (study RCT end point)	266	1.5 (0.6)	0.3 (0.5)	-1.0 (0.7)	NR
COMET ⁸¹	MTX + PBO	Week 52	263	1.64 (0.65)	0.92 (0.74)	-0.72	NR
COMET ⁸¹	ETN + MTX	Week 52	265	1.70 (0.68)	0.68 (0.71)	-1.02 ^b	NR
COMET ⁸²	MTX in year 1, MTX in year 2 n = 99 at start of period 2	From week 52 to week 104	66	NR	NR	Non-significant change from baseline	NR
COMET ⁸¹	MTX in year 1, ETN + MTX in year 2	From week 52 to week 104	06	NR	NR	0.17 (0.42) ^b	NR
	n = 90 at start of period 2						
COMET ^{81–83}	ETN + MTX in year 1, ETN + MTX in year 2	From week 52 to week 104	111	NR	NR	Non-significant change from	NR
	n = 111 at start of period 2					ממכוווינס	

TABLE 350 Health Assessment Questionnaire Disability Index: population 1 trials (continued)

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
COMET ⁸¹	ETN + MTX in year 1, ETN in year 2	From week 52 to week 104	111	NR	NR	Non-significant change from hasoline	NR
	n = 111 at start of period 2						
ERA/Bathon and Genovese, 2003 ¹³⁹ (multicentre)	MTX + PBO	12 months (study RCT end point)	217	NR	NR	-0.76 (SE 0.05)	NR
ERA/Bathon and Genovese, 2003 ¹³⁹ (multicentre)	ETN 25 mg every 2 weeks + PBO	12 months (study RCT end point)	207	NR	NR	-0.73 (SE 0.05)	NR
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	160	1.5 (0.64)	NR	NR	36.95
GO-BEFORE ⁹⁰	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	159	1.5 (0.66)	NR	NR	43.65
Kume <i>et al.,</i> 2011 ¹⁰⁰	ADA	6 months	22	NR	NR	-0.69 (0.11)	NR
Kume <i>et al.,</i> 2011 ¹⁰⁰	ETN	6 months	21	NR	NR	-0.68 (0.09)	NR
ERA, Early Rheuma for treatment Initia ADA = ADA 40 mg ETN = ETN 25 mg tr GOL = GOL 50 mg $i$ a Median (5th, 95; b $\rho$ < 0.01. Data are shown to	toid Arthritis (etanercept); HIT HARD, Hi ion with Methotrexate and Adalimumal every other week subcutaneously. wice a week subcutaneously. th centile range). the level of accuracy available in the sou	gh Induction THerapy b. urce material.	with Anti-Rheuma	tic Drugs (adalimumab a	nd methotrexate); NR, not	reported; OPTIMA, OF	Timal protocol

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
ATTEST ⁷⁴	PBO + MTX	Day 197	110	1.8 (0.7)	NR	R	% achieving ≥ 0.3 improvement from baseline = 40.9
ATTEST ⁷⁴	IFX + MTX	Day 197	165	1.7 (0.7)	NR	NR	% achieving ≥ 0.3 improvement from baseline = 58.8 ^a ^(NS, PBO+MTX)
ATTEST ⁷⁴	ABT + MTX	Day 197	156	1.8 (0.6)	NR	NR	% achieving ≥ 0.3 improvement from baseline = 61.5 ^a ^(NS, PBO+MTX)
AMPLE ⁶⁶	ABT s.c.	1 year (primary end point)	318	1.5 (0.7)	NR	NR	41.7
AMPLE ¹⁴⁴	ADA	1 year (primary end point)	328	1.5 (0.7)	NR	NR	38.7
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA	24 weeks	163	1.6 (0.6)	0.9 (NR)	-0.7	NR
ADACTA ⁵⁸	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	162	1.7 (0.6)	1.2 (NR)	-0.5	NR
deFilippis <i>et al.,</i> 2006 ⁸⁵	ETN + MTX	22 weeks	16	1.89 (0.65)	NR	NR	-17.5

TABLE 351 Health Assessment Questionnaire Disability Index: populations 2 and 3 head-to-head trials

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
deFilippis <i>et al.</i> , 2006 ⁸⁵	IFX + MTX	22 weeks	16	1.67 (0.68)	NR	NR	-16.2
deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN + MTX	54 weeks	16	1.89 (0.65)	NR	NR	-32.3
deFilippis <i>et al.</i> , 2006 ⁸⁵	IFX + MTX	54 weeks	16	1.67 (0.68)	NR	NR	-21.6
NR, not reported. ABT i.v. = BT $\approx 10 \text{ m}$ ABT s.c. = ABT 125 r ADA = ADA 40 mg 6 ETN = ETN 25 mg tw IFX = IFX 3 mg/kg int TCZ = TCZ 8 mg/kg int TCZ = TCZ 8 mg/kg int Data are shown to t	g/kg intravenously on weeks 0, 2 and 4 mg once per week subcutaneously, foll every other week subcutaneously. vice a week subcutaneously. travenously at weeks 0, 2, 6 and every intravenously every 4 weeks. the level of accuracy available in the sou	4, and every 4 weeks th owing an optional i.v. I 8 weeks thereafter (wi urce material.	hereafter. loading dose of $\approx$ th dose escalatior	10 mg/kg based on wei n permitted after week 1	ght range. 2 if lack of response).		

DOI: 10.3310/hta20350

Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
AIM ^{61,62}	MTX + PBO	12 months	219	1.7 (0.6)	(Estimate from graph 1.3)	Adjusted –0.50 (0.05)	NR
AIM ⁶¹	ABT i.v. + MTX	12 months	433	1.7 (0.7)	(Estimate from graph 1.05)	Adjusted -0.68 (0.03)	NR
ASSURE ⁷³	PBO + cDMARDs	<ol> <li>year (primary end point and study RCT end point)</li> </ol>	413	1.5 (0.7) ( <i>n</i> = 418)	1.24 (NR)	-0.26	თ
ASSURE ⁷³	ABT + cDMARDs	<ol> <li>year (primary end point and study RCT end point)</li> </ol>	845	1.5 (0.6) ( <i>n</i> = 856)	1.03 (NR)	-0.47	30
CHANGE ⁸⁰	PBO	24 weeks	87	1.4 (0.7)	1.3 (NR)	0.1 (0.6)	NR
CHANGE ⁸⁰	ADA monotherapy	24 weeks	91	1.6 (0.7)	1.4 (NR)	-0.2 (0.6)	NR
DE019 ⁸⁴	MTX + PBO (n = 200)	24 weeks	200	1.48 (0.59)	1.24 (NR)	-0.24 (0.52)	-16.2
DE019 ⁸⁰	ADA + MTX (n = 207)	24 weeks	207	1.45 (0.63)	0.89 (NR)	-0.56 (0.52)	-38.6
DE019 ⁸⁰	MTX + PBO (n = 200)	52 weeks	200	1.48 (0.59)	1.23 (NR)	-0.25 (0.56)	-16.9
DE019 ⁸⁰	ADA + MTX (n = 207)	52 weeks	207	1.45 (0.63)	0.86 (NR)	-0.59 (0.57)	-40.7
Van De Putte et al., 2004 ¹²²	PBO s.c.	26 weeks	110	1.88 (0.64)	1.81 (NR)	-0.07 (0.49)	1.8
Van De Putte et al., 2004 ¹²²	ADA monotherapy	26 weeks	113	1.83 (0.59)	1.45 (NR)	-0.38 (0.60)	-21.3ª
ARMADA ^{69,70}	MTX + PBO	24 weeks	62	1.64 (0.63)	1.37 (NR)	-0.27 (0.57)	-16.5
ARMADA ⁶⁹	ADA +MTX	24 weeks	67	1.55 (0.61)	0.93 (NR)	-0.62 (0.63)	-40.0ª
CERTAIN ⁷⁹	PBO + cDMARDs (biologic-naive subgroup)	24 weeks (primary end point and study RCT end point)	98	1.11 (0.62)	1.05 (NR)	-0.06	NR

Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	core at baseline (range 0–3) (SD)	core at follow-up (range 0–3) (SD)	change from baseline (SD)	% change from baseline
CERTAIN ⁷⁹	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks + DMARDs (biologic-naive subgroup)	24 weeks (primary end point and study RCT end point)	96	1.04 (0.60)	(NR) 62.0	-0.25	NR
REALISTIC ¹¹³	PBO + existing cDMARDs	12 weeks	29	NR	NR	-0.10 ^b	NR
REALISTIC ¹¹³	CTZ 400 mg weeks 0, 2, 4 then 200 mg every 2 weeks + existing cDMARDs	12 weeks	134	NR	NR	-0.48 ^b	R
ADORE ^{59,60}	ETN monotherapy ( $n = 159$ )	16 weeks	142	1.6	1.01 (NR)	-0.59 (0.69)	NR
ADORE ⁵⁹	ETN + MTX (n = 155)	16 weeks	141	1.7	1.11 (NR)	-0.59 (0.58)	NR
ETN Study 309 ^{88,89}	SSZ + PBO (n = 50)	24 weeks	50	1.6 (0.5)	1.5 (NR)	-0.1 (NR)	9.2
ETN Study 309 ^{88,89}	ETN + PBO ( <i>n</i> = 103)	24 weeks	103	1.7 (0.6)	1.1 (NR)	-0.6 (NR)	35.3 ^ª vs. SSZ
ETN Study 309 ^{88,89}	ETN + SSZ ( $n = 101$ )	24 weeks	101	1.6 (0.6)	1.0 (NR) ^c vs. SSZ	-0.6 (NR)	40.2 ^c vs. SSZ
					Non-significant vs. ETN + PBO		Non-significant vs. ETN + PBO
ETN Study 309 ^{88,89}	SSZ + PBO (n = 50)	104 weeks	50	1.6 (0.5)	(Estimate from graph 1.6)	(Estimate from graph 0) (NR)	NR
ETN Study 309 ^{88,89}	ETN + PBO ( <i>n</i> = 103)	104 weeks	103	1.7 (0.6)	(Estimate from graph 1.1) ^a vs. SSZ	(Estimate from graph 0.6) (NR)	NR
ETN Study 309 ^{88,89}	ETN + SSZ ( $n = 101$ )	104 weeks	101	1.6 (0.6)	(Estimate from graph 0.9) ^a vs. SSZ	(Estimate from graph 0.7) (NR)	NR
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks monotherapy	24 weeks (primary end point)	69	1.3 (0.8)	(8.0) 6.0	-0.4 (NR)	R
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks + MTX 6-8 mg/week	24 weeks (primary end point)	73	1.2 (0.7)	0.7 (0.6)	-0.5 (NR)	NR
							continued

TABLE 352 Health ,	Assessment Questionnaire Disability	/ Index: population	s 2 and 3 vs. Dl	MARD(s) or PBO (cor	ntinued)		
Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks monotherapy	52 weeks (primary end point)	69	1.3 (0.8)	(2.0) (0.7)	-0.4 (NR)	NR
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks + MTX 6–8 mg/week	52 weeks (primary end point)	73	1.2 (0.7)	0.6 (0.6)	-0.6 (NR)	NR
Lan e <i>t al.</i> , 2004 ¹⁰¹	PBO + MTX	12 weeks (primary end point and study RCT end point)	29	1.23	66.0	-0.24	NR
Lan e <i>t al.</i> , 2004 ¹⁰¹	ETN 25 mg twice weekly + MTX	12 weeks (primary end point and study RCT end point)	29	66.0	0.34	-0.65	NR
LARA ¹⁰²	MTX + DMARD	24 weeks	142	1.6 (0.7)	NR	Adjusted –0.5 (SE 0.1)	NR
LARA ¹⁰²	ETN50 + MTX	24 weeks	279	1.6 (0.7)	NR	Adjusted –0.9 (SE < 0.1) ^a	NR
Moreland <i>et al.,</i> 1999 ¹⁰⁴	PBO	6 months	80	1.66 (0.06)	1.54 (NR)	-0.12	NR
Moreland <i>et al.,</i> 1999 ¹⁰⁴	ETN + PBO	6 months	78	1.63 (0.06)	1.04 (NR)	-0.59 ^c	NR
RACAT ¹¹¹	MTX + SSZ + HCQ ( $n = 178$ )	24 weeks	155	4 (0.8)	0.97 (0.85)	-0.44 (0.77)	NR
RACAT ¹¹¹	ETN50 + MTX ( $n = 175$ )	24 weeks	160	1.5 (0.8)	0.98 (0.87)	-0.51 (0.84)	NR
RACAT ¹¹¹	MTX + SSZ + HCQ ( $n = 178$ randomised)	48 weeks	155	1.4 (0.8)	0.93 (0.85)	-0.46 (0.82)	NR
	In analysis $n = 155$ (of whom 39 switched to ETN)						

Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
RACAT ¹¹¹	ETN50 + MTX ( $n = 175$ randomised)	48 weeks	155	1.5 (0.8)	0.83 (0.81)	-0.64 (0.78)	NR
	In analysis $n = 155$ (of whom 41 switched to MTX + SSZ + HCQ)						
Wajdula 2000 (reported in Chen et al., 2006 ¹²³ )	PBO	12 weeks	81	1.8	0.1 (NR)	1.70 (0.60)	NR
Wajdula 2000 (reported in Chen et al., 2006 ¹²³ )	ETN	12 weeks	66	6.1	0.6 (NR)	1.30 (0.60)	NR
Weinblatt <i>et al.</i> , 1999 ¹²⁴	MTX + PBO	24 weeks	30	1.5 ^d	1.1 ^d	-0.4 (NR)	NR
Weinblatt <i>et al.</i> , 1999 ¹²⁴	ETN + MTX	24 weeks	59	1.5 ^d	0.8 ^{a,d}	-0.7 (NR)	NR
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks (primary end point and study RCT end point)	100	1.4 (0.7)	6.0	-0.5 (NR)	38.3
APPEAL ⁶⁸	ETN 25 mg twice weekly (licensed dose) + MTX	16 weeks (primary end point and study RCT end point)	193	1.4 (0.7)	0.7	-0.7 (NR)	49.4
CREATE IIb ⁹⁶ (ClinicalTrials.gov)	PBO + DMARD	24 weeks	65	1.4 (0.59)	1.1 (NR)	-0.3 (0.46)	NR
CREATE IIb ⁹⁶	ETN50 + DMARD	24 weeks	64	1.5 (0.68)	0.9 (NR)	-0.6 (0.66)	NR
GO-FORTH ⁹¹	PBO every 4 weeks + MTX 6–8 mg/week	14 weeks (primary end point)	80	1.0 (0.68)	0.93 (NR)	0.07 (0.49)	NR
GO-FORTH ⁹¹	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	14 weeks (primary end point)	86	1.0 (0.61)	0.68 (NR)	0.32 (0.40)	NR
							continued

TABLE 352 Health ,	Assessment Questionnaire Disability	y Index: population	is 2 and 3 vs. Dl	MARD(s) or PBO (con	itinued)		
Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
GO-FORTH ⁹¹	PBO every 4 weeks + MTX 6–8 mg/week	24 weeks (study RCT end point)	88	1.0 (0.68)	0.97 (NR)	0.03 (0.58)	NR
GO-FORTH ⁹¹	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	24 weeks (study RCT end point)	86	1.0 (0.61)	0.67 (NR)	0.33 (0.42)	NR
GO-FORWARD ³²⁰	PBO s.c. every 4 weeks + MTX	14 weeks	133	1.3 (0.7)	1.14 (NR)	-0.16 (0.49)	NR
				1.250 (0.750–1.750) ^d		-0.13 (-0.38 to 0.13) ^d	
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	14 weeks	89	1.4 (0.7)	NR	-0.42 (0.50) (p < 0.001 vs. PBO)	NR
				1.375 (1.000–1.875) ^d		-0.38 (-0.75 to - 0.13) ^{d (a vs. PBO+MTX)}	
GO-FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	24 weeks	133	1.3 (0.7)	NR	-0.13 (0.58)	NR
				(0.750–1.750) ^d		-0.13 (-0.38 to 0.13) ^d	
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	80	1.4 (0.7)	NR	–0.47 (0.55) ( <i>p</i> < 0.001 vs. PBO)	NR
				~(c/8.1-000.1)		-0.38 (-0.75 to - 0.13) ^d (a vs. PBO+MTX)	
ΑΤΤRΑCΤ ⁷⁵	PBO i.v. + MTX	30 weeks	88	HAQ (0–3) 1.8 (1.3–2.1) ^d	HAQ (0–3) 1.5 (1.0–2.0) ^d	-0.3 (NR)	с Г
ATTRACT ⁷⁵	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter	30 weeks	86	HAQ (0–3) 1.8 (1.4–2.3) ^d	HAQ (0–3) 1.5 (0.9–2.1) ^d	-0.3 (NR)	-13 (p = 0.167)
ATTRACT ¹⁵⁹	PBO i.v. + MTX	54 week	68	1.8 (1.3–2.1) ^d	1.8 (NR)	HAQ change 0 ^d (range 0.0–2.2)	% achieving HAQ change ≥ 0.25=43
ATTRACT ⁷⁵	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter	54 week	77	HAQ 1.8 (1.4–2.3) ^d	1.4 (NR)	HAQ –0.4 ^d (range 0.0–1.9)	% achieving HAQ change $\ge 0.25 = 69^{a}$

Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
Durez et <i>al.,</i> 2004 ⁸⁶	Single i.v. infusion of 1-g MP at week 0 + MTX ( <i>n</i> = 15 randomised)	14 weeks	NR	HAQ 1.5 (0.75–2.13) ^d	1.55	0.05 (NR)	NR
Durez <i>et al.</i> , 2004 ⁸⁶	IFX 3 mg/kg at weeks 0, 2 and 6 + MTX ( <i>n</i> = 12 randomised)	14 weeks	NR	HAQ 1.3 (0.75–2) ^d	0.95 ^c	-0.35 (NR)	NR
START ¹¹⁸	PBO + MTX	22 weeks (primary end point and study RCT end point)	363	1.5 (1–2) ^d	1.39 (NR)	-0.11	R
START ¹⁸	IFX 3 mg/kg + MTX	22 weeks (primary end point and study RCT end point)	360	1.5 (1–2) ^d	1.11 (NR)	-0.30 -	R
Zhang <i>et al.</i> , 2006 ¹²⁶	PBO i.v. + MTX (n = 86 randomised, n = 71 completed)	18 weeks	NR	R	R	HAQ score decreased by 0.45 (unclear whether or not mean value reported)	R
Zhang <i>et al.</i> , 2006 ¹²⁶	IFX 3 mg/kg i.v. at weeks 0, 2, 6 and $14 + MTX$ ( $n = 87$ randomised, $n = 78$ completed)	18 weeks	N	R	R	HAQ score decreased by 0.76 (unclear whether or not mean value reported) ^a	R
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4 weeks + oral PBO	24 weeks	276	1.48 (0.60)	NR	-0.54	NR
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4 weeks + MTX	24 weeks	277	1.46 (0.66)	NR	-0.56	NR
TOWARD ¹²¹	PBO i.v. every 4 weeks + stable cDMARDs ( <i>n</i> = 415 randomised)	24 weeks	413	1.5 (0.6)	1.3 (NR)	-0.2	% achieving ≥ 0.3 change from baseline = 34
TOWARD ¹²¹	TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs (n = 805 randomised)	24 weeks	803	1.5 (0.6)	1.0 (NR)	-0.5ª	% achieving ≥ 0.3 change from baseline = 60
							continued

י אליר טער ווכמונון	השבישוויניור למכשמטוו ומווב הושמחוווני	יייאלאי אישריט	י ו- מומית האיזי שו		יוויייייט		
Trial name/ author, year	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean HAQ-DI score at baseline (range 0–3) (SD)	Mean HAQ-DI score at follow-up (range 0–3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
TACIT ¹⁴¹	Combination cDMARDs	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	NR
TACIT ¹⁴¹	TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	NR
AIM, Abatacept in II rheumatoid Arthritis Phase IIb, With AZD receiving TNF Inhibit ABT i.v. = BT $\approx 10$ m ABT s.c. = ABT 125 r ADA = ADA 40 mg 6 CTZ = s.c. CTZ 400 r FTN = ETN 25 mg tw GOL = GOL 50 mg e IFX = IFX 3 mg/kg int TCZ = TCZ 8 mg/kg int TCZ 8 mg/kg int TCZ = TCZ 8 mg/kg int TCZ 8 m	nadequate responders to Methotrexate c patients in Japan with Adalimumab ap 9056, in Patients With Rheumatoid Art for Certolizumab pegol. g/kg intravenously on weeks 0, 2 and 4 mg once per week subcutaneously, folk every other week subcutaneously. mg at weeks 1, 2 and 4, then 200 mg e very 4 weeks subcutaneously. travenously at weeks 0, 2, 6 and every intravenously every 4 weeks. ( <i>p</i> -value NR). trile range). he level of accuracy available in the sou	<ul> <li>X. ASSURE, Abatacepi oplying staNdard and thritis (RA); ETN50, ei 4, and every 4 weeks owing an optional i every other week.</li> <li>8 weeks thereafter ( urce material.</li> </ul>	t Study of Safety General Evalua tanercept 50 mg thereafter.  Ioading dose c with dose escala	in Use with other RA tion study; CREATE IIb once a week subcutan of ≈10 mg/kg based or tion permitted after w	ThErapies; CHANGE, Clir , A 6-month Randomised neously; NR, not reportec n weight range. eek 12 if lack of respons	ical investigation in Highl , Double-blind, Open Arm ;, REALISTIC, RA EvALuati e).	/ disease-affected Comparator, on In Subjects

TABLE 352 Health Assessment Ouestionnaire Disability Index: populations 2 and 3 vs. DMARD(s) or PBO (continued)

						ח						
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at baseline (SD) (scale)	Mean swollen joint count at follow-up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baseline (SD) (scale)	Mean tender joint count at follow-up (SD) (scale)	Tender joint count % change from baseline	CRP level at baseline (mean) (mg/dl)	CRP level at follow-up (mg/dl)	ESR level at baseline (mm/hour)	ESR level at follow-up (mean) (mm/hour)
HIT HARD ⁹⁴	MTX+PBO	24 weeks	10.7 (4.5) (0-28 scale)	3.6 (4.9) (0–28 scale)	NR	13.1 (5.9) (0-28 scale)	5.0 (6) (0–28 scale)	NR	17 (7–34) ^a	7.1 (8.1)	36 (29–55) ^a	18.7 (14.2)
	ADA + MTX	24 weeks	10.2 (5.0) (0–28 scale)	1.4 (2.2) ^b (0–28 scale)	NR	13.0 (6.5) (0–28 scale)	3.2 (4.8) ^c (0–28 scale)	NR	12 (6–37) ^a	5.7 (10.3)	33 (29–45) ^ª	16.1 (13.3)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	11 (3, 31) ^d	0 (0, 3) ^d	NR	16 (6, 34) ^d	0 (0, 9) ^d	NR	15 (7, 109) ^d	7 (7, 44) ^d	NR	NR
	ADA + MTX + steroid	12 months	10 (3, 33) ^d	0 (0, 6) ^d	NR	15 (5, 38) ^d	0 (0, 13) ^d	NR	15 (7, 133) ^d	7 (7, 21) ^d	NR	NR
OPTIMA ¹⁰⁸	MTX + PBO	26 weeks	12 (5.8) (0–28 scale)	5.8 (0–28 scale)	NR	16 (6.7) (0–28 scale)	7.6 (0–28 scale)	NR	30 (33)	11.7	NR	NR
			18 (11) (0-66 scale)			27 (15) (0–68 scale)						
	ADA+MTX	26 weeks	13 (5.8) (0–28 scale)	3.6 (0–28 scale)	NR	16 (6.6) (0–28 scale)	5.3 ^c (0–28 scale)	NR	27 (32)	7.1 ^c	NR	NR
			18 (11) (0-66 scale)			29 (15) (0–68)						
PREMIER ³¹¹	MTX + PBO	1 year	22.1 (11.7) (0-66 scale)	NR	NR	32.3 (14.3) (0–68 scale)	NR	NR	4.0 (4.0)	NR	NR	NR
	ADA monotherapy + PBO step-up week 16	1 year	21.8 (10.5) (0–66 scale)	N	R	31.8 (13.6) (0-68 scale)	N	NR	4.1 (3.9)	NR	NR	NR
	ADA+MTX step-up week 16	1 year	21.1 (11.2) (0-66 scale)	NR	NR	30.7 (14.2) (0-68 scale)	NR	NR	3.9 (4.2)	NR	NR	NR
PREMIER ³¹¹	MTX + PBO	2 years	22.1 (11.7) (0–66 scale)	NR	NR	32.3 (14.3) (0–68 scale)	NR	NR	4.0 (4.0)	NR	NR	NR
	ADA monotherapy + PBO step-up week 16	2 years	21.8 (10.5) (0–66 scale)	NR	R	31.8 (13.6) (0–68 scale)	N	NR	4.1 (3.9)	NR	NR	NR
	ADA+MTX step-up week 16	2 years	21.1 (11.2) (0–66 scale)	NR	NR	30.7 (14.2) (0–68 scale)	NR	NR	3.9 (4.2)	NR	NR	NR

Joint counts and assessment of inflammation markers: population 1 RCTs of biologic vs. DMARD(s) or PBO TABLE 353 continued

TABLE 353 Jc	oint counts and as	sessment of inf	flammation m	narkers: popu	lation 1 RCTs	of biologic vs	. DMARD(s) o	r PBO (contin	ued)			
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at baseline (SD) (scale)	Mean swollen joint count at follow-up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baseline (SD) (scale)	Mean tender joint count at follow-up (SD) (scale)	Tender joint count % change from baseline	CRP level at baseline (mean) (mg/dl)	CRP level at follow-up (mean) (mg/dl)	ESR level at baseline (mean) (mm/hour)	ESR level at follow-up (mm/hour)
COMET ⁸²	MTX + PBO ( <i>n</i> = 268)	52 weeks	Mean DAS28 swollen joint count 12.3	4.3	65% improvement	NR	NR	R	NR	R	NR	NR
	ETN + MTX (n = 274)		12.4	1.8	85% improvement ^c	NR	NR	NR	NR	NR	NR	NR
COMET ⁸²	MTX in year 1, MTX in year 2	From week 52 to week 104	2.4	2.9	NR	NR	NR	NR	NR	NR	NR	NR
	<i>n</i> = 99 at start of period 2											
	MTX in year 1, ETN + MTX in year 2		2.6	<b>1.3</b> ^b (vs. MTX year ¹ and MTX year 2)	NR	NR	R	R	NR	NR	NR	R
	<i>n</i> = 90 at start of period 2											
COMET ⁸¹	ETN + MTX in year 1, ETN + MTX in year 2		1.7	ci T	NR	NR	R	NR	NR	NR	NR	R
	n = 111 at start of period 2											
	ETN + MTX in year 1, ETN in year 2		1.1	1.7	NR	NR	R	NR	R	NR	NR	R
	n = 111 at start of period 2											
ERA ³²¹	MTX+PBO	6 months	24 (11.9)	NR	NR	30 (16.1)	NR	NR	3.7	NR	NR	NR
	ETN 25 mg every 2 weeks + PBO	6 months	24 (11.9)	NR	NR	31 (15.8)	NR	NR	3.3	NR	NR	NR
ERA ³²¹	MTX + PBO	12 months	24 (11.9)	NR	NR	30 (16.1)	NR	NR	NR	NR	NR	NR
	ETN 25 mg every 2 weeks + PBO	12 months	24 (11.9)	NR	NR	31 (15.8)	NR	NR	NR	NR	NR	NR

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at baseline (SD) (scale)	Mean swollen joint count at follow-up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baseline (SD) (scale)	Mean tender joint count at follow-up (SD) (scale)	Tender joint count % change from baseline	CRP level at baseline (mean) (mg/dl)	CRP level at follow-up (mean) (mg/dl)	ESR level at baseline (mean) (mm/hour)	ESR level at follow-up (mm/hour)
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	(0–66)	NR	66.7 ^a	(0–68)	NR	57.1 ^ª	2.6 (3.28)	NR	NR	NR
			14.9 (10.01)			27.3 (16.16)						
	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	16.0 (9.98)	NR	75.6 ^ª	29.2 (17.05)	NR	67.2 ^{a,c}	2.4 (3.02)	NR	R	NR
Durez <i>et al.</i> , 2007 ¹²⁰	MTX	52 weeks (study RCT end point)	10.3 (5.5)	NR	NR	11.6 (7.5)	NR	NR	2.5 (3.5) 7 (3–121) ^ª	2.5 (1–31) ^a	R	NR
	MTX+i.v. MP	52 weeks (study RCT end point)	12.4 (7.6)	NR	NR	13.2 (9.1)	NR	NR	4.7 (5.1) 32 (3–213) ^a	7.5 (1–27) ^a	R	NR
	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30 and 46	52 weeks (study RCT end point)	12.5 (5.4)	NR	NR	15.9 (8.0)	NR	NR	4.8 (5.2) 19 (1–29)ª	3.5 (1–29) ^ª	R	NR
Quinn <i>et al.</i> ,	MTX+PBO	14 weeks	NR	NR	NR	NR	NR	NR	37 (38.8)	41 ^e	NR	NR
2005	IFX 3 mg/kg + MTX	14 weeks	NR	NR	NR	NR	NR	NR	47 (27.9)	7 ^e	NR	NR
Quinn et al.,	MTX+PBO	54 weeks	NR	NR	NR	NR	NR	NR	37 (38.8)	10 ^e	NR	NR
2005	IFX 3 mg/kg + MTX	54 weeks	NR	NR	NR	NR	NR	NR	47 (27.9)	8 ^e	NR	NR
ERA, Early Rhe for treatment ABT s.c. = ABT ADA = ADA 4 ETN = ETN 25 IFX = IFX 3 mg TCZ = TCZ 8 m a Median (int b $p < 0.001$ . c $p < 0.05$ . d Median (5tl e Estimated f	umatoid Arthritis (, Initiation with Meth 125 mg once per v 7 mg every other w mg twice a week s kg intravenously ig/kg intravenously erquartile range). 1, 95th centile range om graphical data.	etanercept), HIT hotrexate and A week subcutane eek subcutanec ubcutaneously. t weeks 0, 2, 6 every 4 weeks. je).	HARD, High I dalimumab. eously, followi usly. and every 8 w and every 8 w	Induction THera ng an optional reeks thereafter	apy with Anti-R i.v. loading do: r (with dose esc	heumatic Drug se of ≈10 mg/k alation permit	Js (adalimumab g based on we ted after week	) and methotre) sight range. 12 if lack of re	(ate); NR, no	t reported; OP	TIMA, OPTima	I protocol

	SR level at ollow-up mean) mm/hour)	JR	JR					Conflicting Jata	Conflicting Jata	١R		JR	
	ESR level E at baseline f (mean) ( (mm/hour) ((	NR	NR					35.47 ( (20.31) c	38 (26.28) ( c	N/A N/A		N/A L	
	CRP level at follow-up (mean) (mg/dl)	0.80 (1.13)	0.65 (1.21)	6 (3–14) ^a		9 (3–14) ^a		NR	NR	NR		NR	
	CRP level at baseline (mean) (mg/dl)	1.6 (2.1)	1.5 (2.8)	10 (5–22) ^a		12.5 (5–31) ^a		NR	NR	N/A		N/A	esponse).
2	Tender joint count % change from baseline	59.8 improved	61.4 improved					-61.3 ^b	-24.33	NR		NR	eight range. 12 if lack of n
	Mean tender joint count at follow-up (SD) (scale)	NR	NR	5 (1–14) ^a		8 (4–14) ^a		Conflicting data	Conflicting data	(0–68 scale)	12.7 (SD NR)	16.8 (16.2)	g based on we ed after week
	Mean tender joint count at baseline (SD) (scale)	25.4 (15.3) (0–68 scale)	26.3 (15.8) (0–68 scale)	(Scale 0–28)	14 (9–20) ^a	(Scale 0–28)	14 (8–20) ^a	22.40 (8.10)	20.93 (9.97)	(0–28 scale)	15.9 (6.7)	16.5 (7.0)	J. e of ≈10 mg/k alation permitt
	Swollen joint count % change from baseline	70.9 improved	68.2 improved					49.5	45.3	NR		NR	R, not reporte .v. loading dos (with dose esc
	Mean swollen joint count at follow-up (SD) (scale)	NR	NR	4 (1–6) ^a		5 (2-11) ^a		Conflicting data	Conflicting data	(0–66 scale)	6.7 (10.7)	8.6 (10.5)	ut applicable; N g an optional i eks thereafter
	Mean swollen joint baseline (SD) (scale)	15.8 (9.8) (0–66 scale)	15.9 (10.0) (0–66 scale)	(Scale 0–28)	9 (5–12) ^a	(Scale 0–28)	9 (6–13) ^a	16.87 (7.31)	14.73 (5.04)	(0–28 scale)	11.3 (5.3)	12.4 (5.4)	eously, N/A, nc ously, followin usly. usly. and every 8 we
	Assessment time point	l year	l year	12 months				54 weeks	54 weeks	24 weeks		24 weeks	eek subcutane eek subcutaneo k subcutaneously. ubcutaneously ubcutaneously veeks 0, 2, 6 very 4 weeks.
	Treatment arms for which data extraction t	ABT s.c. + MTX	ADA + MTX	ADA + CDMARDs	(n = p0)	ETN50 + cDMARDs	(n= pn)	ETN + MTX	IFX+MTX 5	TCZ 8 mg/kg i.v. 2	every 4 weeks + s.c. PBO ADA	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	tept 50 mg once a w 125 mg once per w mg every other we ng twice a weeks su mg every 4 weeks si gintravenously at v g/kg intravenously ev rquartile range).
	Trial name/ e	AMPLE ⁶⁶ ,		RED-SEA ¹¹⁴	-	]	-	deFilippis et al., 2006 ⁸⁵	_	ADACTA ⁵⁸		、 ¥ £	ETN50, etanerc ABT s.c. = ABT ADA = ADA 40 ETN = ETN 25 tr GOL = GOL 50 t IFX = IFX 3 mg/k TCZ = TCZ 8 mg a Median (inte b $p < 0.05$ .

TABLE 354 Joint counts and assessment of inflammation markers: populations 2 and 3 biologic head-to-head RCTs

TABLE 355 J	oint counts and ass	sessment of in	flammation r	narkers: popu	lations 2 and	3 RCTs of bi	ologic vs. DM/	ARD(s) or PBO				
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at baseline (SD) (scale)	Mean swollen joint count at follow-up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baseline (SD) (scale)	Mean tender joint count at follow-up (SD) (scale)	Tender joint count <i>, n</i> % change from baseline	CRP level at baseline (mean) (mg/dl)	CRP level at follow-up (mean) (mg/dl)	ESR level at baseline (mean) (mm/hour)	ESR level at follow-up (mean) (mm/hour)
AIM ⁶²	MTX + PBO ( <i>n</i> = 219)	12 months	(Scale unclear) 22.1 (8.8)	R	Adjusted mean change –11.5 (0.54)	(Scale unclear) 32.3 (13.6)	N	Adjusted mean change –16.3 (0.85)	28 (25)	Adjusted mean change –8.2 (1.4)	NR	NR
	ABT i.v. + MTX ( <i>n</i> = 433)		21.4 (8.8)	R	Adjusted mean change –16.1 (0.35)	31.0 (13.2)	NR	Adjusted mean change –22.5 (0.55)	33 (31)	Adjusted mean change –18.3 (0.9)	NR	NR
ASSET ⁷²	PBO + MTX	4 months	8.5 (4.1) (Scale NR)	NR	NR	13.3 (7.2) (Scala NR)	NR	NR	16.6 (16.8)	NR	NR	NR
	ABT i.v. (≈ 10 mg/kg) + MTX	4 months	(Scale NR) (Scale NR)	NR	R	(Scale NR) (Scale NR)	NR	NR	13.6 (17.4)	NR	NR	NR
CHANGE®	PBO (n=87)	24 weeks	(Scale unclear) 19.3 (7)	NR	Mean change –1.8 (7.4)	(Scale unclear) 23.7 (8.8)	NR	Mean change –0.5 (10.9)	5.9 (3.3)	Mean change 0.1 (3.2)	NR	NR
	ADA monotherapy $(n = 91)$		19.1 (7.3)	NR	Mean change –8.2 (8.8) ^ª	24.4 (10.7)	NR	Mean change –10.7 (12.3) ^a	6.5 (4.4)	Mean change –1.6 (4.1) ^a	R	NR
ADORE ^{59,60}	ETN monotherapy ( <i>n</i> = 159)	16 weeks		NR	NR	NR	NR	NR	NR	NR	33.2	26.4
	<i>n</i> = 155 at 16 weeks ETN + MTX ( <i>n</i> = 155)			NR	NR	R	R	NR	NR	NR	36.7	20.8 ^b
	<i>n</i> = 151 at 16 weeks											continued

				וומו אבו אי שטער			יוטטור עז. בועוד					
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at baseline (SD) (scale)	Mean swollen joint count at follow-up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baseline (SD) (scale)	Mean tender joint count at follow-up (SD) (scale)	Tender joint count, <i>n</i> % change from baseline	CRP level at baseline (mean) (mg/dl)	CRP level at follow-up (mean) (mg/dl)	ESR level at baseline (mean) (mm/hour)	ESR level at follow-up (mean) (mm/hour)
ETN study 309 ⁸⁹	SSZ + PBO (n = 50)	24 weeks	(Scale unclear)	R	38.5% improvement	Painful joints (scale unclear)	R	Painful joints 22.7% improvement	NR	32.9 ^c	NR	0.2 ^d
	ETN + PBO ( <i>n</i> = 103)			NR	68.7% improvement		NR	65.4% improvement	NR	69.9 ^ª (vs. SSZ) ^c	NR	37.6 ^ª (vs. SSZ) ^d
	ETN + SSZ ( <i>n</i> = 101)			NR	70.1% ^ª vs. SSZ improvement		R	62.0% improvement	NR	66.7 ^a (vs. SSZ) ^c	NR	43.0 ^a (vs. SSZ) ^d
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks	24 weeks	12.4 (6.1)	4.3 (5.2)	NR	15.0 (9.4)	4.5 (8.0)	NR	2.5 (2.5)	1.2 (1.7)	59.7 (28.4)	41.6 (25.4)
	monotherapy		(0–66 scale)			(0-68 scale)						
	ETN 25 mg every 2 weeks + MTX	24 weeks	12.5 (6.5)	3.0 (3.8)	NR	15.1 (8.1)	2.4 (3.9)	NR	3.0 (3.2)	0.6 (1.0) ^a	59.5 (26.5)	29.9 (23.3) ^a
	6–8 mg/week		(0-66 scale)			(0-68 scale)						
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks	52 weeks	12.4 (6.1)	4.0 (4.4)	NR	15.0 (9.4)	4.3 (5.3)	NR	2.5 (2.5)	1.3 (1.6)	59.7 (28.4)	43.7 (27.0)
	monotherapy		(0-66 scale)			(0-68 scale)						
	ETN 25 mg every 2 weeks ± MTX	52 weeks	12.5 (6.5)	1.8 (2.3) ^a	NR	15.1 (8.1)	2.1 (2.8) ^a	NR	3.0 (3.2)	3.0 (3.2) ^b	59.5 (26.5)	28.9 (23.8) ^b
	6–8 mg/week		(0-66 scale)			(0-68 scale)						
Lan <i>et al.,</i> 2004 ¹⁰¹	PBO + MTX	12 weeks	14.45 (0–28 scale)	10.59 (0–28 scale)	27	16.00 (0–28 scale)	13.55 (0–28 scale)	15	1.83	1.38	NR	NR
	ETN 25 mg twice weekly + MTX	12 weeks	13.21 (0–28 scale)	4.66 ^ª (0–28 scale)	65	14.03 (0–28 scale)	7.03 ^ª (0–28 scale)	50	1.65	0.39 ^a	NR	NR
LARA ¹⁰²	MTX + DMARD $(n = 142)$	24 weeks	(Scale unclear)	NR	–8.6 (0.6) ^e	(Scale unclear)	NR	-12.8 (0.8) ^e	NR	NR	NR	NR
			19.3 (10.1)			26.2 (12.3)						
	ETN50 + MTX ( <i>n</i> = 281)		18.2 (8.4)	NR	-15.1 (0.4) ^{a,e}	25.1 (11.9)	NR	-19.8 (0.6) ^{a,e}	NR	NR	NR	NR
	<i>n</i> =279 at week 24											

and assessment of inflammation markers: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO (continued) TABLE 355 Joint counts

SR level at bllow-up nean) nm/hour)	8% worse ^d	8% nproved ^{a,d}	0.38 (16.73)	hange 0.97 ).85)	9.01 (17.89)	hange 0.98 ).87)	8.88 (15.35)	9.76 (18.30)	Of	${\bf 5}^{a,f}$	0.4 (26.2)	4.4 (40.4) ^a	continued
ESR level E at baseline fa (mean) (r (mm/hour) (r	39 1	35 I. 1	27.39 2	) ) )	29.80 1	(1 c. cz)	NR 1	NR 1	36 ^f 3	25 [°] 1	54.80 4 (28.2)	57.7 (33.0) 3	
CRP level at follow-up (mean) (mg/dl)	207% worse ^d	31% improved ^{b,d}	NR		NR		R	R	1.6 ^f	0.5 ^{b,f}	9.8 (52.2)	7.9 (53.3)	
CRP level at baseline (mean) (mg/dl)	4.1	4.7	NR		NR		N	N	2.6 ^f	2.2 ^c	2.06 (2.48) calculated from 20.6 (24.8)	1.70 (2.10) calculated from 17.0 (21.0)	
Tender joint count, <i>n</i> % change from baseline	-6%	-56%ª	NR		NR		R	R	R	R	NR	NR	
Mean tender joint count at follow-up (SD) (scale)	NR	NR	5.87 (5.96)		5.94 (6.85)		4.64 (5.61)	4.61 (6.10)	17 ^f	$\gamma^{\mathrm{b,f}}$	R	R	
Mean tender joint count at baseline (SD) (scale)	(Scale 0–71) 35	33	(Scale 0–28)	13.39 (6.62)	(Scale 0–28)	13.39 (6.39)	R	R	(Scale 0–71) 28 ^c	28 ^f	R	R	
Swollen joint count % change from baseline	7% (worsening)	-47 ^b	NR		NR		3.93 (4.19)	3.50 (3.87)	NR	NR	R	R	
Mean swollen joint count at follow-up (SD) (scale)	NR	NR	5.32 (4.73)		4.76 (5.14)		R	R	16 ^f	6 ^{b,f}	R	R	
Mean swollen joint count at baseline (SD) (scale)	(Scale 0–68) 25	25	(Scale 0–28)	11.12 (5.26)	(Scale 0–28)	11.34 (5.22)	NR	NR	(Scale 0–68) 17 ^f	20 ^f	NR	NR	
Assessment time point	6 months		24 weeks				48 weeks (n = 310 both groups)		24 weeks		16 weeks	16 weeks	
Treatment arms for which data extraction performed	PBO ( <i>n</i> = 80)	ETN + PBO ( <i>n</i> = 78)	MTX + SSZ + HCQ	analysed)	ETN50 + MTX	analysed)	MTX + SSZ+ HCQ (n = 178; not all analysed, some switched)	ETN50 + MTX (n = 175; not all analysed, some switched)	MTX + PBO, (n = 30)	ETN 25 mg twice weekly + MTX n = 59)	MTX + DMARD (SSZ, HCQ or LEF)	ETN 25 mg twice weekly (licensed dose) + MTX	
Trial name/	Moreland f et al., 1999 ¹⁰⁴	-	RACAT ¹¹¹ 1		1		RACAT ¹¹¹ (		Weinblatt et al., 1999 ¹²⁴ (		APPEAL ^{67,68} (	1 / 0	

TABLE 355 Joint counts and assessment of inflammation markers: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO (continued)

ESR level at follow-up (mean) (mm/hour)	NR	NR	NR	NR	NR		NR		NR		NR		NR		NR	
ESR level at baseline (mean) (mm/hour)	NR	NR	NR	NR	NR		NR		NR		NR		NR		NR	
CRP level at follow-up (mean) (mg/dl)	NR	NR	R	R	R		NR		NR		NR		2.3 (0.7–5.1) ^f		0.8 (0.4–2.3) ^{b,f}	(–60% change) ^b
CRP level at baseline (mean) (mg/dl)	NR	NR	NR	NR	0.8 (0.3–2.0) ^f		1.00 (0.40–2.80) ^f		NR		NR		3.0 1 5 5 7 ¹	(1.0-2.1)	3.1 /1 a_5 a\ ^f	
Tender joint count, <i>n</i> % change from baseline	NR	NR	NR	NR	30.0 (–12.1 to 66.7) ^f	As reported	59.5 (24.0–77.8) ^{a,f}	As reported	20.9 (–13.3 to 64.3) ^f		61.6 (18.7–85.4) ^f		-26		–59 ^a	
Mean tender joint count at follow-up (SD) (scale)	NR	NR	NR	NR	NR		NR		NR		NR		16 (7–33) ^f		12 (3–21) ^{a,f}	
Mean tender joint count at baseline (SD) (scale)	13.2 (7.83) (0–68 scale)	13.1 (8.38) (0–68 scale)	13.2 (7.83) (0–68 scale)	13.1 (8.38) (0–68 scale)	21.0 (14.0–34.0) ^f	(0–68 scale)	26.0 (16.0–39.0) ^f	(0–68 scale)	21.0 (14.0–34.0) ^f	As reported	26.0 (16.0–39.0) ^f	As reported	(0–68)	24 (16–48) ^f	(0–68)	32 (16–46) ^f
Swollen joint count % change from baseline	NR	NR	NR	NR	37.5 (0.0–71.4) ^f	As reported	62.1 (28.6–84.6) ^{b,f}	As reported	32.1 (-9.1 to 71.4)	As reported	72.1 (24.0–92.3) ^{b,f}	As reported	-20		–52 ^b	
Mean swollen joint count at follow-up (SD) (scale)	NR	NR	NR	NR	NR		NR		NR		NR		13 (8–26) ^f		9 (4–18) ^{b,f}	
Mean swollen joint count at baseline (SD) (scale)	11.4 (6.58) (0–66 scale)	11.8 (6.72) (0–66 scale)	11.4 (6.58) (0–66 scale)	11.8 (6.72) (0–66 scale)	12.0 (8.0–19.0) ^f	(0–66 scale)	13.0 (8.0–22.0) ^f	(0–66 scale)	12.0 (8.0–19.0) ^ŕ		13.0 (8.0–22.0) ^ŕ		(0–66)	19 (13–28) ^f	(0–66)	19 (13–30) ^f
Assessment time point	14 weeks	14 weeks	24 weeks	24 weeks	Week 14		Week 14		Week 24		Week 24		30 weeks		30 weeks	
Treatment arms for which data extraction performed	PBO every 4 weeks + MTX 6–8 mg/week	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	PBO every 4 weeks + MTX 6–8 mg/week	GOL 50 mg s.c. every 4 weeks + MTX 6–8 mg/week	PBO s.c. every 4 weeks + MTX		GOL 50 mg s.c. every 4 weeks + MTX		PBO s.c. every 4 weeks + MTX		GOL 50 mg s.c. every 4 weeks + MTX		PBO i.v. + MTX		IFX 3 mg/kg i.v. at	and every 8 weeks thereafter
Trial name/ study	GO-FORTH ⁹¹		GO-FORTH ⁹¹		GO- FORWARD ⁹²				GO- FORWARD ⁹²				ATTRACT ⁷⁵			

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at baseline (SD) (scale)	Mean swollen joint count at follow-up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baseline (SD) (scale)	Mean tender joint count at follow-up (SD) (scale)	Tender joint count, <i>n</i> % baseline	CRP level at baseline (mean) (mg/dl)	CRP level at follow-up (mean) (mg/dl)	ESR level at baseline (mean) (mm/hour)	ESR level at follow-up (mean) (mm/hour)
ATTRACT ¹⁴⁶	PBO i.v. + MTX	54 week	(0–66)	NR	13 (61) ^g	(0–68)	NR	23 (63) ^g	N/A	NR	NR	NR
			19 (13–28) ^f		As reported	24 (16–48) ^f		As reported				
	IFX 3 mg/kg i.v. at	54 week	(0-66)	NR	37 (62) ^{b,g}	(0–68)	NR	49 (52) ^{b,g}	N/A	NR	NR	NR
	weeks u, z ana o and every 8 weeks thereafter		19 (13–30) ^f		As reported	32 (16–46) ^f		As reported				
Durez et al.,	Single i.v. infusion	14 weeks	22 (7–38) ^h	22	NR	24 (7–38) ^h	20	NR	1.9 ^h	2.0	NR	NR
2004	01 1-9 MIF at week 0 + MTX ( <i>n</i> = 15 randomised)		(0–66 scale)			(0–68 scale)						
	IFX 3 mg/kg at	14 weeks	16 (8–27) ^h	$\gamma^{\rm b}$	NR	20 (6–44) ^h	Sa	NR	1.3 ^h	0.9	NR	NR
	weeks u, z and 6 + MTX ( <i>n</i> = 12 randomised)		(0–66 scale)			(0–68 scale)						
START ¹¹⁸	PBO + MTX	22 weeks	15 (10–21) ^f	NR	NR	22 (15–32) ^f	NR	NR	1.2 (1–3) ^f	NR	NR	NR
			(0–66 scale)			(0–68 scale)						
	IFX 3 mg/kg + MTX	22 weeks	15 (11–21) ^f	NR	NR	22 (15–31) ^f	NR	NR	1.6 (1–3) ^f	NR	NR	NR
			(0–66 scale)			(0-68 scale)						
Wong et al.,	PBO + MTX (with	Week 16	(0-28 scale)	12	NR	(0–28 scale)	16	NR	3.0	22	40 (24)	37
2002	group to open-label IFX at week 24)		12 (5)			15 (7)						
	IFX 3 mg/kg at weeks 0, 2, 6 and 8 weeks thereafter + MTX	Week 16	10 (5)	4	N	14 (7)	ő	Z	3.2	12	39 (26)	26
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v.	Week 24	15.3 (10.2)	NR	–11.75 (9.45) ^g	26.6 (15.2)	NR	-17.00 (13.64)	NR	NR	NR	NR
	oral PBO		(Scale NR)			(Scale NR)						
	TCZ 8 mg/kg i.v.	Week 24	14.4 (8.9)	NR	-11.33 (8.04) ⁹	25.8 (13.9)	NR	-17.25 (13.35) ⁹	NR	NR	NR	NR
	every 4 weeks + MTX		(Scale NR)			(Scale NR)						
												continued

		ESR
		ESR level
		<b>CRP</b> level at
(continued)		<b>CRP</b> level
ARD(s) or PBO		Tender joint
ologic vs. DM/	Mean	tender joint
d 3 RCTs of bio	Mean	tender joint
ulations 2 and	Swollen	joint count
n markers: pop	Mean	swollen
of inflammation	Mean	swollen
LE 355 Joint counts and assessment		Treatment arms
TAB		

level at ww-up an) ı/hour)				٩
ESR follc (me:	45	11	44.5	12.6
ESR level at baseline (mm/hour)	50	50	49.2 (28.3)	48.2 (27.5)
CRP level at follow-up (mean) (mg/dl)	7	2 [.]	2.33	0.4 ^b
CRP level at baseline (mg/dl)	2.6	3.0 [°]	2.6 (4.7)	2.6 (3.2)
Tender joint count, <i>n</i> % change from baseline	NR	NR	ĸ	ЛR
Mean tender joint count at follow-up (SD) (scale)	(0–28) 7	(0–28) 2 ⁱ	20.6	14.4 ^b
Mean tender joint count at baseline (SD) (scale)	(0–28) 10.5	(0–28) 10 ⁱ	(0–66) 29.1 (14.8)	30.1 (16.0)
Swollen joint count % change from baseline	NR	R	R	N
Mean swollen joint count at follow-up (SD) (scale)	(0–28) 9 ⁱ	(0–28) 4.5	13.8	9.4 ^b
Mean swollen joint count at baseline (SD) (scale)	(0–28) 12 ¹	(0–28) 10 ⁱ	(0–68) 18.7 (10.8)	19.7 (11.6)
Assessment time point	24 weeks	24 weeks	24 weeks	24 weeks
Treatment arms for which data extraction performed	PBO i.v. every 4 weeks + MTX	TCZ 8 mg/kg i.v. every 4 weeks+ PBO capsules	PBO i.v. every 4 weeks + stable cDMARDs ( <i>n</i> = 415 randomised)	TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs ( <i>n</i> = 805 randomised)
Trial name/ study	SATORI ³²²		TOWARD ¹²¹	

ESR level at follow-up (mean) (mm/hour)	AiC information has been removed	information has been removed	ORI, Study of ORI, study of
ESR level at baseline (mean) (mm/hour)	AiC information has been removed AiC	information has been removed	eported; SATi
CRP level at follow-up (mean) (mg/dl)	AiC information has been removed	information has been removed	ble; NR, not r ble; NR, not r
CRP level at baseline (mg/dl)	AiC information has been removed AiC	information has been removed	A, not applica esponse).
Tender joint count, <i>n</i> % change from baseline	AiC information has been removed	information has been removed	investigation in cutaneously; N/, veight range. k 12 if lack of n
Mean tender joint count at follow-up (SD) (scale)	AiC information has been removed	information has been removed	IANGE, Clinical rce a week sub xate. //kg based on v //ted after wee
Mean tender joint count at baseline (SD) (scale)	AiC information has been removed	information has been removed	Erosis Trial; CF rcept 50 mg or ose of $\approx$ 10 mg scalation perm
Swollen joint count % change from baseline	AiC information has been removed	information has been removed	ot Systemic Scl ETN50, etanel aquate respon: eks thereafter. I i.v. loading d i.v. loading d er (with dose e
Mean swollen joint count at follow-up (SD) (scale)	AiC information has been removed	information has been removed	SSET, Abatacel aluation study; is with an Inad ing an optiona ry other week. weeks thereafte e material.
Mean swollen joint count at baseline (SD) (scale)	AiC information has been removed	information has been removed	ethotrexate; A nd General Ev arthritis patient s 0, 2 and 4, a neously, follow cously. ity. 5 and every 8 v 5.
Assessment time point	AiC information has been removed	information has been removed	ssponders to M ing staNdard a r Rheumatoid a nously on week week subcutane veek subcutaneously s ubcutaneously s subcutaneously it weeks 0, 2, ( r every 4 week r every 4 week a.
Treatment arms for which data extraction performed	C ombination cDMARDs TNF	inhibitor + DMARD	ept in Inadequate r n Adalimumab apply alled TOcilizumab for $\approx 10 mg/kg$ intraver W mg every other v T 400 mg at weeks 5 mg twice a week 9/kg intravenously change thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange thange that thange that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that that
Trial name/ study	TACIT ¹⁴¹		AIM, Abatac in Japan with Active contro ABT i.v. = BT ABT s.c. = AE ADA = ADA. CTZ = s.c. CT ETN = ETN 2! GOL = GOL 5 GOL = GOL 5 IFX = IFX 3 m TCZ = TCZ 8 a $p < 0.001.$ b $p < 0.001.$ c Median (ir f Median (ir g Mean cha h Median (ir g Mean cha h Median (ir f Median (ir g Mean cha h Median (ir g Mean cha h Median (ir f Median (ir f Median (ir g Mean cha h Median (ir f Median (ir f M

TABLE 356 Global assessments of disease activity: population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline ^a	Patient's global assessment of disease activity at follow-up ^a	% change from baseline	Evaluator's global assessment of disease activity at baseline ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline
OPERA ¹⁰⁷	PBO + MTX + steroid	12 months	65 (17–96) ^b	18 (0–69) ^b	NR	51 (22–86) ^b	4 (0–33) ^b	NR
	ADA + MTX + steroid	12 months	70 (12–100) ^b	10 (0–54) ^b	NR	57 (22–86) ^b	1 (0–59) ^b	NR
OPTIMA ¹⁰⁸	PBO + MTX	26 weeks	63 (22)	35.1	NR	62 (18)	28.9	NR
	ADA + MTX	26 weeks	64 (23)	26.4	NR	63 (18)	21.3	NR
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	(0-10 scale)	NR	-36.70	(0-10 scale)	NR	-63.00
			5.9 (2.32)			6.0 (1.72)		
	GOL + MTX	24 weeks	(0-10 scale)	NR	–49.55°	(0-10 scale)	NR	-66.70
			6.1 (2.21)			6.2 (1.63)		
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline ^a	Patient's global assessment of disease activity at follow-up ^a	% change from baseline	Evaluator's global assessment of disease activity at baseline ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline
--------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------	-----------------------------------------------------------------------------------	------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------	---------------------------
BeST ¹⁴⁸	Sequential monotherapy	6 months	59.2	NR	Mean change from baseline = -22.3	NR	R	NR
	Step-up combination therapy	6 months	59.4	NR	Mean change from baseline =–28.0	NR	NR	NR
	Initial combination therapy + prednisone	6 months	59.5	R	Mean change from baseline = -32.0 ^c (for sequential monotherapy vs. initial combination + MTX) initial combination + MTX)	R	R	R
	Initial combination therapy + IFX	6 months	61.8	ĸ	Mean change from baseline = -35.9 ^{c (lor} sequential monotherapy vs. initial combination + prethisone and initial combination + MTX)	R	ĸ	ĸ
NR, not reporte. ADA = ADA 401 GOL = GOL 50 r a Reported on b Median (inter c p < 0.05. Data are shown	<ol> <li>OPTIMA, OPTimal protocol for tradience of every other week subcutaneously.</li> <li>every 4 weeks subcutaneously.</li> <li>0-100 VAS scale unless otherwise of unitile range).</li> <li>to the level of accuracy available in to the level of accuracy available in the level o</li></ol>	eatment Initiatio sly. stated. n the source mat	n with Methotrexate erial.	and Adalimumab.				

DOI: 10.3310/hta20350

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline, mean (SD) ^a	Patient's global assessment of disease activity at follow-up, mean (SD) ^a	% change from baseline	Evaluator's global assessment of disease activity at baseline, mean (SD) ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline
AMPLE ⁶⁶	ABT s.c.	12 months	61.1 (22.1)	NR	46.1 (as reported)	58.8 (18.6)	NR	68.5 (as reported)
	ADA	12 months	61.5 (22.5)	NR	41.2 (as reported)	58.8 (18.9)	NR	63.0 (as reported)
^b RED-SEA ¹¹⁴	ADA + cDMARDs	12 months	70 (50–82)	49 (20–65)	NR	NR	NR	NR
	ETN50 + cDMARDs	12 months	70 (54–80)	50 (27–71)	NR	NR	NR	NR
deFilippis <i>et al.</i> ,	ETN + MTX	22 weeks	64.33 (18.89)	NR	34.8 (as reported)	58.33 (14.60)	NR	38.3 (as reported)
2006	IFX + MTX	22 weeks	69.33 (16.57)	NR	21.4 (as reported)	60.67 (12.0)	NR	35.6 (as reported)
deFilippis <i>et al.</i> ,	ETN + MTX	54 weeks	64.33 (18.89)	74.88	50.6 (as reported)	58.33 (14.60)	77.05	41.8 (as reported)
2006°	IFX + MTX	54 weeks	69.33 (16.57)	86.91	22.2 (as reported)	60.67 (12.0)	83.31	43.6 (as reported)
ETN50, etanercer a Reported on 0 b Median (interc ABT s.c. = ABT 1: ADA = ADA 40 m CTZ = s.c. CTZ 4C ETN = ETN 25 mg/kg IFX = IFX 3 mg/kg Data are shown t	of 50 mg once a week subcutanee -100 VAS scale unless otherwise uartile range). 5 mg once per week subcutaneous 9 every other week subcutaneous 0 mg at weeks 1, 2 and 4, then 2 twice a week subcutaneously. intravenously at weeks 0, 2, 6 an o the level of accuracy available ir	busly; NR, not rej stated. usly, following a sly. 200 mg every oth d every 8 weeks nd every 8 weeks	oorted. n optional i.v. loadin; er week. t hereafter (with dos	g dose of ≈10 mg/kc e escalation permitte	J based on weight ran	ge. k of response).		

TABLE 357 Global assessments of disease activity: populations 2 and 3 biologic head-to-head RCTs

TABLE 358 GIOI	bal assessments of disease activi	ity: populations	2 and 3 RCTs of bio	ologic vs. DMARD(s	t) or PBO			
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline, mean (SD) ^a	Patient's global assessment of disease activity at follow-up, mean (SD) ^a	% change from baseline, mean (SD)	Evaluator's global assessment of disease activity at baseline, mean (SD) ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline, mean (SD)
AIM ⁶²	PBO + MTX	12 months	62.8 (21.6)	NR	Adjusted mean change –24.2 (1.72)	67.4 (17.0)	R	Adjusted mean change –34.3 (1.44)
	ABT i.v. + MTX	12 months	62.7 (21.2)	NR	Adjusted mean change –35.8 (1.12)	68.0 (16.0)	NR	Adjusted mean change –49.1 (0.93)
ASSURE ⁷³	PBO + cDMARDs	1 year	61.3 (20.1)	NR	20	58.3 (17.5)	NR	37
	ABT + cDMARDs	1 year	60.6 (19.7)	NR	41	57.8 (17.4)	NR	56
CHANGE ⁸⁰	PBO	24 weeks	64.6 (22.9)	NR	Mean change 2.6 (23.5)	74.1 (15.6)	NR	Mean change –8.0 (21.8)
	ADA monotherapy	24 weeks	71.2 (19.2)	NR	Mean change –19.9 (31.0) ^b	76.2 (14.7)	NR	Mean change –30.3 (24.8) ^b
DE019 ⁸⁴	PBO+MTX	52 weeks	54.3 (22.9)	NR	-20.1	61.3 (17.3)	NR	-31.8
	ADA + MTX	52 weeks	52.7 (21.0)	NR	-52.2	62.0 (16.7)	NR	-63.5
Van De Putte	PBO	26 weeks	71.8 (19.9)	NR	-7.9	68.5 (18.2)	NR	-12.9
et al., 2004	ADA monotherapy	26 weeks	72.6 (19.3)	NR	–38.9 ^c	67.3 (16.6)	NR	–38.8 ^c
ARMADA ^{69,70}	PBO+MTX	24 weeks	58.0 (23.2)	NR	-14.7	58.9 (15.3)	NR	-11.6
	ADA + MTX	24 weeks	56.9 (21.1)	NR	–52.4 ^c	58.7 (15.8)	NR	–53.0 ^c
Kim <i>et al.</i> , 2007 ⁹⁹	PBO + MTX	24 weeks	63.2 (20.44)	NR	Mean change –10.7 (24.85)	64.0 (13.61)	NR	Mean change –9.6 (26.47)
	ADA + MTX	24 weeks	59.7 (17.19)	NR	Mean change –23.7 (26.54) ^b	63.7 (15.16)	NR	Mean change –29.2 (27.48) ^c
								continued

Trial name/	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline, mean (SD) ^a	Patient's global assessment of disease activity at follow-up, mean (SD) ^a	% change from baseline, mean (SD)	Evaluator's global assessment of disease activity at baseline, mean (SD) ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline, mean (SD)
ADORE ⁵⁹	ETN monotherapy	16 weeks	(0–10 scale)	NR	(0-10 scale)	NR	NR	NR
			6.6		Mean change from baseline –2.78 (2.60)			
	ETN + MTX	16 weeks	(0–10 scale)	NR	(0–10 scale)	NR	NR	NR
			6.6		Mean change from baseline –2.95 (2.59)			
ETN study	PBO + SSZ	24 weeks	NR	NR	(0-10 scale)	NR	NR	(0-10 scale)
600					13.6			16.0
	ETN + PBO	24 weeks	NR	NR	50.5 ^c vs. SSZ	NR	NR	59.5 ^c vs. SSZ
	ETN + SSZ	24 weeks	NR	NR	53.5 ^c vs. SSZ, NS vs. ETN + PBO	R	NR	62.0 ^c vs. SSZ, NS vs. ETN + PBO
JESMR ¹⁴⁰	ETN monotherapy	24 weeks	62.5 (20.5)	31.5 (28.4)	NR	58.2 (21.5)	NR	NR
	ETN + MTX	24 weeks	53.7 (23.7)	21.6 (18.8)	NR	58.2 (19.3)	NR	NR
JESMR ¹⁴⁰	ETN monotherapy	52 weeks	62.5 (20.5)	27.4 (25.1)	NR	NR	NR	NR
	ETN + MTX	52 weeks	53.7 (23.7)	21.3 (19.4)	NR	NR	NR	NR
Lan <i>et al.</i> ,	PBO + MTX	12 weeks	69.7	61.4	NR	79.7	54.2	NR
2004	ETN + MTX	12 weeks	66.2	37.9	NR	75.2	22.8	NR

TABLE 358 Global assessments of disease activity: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO (continued)

NIHR Journals Library www.journalslibrary.nihr.ac.uk

aluator's bbal Evaluator's sessment of global ease activity assessment of % change from baseline, disease activity baseline, mean an (SD) ^a at follow-up ^a (SD)	10 scale) NR (1–10 scale)	(1.6) Adjusted mean change –2.4 (SE 0.2)	ale 1–10) NR (1–10 scale)	r (1.6) Adjusted mean change –4.8 (SE0.1) ^c	-10 scale) NR 2 (improved)		-10 scale) NR 44 (improved)	between groups	ale 0–100) 35.70 (22.18) NR	14 (22.98)	.06 (20.01) 35.35 (24.43) NR	ale 0–100) 32.87 (25.07) NR	14 (22.98)	.06 (20.01) 30.77 (23.05) NR	5 (1.8) 3.6 45.0	
Ev glc ass % change from dis baseline, mean at (SD)	(1–10 scale) (1–	Adjusted mean 6.7 change –2.3 (SE 0.2)	(1–10 scale) (sc	Adjusted mean 6.7 change –3.9 (SE 0.2) ^c	3 (worse) (0-	6.9	6 (improved) (0-	between groups ⁵ 6.9	NR (sc	60	NR 61.	NR (sc	60	NR 61.	30.6 6.6	
Patient's global assessment of disease activity at follow-up, mean (SD) ^a	NR		NR		NR		NR		3.51 (2.19)		3.18 (2.32)	3.01 (2.33)		2.98 (2.38)	4.5	
Patient's global assessment of disease activity at baseline, mean (SD) ^a	(1–10 scale)	7.1 (1.9)	(1–10 scale)	7.1 (2.0)	(0–10 scale)	6.9	(0–10 scale)	7.0	(scale 0–10)	5.43 (2.20)	5.63 (1.95)	(scale 0–10)	5.43 (2.20)	5.63 (1.95)	6.5 (1.8)	
Assessment time point	24 weeks		24 weeks		6 months		6 months		24 weeks			48 weeks	( <i>n</i> = 3 10 potn groups)		16 weeks	16 2000
Treatment arms for which data extraction performed	MTX + DMARD		ETN50 + MTX		PBO		ETN + PBO		MTX + SSZ + HCQ (n = 178;	not all allalyseu)	ETN50 + MTX ( <i>n</i> = 175; not all analysed)	MTX + SSZ + HCQ (n = 178;	not all analysea, some switched)	ETN50 + MTX ( <i>n</i> = 175; not all analysed, some switched)	MTX + DMARD (SSZ, HCQ or LEF)	
Trial name/ study	LARA ¹⁰²				Moreland	Mathias et al.,	2000		RACAT ¹¹¹			RACAT ¹¹¹			APPEAL ^{67,68}	

TABLE 358 Glob	al assessments of disease activi	ity: populations	2 and 3 RCTs of bic	ologic vs. DMARD(s	:) or PBO (continued)			
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline, mean (SD) ^a	Patient's global assessment of disease activity at follow-up, mean (SD) ^a	% change from baseline, mean (SD)	Evaluator's global assessment of disease activity at baseline, mean (SD) ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline, mean (SD)
Weinblatt	PBO + MTX	24 weeks	(0–10 scale)	(0–10 scale)	NR	(0–10 scale)	(0–10 scale)	NR
el al., 1999			6.0 ^d	4.0 ^d		6.5 ^d	4.0 ^d	
	ETN + MTX	24 weeks	(0–10 scale)	(0-10 scale)	NR	(0-10 scale)	(0-10 scale)	NR
			6.0 ^d	2.0 ^{b,d}		6.0 ^d	2.0 ^{b,d}	
GO-FORWARD ⁹²	PBO + MTX	Week 14	(0–10 scale) 5.30 (3.70–7.20) ^d	NR	–14.6 (+10.8, –50.0) ^d	(0–10 scale) 5.65 (4.30–6.85) ^d	NR	–34.9 (+2.4 to –64.6) ^d
	GOL + MTX	Week 14	(0–10 scale)	NR	-45.3 (-16.7 to	(0–10 scale) 6.10	NR	-54.5 (-35.2 to
			6.00 (3.80–7.90) ^d		-10.4/-	-(01.7-01.6)		-12.3)-
GO-FORWARD ⁹²	PBO + MTX	Week 24	(0–10 scale) 5.30 (3.70–7.20) ^d	NR	–17.3 (+16.3 to –46.0) ^d	(0–10 scale) 5.65 (4.30–6.85) ^d	NR	-39.1 (-1.3 to -67.3) ^d
	GOL + MTX	Week 24	(0–10 scale)	NR	-47.9 (-17.0 to	(0-10 scale) 6.1	NR	-61.7 (-38.7 to
			6.0 (3.8–7.9) ^d		. (1.0/-	(I.7 –I.C)		. (1.70-
ATTRACT ⁷⁵	PBO + MTX	30 weeks	(0–10 scale)	(0-10 scale)	-7	(0-10 scale)	(0–10 scale)	-13
			6.2 (4.3–8.1) ^d	5.5 (3.1–7.5) ^d		6.5 (5.2–7.4) ^d	5.0 (3.0–7.0) ^d	
	IFX + MTX	30 weeks	(0–10 scale)	(0-10 scale)	–23 ^b	(0-10 scale)	(0–10 scale)	–53°
			6.6 (4.9–7.8) ^d	3.6 (1.8–6.7) ^d		6.1 (4.8–7.1) ^d	2.6 (1.5–5.2) ^d	
Durez <i>et al.</i> ,	MP + MTX	14 weeks	63 (19–100) ^d	50 ^e	NR	58 (18–83) ^d	59°	NR
2004~2	IFX + MTX	14 weeks	52 (15–80) ^d	42 ^e	NR	43 (14–85) ^d	16 ^{c,e}	NR
Wong et al.,	PBO + MTX	Week 16	70 (25)	68 ^e	NR	NR	NR	NR
2009	IFX + MTX	Week 16	68 (15)	32 ^{b,e}	NR	NR	NR	NR

-ļ 1 . _ . ÷ . .

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline, mean (SD) ^a	Patient's global assessment of disease activity at follow-up, mean (SD) ^a	% change from baseline, mean (SD)	Evaluator's global assessment of disease activity at baseline, mean (SD) ^a	Evaluator's global assessment of disease activity at follow-up ^a	% change from baseline, mean (SD)
ACT-RAY ⁵⁷	TCZ + oral PBO	Week 24	NR	NR	Mean change –32.4 (SD 24.34)	NR	NR	Mean change –38.5 (SD 21.65)
	TCZ + MTX	Week 24	NR	NR	Mean change –34.3 (SD 25.68)	NR	NR	Mean change –40.7 (SD 19.55)
SATORI ³²²	PBO + MTX	24 weeks	57 ^e	47 ^e	NR	60 ^e	47 ^e	NR
	TCZ + PBO capsules	24 weeks	60 ^e	28⁰	NR	63 ^e	22 ^e	NR
TACIT ¹⁴¹	Combination cDMARDs	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
	TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AIM, Abatacept rheumatoid Arth NS, non-significa ABT i.v. = BT $\approx$ 11 ADA = ADA 40 r ADA = ADA 40 r CTZ = s.c. CTZ 40 GOL = GOL 50 r IFX = IFX 3 mg/kg TCZ = TCZ 8 mg/r a Reported on 0 b $\rho < 0.05$ . c $\rho < 0.001$ . d Median (interr e Estimated fror Data are shown	in Inadequate responders to Meth ritis patients in Japan with Adalim int; SATORI, Study of Active contro D mg/kg intravenously on weeks 0, D mg every other week subcutaneously. If twice a week subcutaneously. If twice a week subcutaneously. If every 4 weeks 0, 2, 6 an kg intravenously every 4 weeks. D-100 VAS scale unless otherwise. Tuartile range). In graphical data.	ortrexate; ASSURI umab applying s umab applying s olled TOcilizumat sly. 200 mg every oth 200 mg every oth stated. stated. n the source mat	E, Abatacept Study o taNdard and General of Rheumatoid arth ery 4 weeks thereaft er week. thereafter (with dose thereafter (with dose	f Safety in Use with Evaluation study, E nritis patients with an er. e escalation permitte	other RA ThErapies; CH N50, etanercept 50 mg I nadequate response 1 d after week 12 if lack	ANGE, Clinical inve i once a week subcu to methotrexate. of response).	stigation in Highly d utaneously; NR, not	reported;

Trial name	Scoring system applied	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in total score	Mean (SD) change from baseline in erosion score	Mean (SD) change from baseline in JSN score	Radiographic non-progression
GUEPARD ⁹³	van der Heijde- modified Sharp score data ³²³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28 ( $n = 29$ )	52 weeks	(Score range of 0–448) 1.8 (4.7)	N	NR	% patients with no radiographic progression = 55 (16/29)
		Initial ADA + MTX 12 weeks, then step-up therapy in both groups based on DAS28 (n = 27)	52 weeks	1.9 (4)	ĸ	R	% patients with no radiographic progression = 59 (16/27)
OPTIMA ¹⁰⁸	van der Heijde- modified total Sharp score	PBO + MTX ( $n = 517$ ; $n = 514$ analysed for $\Delta$ modified total Sharp score)	26 weeks	0.96 (NR)	0.48 (NR)	0.48 (SD NR)	( $\Delta$ modified total Sharp score $\leq 0.5$ ), 72%
		ADA + MTX ( $n$ = 515; $n$ = 508 analysed for $\Delta$ modified total Sharp score)	26 weeks	0.15ª (NR)	0.10 ^a (NR)	0.05ª (SD NR)	87% ^a
PREMIER ¹⁰⁹	van der Heijde- modified total Sharp score	PBO + MTX (n = 257)	1 year	(0–398, with higher scores indicating greater progression) 5.7 worse	(Scale NR, higher scores indicate worse erosion) 3 7 worse	(Scale NR, higher scores indicate worse JSN)	(Change in modified total Sharp score ≤0.5 from baseline), 37%
		ADA monotherapy + PBO ( <i>n</i> = 274)	1 year	3.0 worse	1.7 worse	1.3 worse	51% ^b (vs. MTX monotherapy)
		ADA + MTX ( <i>n</i> = 268)	1 year	1.3 WOrse ^a (vs. MTX monotherapy vs. ADA monotherapy)	0.8 worse ^{a (vs. MTX} monotherapy vs. ADA monotherapy)	0.5 worse	64% b ^{(vs. MTX} monotherapy vs. ADA monotherapy)

TABLE 359 Radiographic score data: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO

u		herapy)	herapy vs.	lified e of							continued
Radiographic non-progressic	34%	45% ^{b (vs. MTX monott}	<b>61%</b> ^b (vs. MTX monott ADA monotherapy)	(Defined as moc total Sharp score ≤0.5)	135/230 (59%)	196/246 (80%)	R	NR	NR	NR	
Mean (SD) change from baseline in JSN score	4.0 worse	2.6 worse	0.9 worse	NR		NR	[JSN score 0 (no narrowing) to 168 (complete loss of joint space)] 0.35 (worse) ^c	0.2 (worse)	0.55 (worse) ^c	0.55 (worse)	
Mean (SD) change from baseline in erosion score	6.4 worse	3.0 worse	<b>1.0 WOrSe^a</b> ^{(vs. MTX} monotherapy vs. ADA monotherapy)	NR		NR	[Erosion score 0 (no new erosion) to 230 (new erosion, worsening of erosion)] 0.65 (worse) ^c	0.25 ^{b,c} (worse)	1.0 (worse) ^c	0.45 ^{b,c} (worse)	
Mean (SD) change from baseline in total score	10.4 worse	5.5 worse	<ol> <li>WOTSe^a (vs. MTX monotherapy vs. ADA monotherapy)</li> </ol>	2.44 (95% Cl 1.45 to 3.43)		0.27 (95% CI -0.13 to 0.68)	[modified total Sharp score 0 (no damage) to 398 (severe joint destruction) scale] 1.06 (worse)	0.57 ^a (worse)	1.59 (worse)	1.00 (worse)	
Assessment point	2 years	2 years	2 years	52 weeks		52 weeks	6 months	6 months	12 months	12 months	
Treatment arms for which data extraction performed	PBO + MTX (n = 257)	ADA monotherapy + PBO ( <i>n</i> = 274)	ADA + MTX (n = 268)	PBO + MTX ( <i>n</i> = 230)		ETN + MTX ( <i>n</i> = 246)	PBO + MTX ( <i>n</i> = 217)	ETN + PBO ( <i>n</i> = 207)	PBO + MTX ( $n = 217$ )	ETN + PBO ( <i>n</i> = 207)	
Scoring system applied	van der Heijde-	modified total Sharp score		van der Heijde- modified total Sharp score			Total modified Sharp score		Total modified	snarp score	
Trial name	PREMIER ¹⁰⁹			COMET ^{81–83}			ERA ¹³⁹		ERA ¹³⁹		

NIHR Journals Library www.journalslibrary.nihr.ac.uk

			1		
Trial name/ study	Treatment arms for which data extraction performed	Assessment point	Mean change from baseline in synovitis (SD)	Mean change from baseline in erosions (SD)	Mean change from baseline in osteitis (SD)
OPTIMA ¹⁰⁸ / Peterfy <i>et al.</i> , 2010 ¹⁵⁰	PBO + MTX ( <i>n</i> = 32)	26 weeks	OMERACT-RAMRIS scoring system. Progression or improvement of magnetic resonance imaging scores defined as positive or negative change from baseline ≥ smallest detectable change respectively -2.0 (improved) % patients showing progression = 6	OMERACT-RAMRIS scoring system 1.4 (worse) % patients showing progression = 38 % patients showing improvement = 9	OMERACT-RAMRIS scoring system 0.0 % patients showing progression = 13 % patients showing improvement = 9
	ADA + MTX (n = 27)	26 weeks	% patients showing improvement = 44 –3.6 (improved) % patients showing progression = 0	–0.8 (improved) % patients showing progression = 4ª	-4.0 (improved) % patients showing progression = 0
GO-BEFORE ¹⁵¹	PBO + MTX (synovitis $n = 81$ wrists + MCP joint, $n = 82$ wrist joints only, osteitis and erosion n = 82)	24 weeks	(RAMRIS scores (higher RAMRIS (RAMRIS scores (higher RAMRIS scores = more severe inflammation/ damage)] (Wrist + MCP joints (range 0–21) (Median = -1.04 (3.04) (Median = -1.00 (IQR -1.63 to 0.00) (Wrist joints only (range 0–9) (Median = -0.74 (1.86) (Median = -0.50 (IQR -1.00 to 1.00)	improvement = 22 (RAMRIS scores; (range 0–230) –0.24 (6.39) 0.00 ^b (IQR 0.00 to 0.50)	improvement = 30 [RAMRIS scores oedema (osteitis) (range 0–69)] -0.32 (4.66) $0.00^{b}$ (IQR -1.50 to 1.00)

TABLE 360 Assessments of synovitis, erosion and osteitis: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

continued

TABLE 360	Assessments of synovitis, erosion and	osteitis: population 1 RC	Ts of biologic interventions vs. DMA	\RD(s) or PBO (continued)	
Trial nam study	e/ Treatment arms for which data extraction performed	Assessment point	Mean change from baseline in synovitis (SD)	Mean change from baseline in erosions (SD)	Mean change from bas in osteitis (SD)
	GOL - MITY (comovities a - 77		(10 ) AJCD joints (range 0 )		Ocdoms (cetaitie) (rando

GOL + MTX (synovitis $n = 77$ 24	weeks	Wrist + MCP joints (range 0–21)	(Range 0–230)	Oedema (osteitis) (range 0–69)
whists $+$ Muc.r. John, $n = 76$ whist joints only, osteritis and erosion		-2.21 (3.10)	-0.65 (5.98)	-2.47 (4.08)
n = 18		-1.50 (IQR -3.50 to -0.33) ^{a,b}	0.00 (–0.58, 0.00) ^{a,b}	-1.00 (-3.00, 0.00) ^{a,b}
		Wrist joints only (range 0–9)		
		-1.29 (1.67)		
		-1.00 (IQR -2.50 to 0.00) ^{3,b}		
, interquartile range; MCP, metacarpophalangeal; OPTIM onance Imaging Score	1A, OPTimal protocol	for treatment Initiation with Methotrexa	ite and Adalimumab; RAMRIS, Rheui	matoid Arthritis Magnetic

IQR, interquartile range; MCP, metacarpophalangeal; OP-Resonance Imaging Score. ADA = ADA 40 mg every other week subcutaneously. GOL = GOL 50 mg every 4 weeks subcutaneously. a ρ < 0.05. b Median.

TABLE 361 Radiographic score data: populations 2 and 3 head-to-head biologic RCTs

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

Trial name	Scoring system applied	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in total score	Mean (SD) change from baseline in erosion score	Mean (SD) change from baseline in JSN score	Radiographic non-progression
AMPLE ⁶⁶	Modified Sharp/ van der Heijde scoring system	ABT s.c. ( <i>n</i> = 318, 91.1% assessed for radiographic non-progression)	1 year	(Scale 0–448, direction NR) 0.58 (3.22)	(Scale and direction NR) 0.29 (1.84)	(Scale and direction NR) 0.28 (1.92)	(Change from baseline in total score ≤ smallest detectable change at cut-off 2.8)
		ADA ( <i>n</i> = 328, 88.1% assessed for radiographic non-progression)	1 year	0.38 (5)	-0.01 (2.83)	0.39 (2.50)	84.8% 88.6%
JSN, joint space ABT s.c. = ABT ADA = ADA 40	e narrowing; NR, noi 125 mg once per we mg every other wee	t reported. eek subcutaneously, following an ek subcutaneously.	optional i.v. load	ing dose of ≈10 mg/kg t	ased on weight range.		

Trial name	Scoring system applied	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in total score	Mean (SD) change from baseline in erosion score	Mean (SD) change from baseline in JSN score	Radiographic non-progression
AIM ^{61,62}	Total Genant-modified	PBO + MTX ( <i>n</i> = 195)	1 year	2.32 (NR)	1.14 (NR)	1.18 (NR)	NR
				0.53 (0.0, 2.5)ª	0.27 (0.0, 1.3) ^{a,b}	0.0 (0.0, 1.0) ^{a,b}	
		ABT i.v. + MTX ( <i>n</i> = 391)	1 year	1.21 (NR)	0.63 (NR)	0.58 (NR)	NR
				0.25 (0.0, 1.8) ^{a,b}	0.0 (0.0, 1.0) ^{a,b}	0.0 (0.0, 0.5) ^{a,b}	
DE019 ⁸⁴	Total Sharp score	PBO + MTX ( <i>n</i> = 200)	52 weeks	2.7 (6.8)	1.6 (4.4)	1.0 (3.0)	NR
						% patients with improvement or no change in JSN = 52.2	
		ADA + MTX ( <i>n</i> = 207)	52 weeks	0.1 (4.8) ^c	0.0 (2.8) ^c	0.1 (2.3) ^b % patients with improvement or no change in JSN = 68.5 ^b	NR
JESMR ¹⁴⁰	van der Heijde-modified Sharp score	ETN monotherapy ( $n = 71$ )	24 weeks	(0–448, positive score indicates progression)	(Scale NR, positive value indicates progression)	(Scale NR, positive value indicates progression)	NR
				2.57 (NR)	1.16 (NR)	(NN) 24.1	
		ETN + MTX ( $n = 76$ )	24 weeks	0.34 (NR)	-0.02 (NR)	0.37 (NR)	NR

TABLE 362 Radiographic score data: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO

rial name	Scoring system applied	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in total score	Mean (SD) change from baseline in erosion score	Mean (SD) change from baseline in JSN score	Radiographic non-progression
ESMR ¹⁴⁰	van der Heijde-modified Sharp score	ETN monotherapy ( $n = 71$ )	52 weeks	3.6 (NR)	1.87 (NR)	1.78 (NR)	No radiographic progression to week 52 (change ≤ 0.5) = 39.6%
							No clinically significant radiographic progression to week 52 (≤ smallest detectable change) = 58.5%
		ETN + MTX (n = 76)	52 weeks	0.8 (NR)	–0.15 (NR) ^b	1.01 (NR)	No radiographic progression to week 52 (change ≤ 0.5) = 57.4%
							No clinically significant radiographic progression to week 52 (≤smallest detectable change) = 67.6%
LARA ¹⁰²	Modified total Sharp score	MTX + DMARD ( <i>n</i> = 119)	24 weeks	Adjusted mean change = 1.4 (SE 0.5)	Adjusted mean change = 1.1 (SE 0.3)	Adjusted mean change = 0.2 (SE 0.3)	% patients with change $\leq 0 = 68.1$
		ETN + MTX (n = 247)	24 weeks	Adjusted mean change = 0.4 (SE 0.4) ^b	Adjusted mean change = 0.4 (SE 0.2) ^b	Adjusted mean change = -0.1 (SE 0.2)	% patients with change $\leq 0 = 75.3$
RACAT ¹¹¹	van der Heijde-modified	MTX + SSZ + HCQ ( <i>n</i> = 158)	24 weeks	0.42 (1.91)	0.23 (1.32)	0.19 (1.25)	NR
	Sharp score	ETN50 + MTX ( <i>n</i> = 160)	24 weeks	0.003 (0.62)	-0.03 (0.44)	0.03 (2.47)	NR
RACAT ¹¹¹	van der Heijde-modified	MTX + SSZ + HCQ ( $n = 151$ )	48 weeks	0.54 (1.93)	0.29 (1.35)	0.25 (1.18)	NR
	snarp score	ETN50 + MTX ( <i>n</i> = 153)	48 weeks	0.29 (3.32)	0.08 (1.48)	0.21 (2.09)	NR
							continued

	Radiographic non-progression	(No increase in total van der Heijde Sharp score, i.e. change from baseline to week 24 < 0)	44/88 (50.0%)	51/86 (59.3%)		Major progression (% patients) = 31	Improvement (% patients) = 14	Major progression (% patients) = 8 ^c Improvement (% patients) = 44 ^c	Z	ZR
	Mean (SD) change from baseline in JSN score	Scale NR, positive value indicates greater progression 0.83 (2.31)	(n = 84)	0.71 (2.91)	(n = 81)	(JSN scores range 0–160)	2.9 (4.2)	1.1 (4.4) ^c	Treatment difference = 1.66 (95% CI –0.14 to 3.46) ^b	
	Mean (SD) change from baseline in erosion score	Scale NR, positive value indicates greater progression 1.66 (3.73)	( <i>n</i> = 84)	0.54 (1.62) ^b	(n = 81)	(Erosion scores range 0–280)	4.0 (7.9)	0.2 (2.9) ^c	Treatment difference = 1.53 (95% CI –0.03 to 3.09) ⁶	
	Mean (SD) change from baseline in total score	Scale NR, positive value indicates greater progression 2.51 (5.52)		1.05 (3.71) ^b		(Total scores range 0-440, higher	more joint damage) 7.0 (10.3)	1.3 (6.0) ^c	Treatment difference = 3.23 (95 % CI 0.14 to 6.32) ^b	
)	Assessment point	24 weeks		24 weeks		54 weeks		54 weeks	24 months from baseline (i.e. 20–21 months post- randomisation)	24 months from baseline (i.e. 20–21 months post- randomisation)
	Treatment arms for which data extraction performed	PBO + MTX ( $n = 88$ )		GOL + MTX (n = 66)		PBO + MTX ( $n = 64$ )		IFX + MTX (n = 71)	SSZ + HCQ + MTX ( <i>n</i> = 109)	IFX + MTX ( <i>n</i> = 106)
)	Scoring system applied	van der Heijde-modified Sharp score				van der Heijde-modified Sharp score			van der Heijde-modified Sharp score	
	Trial name	GO-FORTH ⁹¹				ATTRACT ¹⁴⁶			Swefot ¹⁴⁷	

TABLE 362 Radiographic score data: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

tadiographic Ion-progression	% patients with no adiographic progression change in score $\leq 0$ ) = 58.7	% patients with no adiographic progression change in score ≤0) = 65.3	% patients with no adiographic progression change in score $\leq 0$ ) = 57.6	% patients with no adiographic progression change in score $\leq 0$ ) = 67.5	Change from baseline in otal Sharp score (0.5)]	68	6% ^b	
Mean (SD) change from baseline in JSN F score r	0.11 (0.70)	0.08 (1.48) 9	NR S	NR S	Mean 2.9 (95% Cl [ 2.0 to 3.8) t	m	Mean 1.5 (95% Cl 5 0.9 to 2.1) ^c	arrowing; NR, not reported. response).
Mean (SD) change from baseline in erosion score	0.11 (0.63)	-0.01 (0.78)	NR	NR	Mean 3.2 (95% Cl 2.1 to 4.3)		Mean 0.9 (95% Cl 0.3 to 1.4) ^c	usly; JSN, joint space n fter week 12 if lack of
Mean (SD) change from baseline in total score	0.22 (1.11)	0.08 (1.88)	0.63 (NR)	0.40 (NR)	Mean 6.1 (95% Cl 4.2 to 8.0)		2.3 (95% Cl 1.5 to 3.2) ^b	e a week subcutaneou
Assessment point	24 weeks	24 weeks	52 weeks	52 weeks	52 weeks		52 weeks	ercept 50 mg ond weeks thereafter after (with dose
Treatment arms for which data extraction performed	TCZ + oral PBO ( <i>n</i> = 276)	TCZ + MTX (n = 277)	TCZ + oral PBO ( <i>n</i> = 276)	TCZ + MTX ( <i>n</i> = 276)	cDMARDs ( $n = 143$ )		TCZ ( <i>n</i> = 157)	to Methotrexate; ETN50, etane veeks 0, 2 and 4, and every 4 - utaneously. Jusly. eously. , 2, 6 and every 8 weeks there veeks.
Scoring system applied	Total Genant-modified Sharp score		Total Genant-modified Sharp score		Modified total Sharp score (no further detail)			in Inadequate responders 0 mg/kg intravenously on a mg every other week subcu g twice a week subcutane ng every 4 weeks subcutane g intravenously at weeks C kg intravenously every 4 v , 75th percentiles). to the level of accuracy av
Trial name	ACT-RAY ⁵⁷		ACT-RAY ¹⁵²		SAMURAI ¹¹⁵			AIM, Abatacept ABT i.v. = BT $\approx$ 1 ADA = ADA 40 ETN = ETN 25 m GOL = GOL 50 r FX = IFX 3 mg/r TCZ = TCZ 8 mg a Median (25t ⁺ b $p < 0.001$ . c $p < 0.001$ .

Trial name/ study	Treatment arms for which data extraction performed	Assessment point	Mean change from baseline in synovitis	Mean change from baseline in erosions	Mean change from baseline in osteitis
ASSET ⁷²	PBO + MTX ( <i>n</i> = 23)	4 months	(OMERACT-RAMRIS scores)	(OMERACT-RAMRIS scores)	(OMERACT-RAMRIS scores)
			Adjusted mean change (wrists) = 0.38 (SE 0.27)	Adjusted mean change (wrist and hand) = 0.95 (SE 0.45)	Adjusted mean change (wrist and hand) = 1.54 (SE 0.90)
	ABT i.v. + MTX ( <i>n</i> =25)	4 months	Adjusted mean change (wrists)=-0.31 (SE 0.26)	Adjusted mean change (wrist and hand) = 0.45 (SE 0.43)	Adjusted mean change (wrist and hand) = -1.94 (SE 0.86)
GO-FORWARD ¹⁵³	PBO + MTX ( $n = 72$ )	24 weeks	RAMRIS synovitis (wrist + MCP)	RAMRIS bone erosion score	RAMRIS bone oedema (osteitis)
			-0.38 (2.66)	-0.47 (3.40)	
			-0.50 (IQR -1.45 to 1.00) ^a	0.00 (IQR -0.50 to 0.00) ^a	
			RAMRIS synovitis (wrist)		(הכיה סו הכיח- אלוו) ההיה
			0.08 (1.51)		
			0.00 (IQR –1.00 to 1.00) ^a		
	GOL + MTX (n = 47)	24 weeks	RAMRIS synovitis (wrist + MCP)	RAMRIS bone erosion score	RAMRIS bone oedema (osteitis)
			-1.85 (2.28)	-1.08 (4.35)	
			-1.75 (-3.00, -0.50) ^{a,b}	0.00 (-0.50, 0.00)ª	(כ / א עכ) אכיש= // אניש מפּעמי מ די ממי מכוי מסי
			RAMRIS synovitis (wrist)		-0.00 (104 -4.03 (0 0.00)
			-1.13 (1.61)		
			1.00 (IQR –2.00 to 0.00) ^{a,b}		

TABLE 363 Assessments of synovitis, erosion and osteitis: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment point	Mean change from baseline in synovitis	Mean change from baseline in erosions	Mean change from baseline in osteitis
Durez <i>et al.</i> , 2007 ¹²⁰	MTX ( $n = 14$ )	52 weeks	[OMERACT-RAMRIS scores. Global synovitis score ranged	OMERACT-RAMRIS scores. 0 (no erosion) to 300 (100%	(OMERACT-RAMRIS scores)
			from 0 (absence of synovitis) to	bone eroded)]	(Mean change NR)
				(Mean change NR)	Score at baseline = 13 (10, 31) ^d
			(Mean change NK)	Score at baseline = 12 (8, 25) ^{c,d}	Score at follow-up = 13 (5, $21)^d$
			Score at baseline = 21 (15, 33) ^{c.a}	Score at followinin - 11 (9 32) ^{c,d}	
			Score at follow-up = 20 (12, 24) ^{c,d}		
	MTX + i.v. MP (n = 15	52 weeks	Score at baseline = 29 (17, 33) ^{cd}	Score at baseline = 5 (3, 23) ^{cd}	Score at baseline = 22 (7, 40) ^{$c,d$}
	ranuonniseu <i>)</i>		Score at follow-up = 14 (7, 29) ^{c,d}	Score at follow-up = 13 (5, 41) ^{c,d}	Score at follow-up = 12 (6, 38) ^{c,d}
	IFX + MTX ( $n = 15$ randomised)	52 weeks	Score at baseline = 25 (15, 29) ^{cd}	Score at baseline = 9 (5, 11) ^{cd}	Score at baseline = 25 (12, 32) ^{c,d}
			Score at follow-up = 10 (6, 12) ^{c,d}	Score at follow-up = 11 (6, 21) ^{c,d}	Score at follow-up = 11 (7, $16)^{c,d}$
ASSET, Abatacept Sy ADA = ADA 40 mg e' GOL = GOL 50 mg ev IFX = IFX 3 mg/kg intr a Median. b $\rho < 0.001$ . c Estimated from gr d Median (25th, 75t	stemic SclErosis Trial; MCP, metaca very other week subcutaneously. ery 4 weeks subcutaneously. avenously at weeks 0, 2, 6 and eve aphical data. h percentile).	rpophalangeal; NR, not n :ry 8 weeks thereafter (w	eported; RAMRIS, Rheumatoid Arthriti ith dose escalation permitted after we	s Magnetic Resonance Imaging Score ek 12 if lack of response).	

DOI: 10.3310/hta20350

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean pain VAS score at baseline, 0–100 (SD)	Mean pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months (primary end point and study RCT end point)	91	58 (13–92) ^{a,b}	20 (0–71) ^a	NR	NR
OPERA ¹⁰⁷	ADA + MTX + steroid	12 months (primary end point and study RCT end point)	89	63 (13–98) ^{a,b}	7 (0–64) ^{a.c}	NR	NR
OPTIMA ¹⁵⁴	MTX + PBO	26 weeks (study RCT end point)	517	65 (21)	49.4 (NR)	-37.9 (28.61) ( <i>n</i> =513)	NR
OPTIMA ¹⁰⁸	ADA + MTX	26 weeks (study RCT end point)	515	65 (21)	36.1 (NR)	-28.9 (26.61) ( <i>n</i> =513)	NR
PREMIER ¹⁰⁹	MTX + PBO	1 year (primary end point)	256	59.6 (24.3)	23.4 (16.1)	–36.2 (NR)	NR
PREMIER ¹⁰⁹	ADA monotherapy + PBO step-up week 16	1 year (primary end point)	273	64.6 (23.6)	26.6 (17.1)	–38.0 (NR)	NR
PREMIER ¹⁰⁹	ADA + MTX step-up week 16	1 year (primary end point)	265	62.5 (21.3)	16.8 (15.7) ^{b,d (vs. MTX)}	-45.7 (NR)	NR
PREMIER ¹⁰⁹	MTX + PBO	2 years (study RCT end point)	256	59.6 (24.3)	12.5 (15.8)	-47.1 (NR)	NR
PREMIER ¹⁰⁹	ADA monotherapy + PBO step up-week 16	2 years (study RCT end point)	273	64.6 (23.6)	19.6 (16.6)	-45.0 (NR)	NR
PREMIER ¹⁰⁹	ADA + MTX step-up week 16	2 years (study RCT end point)	265	62.5 (21.3)	9.6 (14.9) ^{b,d (vs. MTX)}	-52.9 (NR)	NR
COMET ⁸³	MTX + PBO	Week 52	263	65.1 (20.8)	33.7 (27.5)	-31.4	NR
COMET ⁸¹	ETN + MTX	Week 52	265	66.0 (21.4)	24.1(24.2)	-41.9 ^b	NR
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	160	(0-10 scale); 6.3 (2.12)	NR	NR	44.35 ^{a,e}
GO-BEFORE ⁹⁰	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	159	(0-10 scale); 6.4 (2.11)	NR	NR	52.15 ^{a,c,e}

TABLE 364 Pain VAS: population 1 biologic vs. DMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean pain VAS score at baseline, 0–100 (SD)	Mean pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
BeST ¹⁴⁸	Sequential monotherapy (DAS steered)	6 months	NR	53.1 (NR)	35.7 (NR)	-17.4	NR
BeST ⁷⁸	Step-up combination therapy (DAS steered)	6 months	NR	53.4 (NR)	27.9 (NR)	-25.5	NR
BeST ⁷⁸	Initial combination therapy with prednisone (DAS steered)	6 months	NR	54.1 (NR)	23.8 (NR)	30.3 ^c	NR
BeST ⁷⁸	Initial combination therapy with IFX (DAS steered)	6 months	NR	54.1 (NR)	23.9 (NR)	30.2 ^c	NR
OPTIMA, OPTin ADA = ADA 40 ETN = ETN 25 rr GOL = GOL 501 a $\rho < 0.05$ . b Median (5th, c $\rho < 0.01$ . d Mixed-mode e Median % cl	al protocol for treatment Initiatio mg every other week subcutaneo ng twice a week subcutaneously. mg every 4 weeks subcutaneously 95th centile range). I repeated measures analyses. hange.	n with Methotrexate and Adalimum usly.	lab; NR, not re	ported.			

DOI: 10.3310/hta20350

537

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean pain VAS score at baseline, 0–100 (SD)	Mean pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
AMPLE ⁶⁶	ABT s.c.	1 year (primary end point)	318	63.1 (22.3)	NR	NR	53
AMPLE ¹⁴⁴	ADA	1 year (primary end point)	328	65.5 (21.8)	NR	NR	39.2
deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN + MTX	22 weeks	15	60.67 (16.57)	NR	NR	28.6
deFilippis <i>et al.</i> , 2006 ⁸⁵	IFX + MTX	22 weeks	15	70.10 (14.14)	NR	NR	22
deFilippis <i>et al.</i> , 2006 ⁸⁵	ETN + MTX	54 weeks	15	60.67 (16.57)	77.54	16.87 (NR)	43.06
deFilippis <i>et al.,</i> 2006 ⁸⁵	IFX + MTX	54 weeks	15	70.10 (14.14)	87.75	17.65 (NR)	21.1
NR, not reported. ABT s.c. = ABT 12 ETN = ETN 25 mg IFX = IFX 3 mg/kg i	5 mg once per week subcutaneou twice a week subcutaneously. intravenously at weeks 0, 2, 6 anc	sly, following an optional i.v. l d every 8 weeks thereafter (wit	bading dose of a	≈10 mg/kg based on weight in permitted after week 12 if	range. lack of response).		

TABLE 365 Pain VAS: populations 2 and 3 biologic head to head

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean Pain VAS score at baseline, 0–100 (SD)	Mean Pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
AIM ^{61,62}	MTX + PBO	12 months	219	65.9 (20.6)	NR	Adjusted –24.2 (1.72)	NR
AIM ⁶¹	ABT i.v. + MTX	12 months	433	63.3 (21.1)	NR	Adjusted –35.8 (1.12)	NR
ASSURE ⁷³	PBO + cDMARDs	1 year (primary end point and study RCT end point)	413	61.3 (20.8) ( <i>n</i> = 418)	NR	NR	18
ASSURE ⁷³	ABT + cDMARDs	1 year (primary end point and study RCT end point)	845	61.1 (20.4) ( <i>n</i> = 856)	NR	NR	37
CHANGE ⁸⁰	PBO ( <i>n</i> = 87)	24 weeks	87	62.7 (22.8)	66.2 (NR)	3.5 (25.4)	NR
CHANGE ⁸⁰	ADA monotherapy ( $n = 91$ )	24 weeks	91	68.1 (21)	50.7 (NR)	-17.4 (27.9) ^a	NR
DE019 ⁸⁴	MTX + PBO ( <i>n</i> = 200)	52 weeks	200	56.3 (22.9)	45.1 (NR)	-11.2 (27.7)	-19.9
DE01984	ADA + MTX (n = 207)	52 weeks	207	55.9 (20.4)	26.5 (NR)	-29.4 (26.4)	-52.6
Van De Putte et al., 2004 ¹²²	PBO s.c.	26 weeks	110	70.2 (18.1)	59.2 (NR)	-11.0 (26.7)	-11.4
Van De Putte et <i>al.</i> , 2004 ¹²²	ADA 40 mg s.c. every other week monotherapy	26 weeks	113	70.3 (19.9)	42.7 (NR)	-27.6 (31.1) ^{b (vs. PBO)}	-37.7 b (vs. PBO)
ARMADA ^{69,70}	MTX + PBO ( $n = 62$ )	24 weeks	62	57.2 (21)	48.6 (NR)	-8.6 (22.5)	-15.0
ARMADA ⁶⁹	ADA + MTX (n = 67)	24 weeks	67	53 (22)	27.9 (NR)	-25.1 (33.1)	-47.2 ^b
Kim <i>et al.,</i> 2007 ⁹⁹	MTX + PBO rescue week 18 ( <i>n</i> = 63)	24 weeks	63	59.4 (18.6)	52.1 (NR)	-7.3 (27.5)	NR
Kim <i>et al.,</i> 2007 ⁹⁹	ADA + MTX ( <i>n</i> = 65; <i>n</i> = 64 at 24 weeks)	24 weeks	64	57.6 (18.2)	33.9 (NR)	–23.7 (22.86) ^b	NR
CERTAIN ¹⁵⁶	PBO + cDMARDs	24 weeks (primary end point and study RCT end point)	98	NR	NR	(AiC information has been removed)	NR
CERTAIN ⁷⁹	CTZ 400 mg at weeks 0, 2 and 4 then 200 mg every 2 weeks+ DMARDs	24 weeks (primary end point and study RCT end point)	96	NR	NR	(AiC information has been removed)	NR
							continued

	-						
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean Pain VAS score at baseline, 0–100 (SD)	Mean Pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
ADORE ^{59,60}	ETN monotherapy ( $n = 159$ )	16 weeks	140	62.7	33.3 (NR)	-29.40 (25.09)	NR
ADORE ⁵⁹	ETN + MTX ( <i>n</i> = 155)	16 weeks	135	63.3	33.37 (NR)	-29.93 (27.25)	NR
ETN Study 309/ Combe <i>et al.</i> , 2006, ⁸⁸ Combe <i>et al.</i> , 2009 ⁸⁹	SSZ + PBO ( <i>n</i> = 50)	24 weeks	50	58.8 (20)	NR	NR	13.3
ETN Study 309/ Combe <i>et al.</i> , 2006, ⁸⁸ Combe <i>et al.</i> , 2009 ⁸⁹	ETN + PBO ( <i>n</i> = 103)	24 weeks	103	62.6 (21.7)	NR	NR	55.6 ^b vs. SSZ
ETN Study 309/ Combe et al	ETN + SSZ ( <i>n</i> = 101)	24 weeks	101	58.5 (20.7)	NR	NR	53.9 ^b vs. SSZ
2006 ^{88,89}							Non-significant vs. ETN + PBO
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks monotherapy	24 weeks (primary end point)	69	NR	NR	NR	NR
JESMR ¹⁴⁰	ETN 25 mg every 2 weeks + MTX 6–8 mg/week	24 weeks (primary end point)	73	NR	NR	R	NR
Lan <i>et al.,</i> 2004 ¹⁰¹	PBO + MTX	12 weeks (primary end point) and study RCT end point)	29	57.52	57.59	0.07 (NR)	0.05
Lan <i>et al.,</i> 2004 ¹⁰¹	ETN + MTX	12 weeks (primary end point) and study RCT end point)	29	55.21	31.66 ^ª	–23.55 (NR)	43
Moreland <i>et al.,</i> 1999 ¹⁰⁴	PBO	6 months	80	(0–10 scale) 6.5	NR	ZR	22 (worse)
Moreland et al.,	ETN + PBO	6 months	78	(0-10 scale)	NR	NR	–53 (improved) ^b
222				6.7			

TABLE 366 Pain VAS: populations 2 and 3 biologic vs. DMARD(s) or PBO (continued)

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean Pain VAS score at baseline, 0–100 (SD)	Mean Pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
RACAT ¹¹¹	MTX + SSZ + HCQ ( $n = 178$ ; not all analysed)	24 weeks	319 both groups	5.64 (2.21)	3.64 (2.38)	-2.0 (NR)	NR
RACAT ¹¹¹	ETN50 + MTX ( <i>n</i> = 175; not all analysed)	24 weeks		5.88 (1.99)	3.56 (2.53)	–2.32 (NR)	NR
RACAT ¹¹¹	MTX + SSZ + HCQ ( $n = 178$ randomised)	48 weeks	155	NR	3.22 (2.37)	NR	NR
	In analysis <i>n</i> = 155 (of whom 39 switched to ETN)						
RACAT ¹¹¹	ETN50 + MTX ( <i>n</i> = 175 randomised)	48 weeks	155	NR	3.17 (2.58)	NR	NR
	In analysis <i>n</i> = 155 (of whom 41 switched to MTX + SSZ + HCQ)						
Weinblatt et al.	MTX + PBO	24 weeks	30	(0-10 scale)	(0–10 scale)	-1.2 (NR)	NR
222				5.6 ^c	4.4 ^c		
Weinblatt <i>et al.</i> 1000 ¹²⁴	ETN + MTX ( $n = 59$ )	24 weeks	59	(0–10 scale)	(0–10 scale)	–3.2 (NR)	NR
				5.0 ^c	1.8 ^{b,c}		
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks (primary end point) and study RCT end point)	103	60.8 (19.2)	38.6	–22.2 (NR)	36.5
APPEAL ⁶⁸	ETN 25 mg twice weekly (licensed dose) + MTX	16 weeks (primary end point) and study RCT end point)	197	62.5 (23.4)	28.5 ^b	–34.0 (NR)	54.4 ^b
GO-FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	Week 14	133	(0–10 scale) 5.70 (3.60, 7.50) ^c	NR	NR	17.6 (−8.1, 40.0) ^c
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	Week 14	89	(0–10 scale) 6.10 (4.70, 7.70) ^c	NR	NR	55.0 (17.0, 76.5) ^{b.c}
GO FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	Week 24	133	(0–10 scale) 5.70 (3.60, 7.50) ^c	NR	NR	15.4 (−16.4, 41.6) ^c
							continued

TABLE 366 Pain	VAS: populations 2 and 3 biolo	ogic vs. DMARD(s) or PBO (con	tinued)				
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	<i>n</i> analysed	Mean Pain VAS score at baseline, 0–100 (SD)	Mean Pain VAS score at follow-up, 0–100 (SD)	Pain VAS mean change from baseline (SD)	Mean % change from baseline
GO FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	Week 24	89	(0–10 scale) 6.10 (4.70, 7.70) ^c	NR	NR	50.4 (16.3, 83.3) ^{b.c}
ATTRACT ⁷⁵	PBO i.v. + MTX	30 weeks	88	(0-10 scale)	(0–10 scale)	-0.8 (NR)	-6 ^d
				6.7 (5.0, 8.0) ^c	5.9 (3.3, 7.4) ^c		
ΑΤΤRΑCT ⁷⁵	IFX 3 mg/kg i.v. at weeks 0,	30 weeks	86	(0–10 scale)	(0-10 scale)	–3.2 (NR)	-33ª,d
	z ana o ana every o weeks thereafter			7.0 (5.6, 8.1) ^c	3.8 (2.3, 6.9) [€]		
START ¹¹⁸	PBO + MTX	22 weeks (primary end point	363	(0–10 scale)	NR	NR	NR
		and study KLI end point)		5.9 (5–7) ^e			
START ¹¹⁸	IFX 3 mg/kg + MTX	22 weeks (primary end point	360	(0–10 scale)	NR	NR	NR
				6.1 (5–8) ^e			
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4 weeks + oral PBO	Week 24	276	NR	NR	-29.8 (24.92)	NR
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4 weeks+ MTX	Week 24	277	NR	NR	-29.3 (26.64)	NR
AIM, Abatacept i staNdard and Ge ABT i.v. = BT $\approx$ 10 ADA = ADA 40 m CTZ = s.c. CTZ 40 m GOL = GOL 50 m IFX = IFX 3 mg/kg TCZ = TCZ 8 mg/k a $p < 0.05$ . b $p < 0.01$ . c Median (5th, 5 d Median (5th, 5) d Median (5th, 5)	In Inadequate responders to Meth neral Evaluation study, ETN50, et, Img/kg intravenously on weeks 0, ig every other week subcutaneous of mg at weeks 1, 2 and 4, then 2 every 4 weeks subcutaneously. intravenously at weeks 0, 2, 6 ar intravenously every 4 weeks. 5th centile range). 5th centile range). Inartile range).	iotrexate; CHANGE, Clinical inves anercept 50 mg once a week sub 2 and 4, and every 4 weeks the sly. 200 mg every other week. 1d every 8 weeks thereafter (with 1d every 8 weeks thereafter (with	tigation in Hig cutaneously; reafter. dose escalatio	hly disease-affected rheuma JR, not reported. In permitted after week 12 i	f lack of response).	apan with Adalimum	ab applying

**APPENDIX 4** 

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean score at baseline	Mean score at follow-up	Mean change from baseline
COMET ⁸³	MTX	52 weeks	NR	NR	-19.7
	ETN + MTX	52 weeks	NR	NR	-29.6ª
NR, not reported. ETN = ETN 25 mg a $p < 0.001$ .	twice a week subcuta	ineously.			

### TABLE 367 The 0-100 VAS of fatigue: population 1 RCTs of biologic vs. DMARD(s) or PBO

TABLE 368 Functional Assessment of Chronic Illness Therapy – Fatigue score (0–52, higher scores indicate less fatigue): population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) score at baseline	Mean (SD) score at follow-up	Mean (SD) change from baseline	% change from baseline
OPTIMA ¹⁵⁴	MTX + PBO	26 weeks	NR	NR	8.3 (11.12)	NR
	ADA + MTX	26 weeks	NR	NR	10.5 (11.82)ª	NR
PREMIER ¹⁵⁵	MTX + PBO	1 year	29.0 (11.1)	40.0 (8.10)	11.0 (NR)	NR
	ADA monotherapy + PBO step-up week 16	1 year	26.2 (11.3) ^{a,b (vs. MTX)}	38.6 (8.0)	12.4 (NR)	NR
	ADA + MTX step-up week 16	1 year	28.4 (11.7)	41.1 (8.2) ^{b,c (vs. MTX)}	12.7 (NR)	NR
PREMIER ¹⁵⁵	MTX + PBO	2 years	29.0 (11.1)	42.5 (8.1)	13.5 (NR)	NR
	ADA monotherapy + PBO step-up week 16	2 years	26.2 (11.3) ^{a,b (vs. MTX)}	40.8 (8.1)	14.6 (NR)	NR
	ADA + MTX step-up week 16	2 years	28.4 (11.7)	$43.0~(8.1)^{\text{b,c (vs. MTX)}}$	14.6 (NR)	NR

OPTIMA, OPTimal protocol for treatment Initiation with Methotrexate and Adalimumab; NR, not reported. ADA = ADA 40 mg every other week subcutaneously.

a *p* < 0.05.

b Significant in a mixed-model repeated measures analysis.

c *p* < 0.001.

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean score at baseline	Mean score at follow-up	Mean change from baseline
AMPLE ¹⁴⁴	ABT s.c. + MTX	1 year	NR	NR	-23.2
	ADA + MTX	1 year	NR	NR	-23.2

## TABLE 369 The 0–100 VAS of fatigue: populations 2 and 3 biologic head-to-head RCTs

NR, not reported.

ABT s.c. = ABT 125 mg once per week subcutaneously, following an optional i.v. loading dose of  $\approx$ 10 mg/kg based on weight range.

ADA = ADA 40 mg every other week subcutaneously.

# TABLE 370 Functional Assessment of Chronic Illness Therapy – Fatigue score (0–52, higher scores indicate less fatigue): populations 2 and 3 biologic head-to-head RCTs

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean score at baseline	Mean score at follow-up	Mean change from baseline	% change from baseline
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA	24 weeks	NR	NR	8.9ª	NR
	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	NR	NR	11.4ª	NR
NR, not report ADA = ADA 40	ed. Omg every other week	subcutaneously				

TCZ = TCZ 8 mg/kg intravenously every 4 weeks.

a Adjusted mean change from baseline.

#### TABLE 371 The 0–100 VAS of fatigue: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean score at baseline	Mean score at follow-up	Mean change from baseline
AIM ⁶³	MTX + PBO	1 year	63.5	40.9 (NR)	-22.6
	ABT + PBO	1 year	65.3	37.3 (NR)	-28.0ª

AIM, Abatacept in Inadequate responders to Methotrexate; NR, not reported.

ABT i.v. = BT  $\approx$  10 mg/kg intravenously on weeks 0, 2 and 4, and every 4 weeks thereafter.

a *p* < 0.05.

# TABLE 372 Functional Assessment of Chronic Illness Therapy – Fatigue score (0–52, higher scores indicate less fatigue): populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) score at baseline	Mean (SD) score at follow-up	Mean (SD) change from baseline	% change from baseline
ARMADA ^{69,70}	MTX + PBO	24 weeks	NR	NR	3.0 improvement	NR
	ADA + MTX	24 weeks	NR	NR	8.5ª improvement	NR
APPEAL ⁶⁸	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	30.1	33.2	3.1 (NR)	10.4
	ETN + MTX	16 weeks	28.1	36.2ª	8.1 (NR)	28.0ª
GO-FORWARD ⁹²	PBO + MTX	Week 24	28.7 (10.5)	30.86 (NR)	2.16 (9.53)	NR
	GOL 50 mg + MTX	Week 24	26.6 (11.0)	33.9 (NR)	7.30 (8.65) ^b	NR
TOWARD ¹²¹	PBO + cDMARDs	24 weeks	NR	NR	3.6	NR
	TCZ 8 mg/kg i.v. + DMARDs	24 weeks	NR	NR	8.0 ^b	NR

NR, not reported.

ADA = ADA 40 mg every other week subcutaneously.

CTZ = s.c. CTZ 400 mg at weeks 1, 2 and 4, then 200 mg every other week.

ETN = ETN 25 mg twice a week subcutaneously.

GOL = GOL 50 mg every 4 weeks subcutaneously.

TCZ = TCZ 8 mg/kg intravenously every 4 weeks.

a *p* < 0.05.

b *p* < 0.001

Data are shown to the level of accuracy available in the source material.

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) PCS at baseline	Mean (SD) PCS at follow-up	Mean (SD) change from baseline in PCS	Mean (SD) MCS at baseline	Mean (SD) MCS at follow-up	Mean (SD) change from baseline in MCS	Mean (SD) ASHI score at baseline	Mean (SD) ASHI at follow-up	Mean (SD) change from baseline in ASHI score
HIT HARD ⁹⁴	MTX + PBO	24 weeks	31.7 (8.3)	39.8 (9.9)	8.1 (NR)	45.2 (10.2)	48.9 (8.8)	3.7 (NR)	NR	NR	NR
	ADA + MTX	24 weeks	28.3 (7.7) ^a	44.0 (11.1) ^b	15.7 (NR)	46.7 (9.9)	48.8 (9.8)	2.1 (NR)	NR	NR	NR
PREMIER ¹⁵⁵	MTX + PBO	1 year	32.2 (7.9)	43.5 (8.1)	11.3 (NR)	43.5 (12.4)	51.3 (8.5)	7.8 (NR)	NR	NR	NR
	ADA monotherapy + PBO step-up week 16	1 year	30.7 (7.4)	42.5 (7.9)	11.8 (NR)	42.6 (12.1)	49.1 (8.2) ^{a.c}	6.5 (NR)	NR	NR	NR
	ADA + MTX step-up week 16	1 year	31.7 (7.8)	46.6 (8.2) ^{b.c (vs. MTX)}	14.9 (NR)	44.1 (12.5)	50.7 (8.7)	6.6 (NR)	NR	NR	NR
PREMIER ¹⁵⁵	MTX + PBO	2 years	32.2 (7.9)	45.9 (7.8)	13.7 (NR)	43.5 (12.4)	52.4 (8.4)	8.9 (NR)	NR	NR	NR
	ADA monotherapy + PBO step-up week 16	2 years	30.7 (7.4)	44.7 (8.0)	14 (NR)	42.6 (12.1)	49.8 (8.1) ^{a.c (vs. MTX)}	7.2 (NR)	NR	NR	NR
	ADA + MTX step-up week 16	2 years	31.7 (7.8)	48.8 (8.3) ^{b.c (vs. MTX)}	17.1 (NR)	44.1 (12.5)	51.8 (8.8)	7.7 (NR)	NR	NR	NR
COMET ⁸³	MTX	52 weeks	NR	NR	10.7	NR	NR	6.1	NR	NR	NR
	ETN + MTX	52 weeks	NR	NR	13.7 ^a	NR	NR	6.8	NR	NR	NR
ERA ¹⁵⁷	MTX + PBO	52 weeks	NR	NR	9.6 (0.8) ^d	NR	NR	4.1 (0.8) ^d	NR	NR	8.1 (1.0) ^d
	ETN 25 mg every 2 weeks + PBO	52 weeks	NR	NR	10.7 (0.8) ^d	NR	NR	3.6 (0.8) ^d	NR	NR	8.2 (1.0) ^{a,d}
$ASPIRE^{71}$	PBO i.v. + MTX	54 weeks	NR	NR	10.1 (11.4)	NR	NR	NR	NR	NR	NR
	IFX i.v. + MTX	54 weeks	NR	NR	11.7 (11.6)	NR	NR	NR	NR	NR	NR

TABLE 373 The 0–100 SF-36 components scores: population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) PCS at baseline	Mean (SD) PCS at follow-up	Mean (SD) change from baseline in PCS	Mean (SD) MCS at baseline	Mean (SD) MCS at follow-up	Mean (SD) change from baseline in MCS	Mean (SD) ASHI score at baseline	Mean (SD) ASHI at follow-up	Mean (SD) change from baseline in ASHI score
BeST ⁷⁸	Sequential monotherapy	6 months	NR	NR	8.0 ^b (vs. combination +prednisone and combination+IFX)	NR	R	Э.1	R	NR	NR
	Step-up combination therapy	6 months	NR	NR	8.5b (vs. combination +prednisone and combination+IFX)	NR	R	3.5	R	NR	NR
	Initial combination therapy with prednisone	6 months	NR	NR	12.5	NR	R	1.2	ĸ	NR	NR
	Initial combination therapy with IFX	6 months	NR	NR	12.4	NR	NR	4.1	NR	NR	NR
ASHI, Arthritis- Arthritis (etane component scc ADA = ADA 40 ETN = ETN 25 r IFX = IFX 3 mg/ TCZ = TCZ 8 m p < 0.05. b $p < 0.001$ . c Estimated fr d Mean chang	Specific Health Index; <i>H</i> rcept); HIT HARD, High ore mg every other week : mg twice a week subcu g/kg intravenously at we g/kg intravenously ever or graphical data. e from baseline (SE).	ASPIRE, Active co Induction THera subcutaneously. taneously. eks 0, 2, 6 and e y 4 weeks.	ntrolled Study ipy with Anti-R very 8 weeks t	of Patients rec theumatic Drug hereafter (with	fi (adalimumab an s (adalimumab an dose escalation p	or the treatme id methotrexal bermitted after	nt of Rheumat te); MCS, ment week 12 if lac	oid arthritis of Ea al component sc c of response).	Irly onset; ERA, ore; NR, not re	ported; PCS,	physical

DOI: 10.3310/hta20350

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) PF score at baseline	Mean (SD) PF score at follow-up	Mean (SD) RP score at baseline	Mean (SD) RP score at follow-up	Mean (SD) BP score at baseline	Mean (SD) BP score at follow-up	Mean (SD) GH score at baseline
PREMIER ¹⁵⁵	MTX + PBO	1 year	31.5 (10.3)	41.8 (9.7)	32.6 (8.4)	44.1 (8.9)	32.7 (7.7)	46.5 (7.3)	40.5 (9.1)
	ADA monotherapy + PBO step-up week 16	1 year	29.1 (9.5)	40.5 (9.0)	32.5 (8.1)	43.3 (8.0)	31.6 (7.8)	44.9 (6.9) ^{a,b}	39.8 (9.6)
	ADA + MTX step-up week 16	1 year	30.2 (10.0)	44.7 (9.2) ^{b,c}	33.1 (8.8)	46.6 (8.2) ^{b,c}	32.5 (7.1)	49.7 (7.3) ^{b,c}	40.9 (10.0)
PREMIER ¹⁵⁵	MTX + PBO	2 years	31.5 (10.3)	44.3 (9.3)	32.6 (8.4)	46.5 (8.6)	32.7 (7.7)	48.8 (7.1)	40.5 (9.1)
	ADA monotherapy + PBO step-up week 16	2 years	29.1 (9.5)	43.0 (9.1)	32.5 (8.1)	45.5. (8.0)	31.6 (7.8)	47.1 (6.9) ^{a,b}	39.8 (9.6)
	ADA + MTX step-up week 16	2 years	30.2 (10.0)	46.9 (9.2) ^{b,c}	33.1 (8.8)	48.8 (8.2) ^{b,c}	32.5 (7.1)	51.8 (7.2) ^{b,c}	40.9 (10.0)

TABLE 374 The 0–100 SF-36 domains scores: baseline and follow-up – population 1 RCTs of biologic vs. DMARD(s) or PBO

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role-emotional; RP, role-physical;

SF, social functioning; VT, vitality.

ADA = ADA 40 mg every other week subcutaneously.

a *p* < 0.05.</li>b Estimated from graphical data.

c *p* < 0.001.

Mean (SD) GH score at follow-up	Mean (SD) VT score at baseline	Mean (SD) VT score at follow-up	Mean (SD) SF score at baseline	Mean (SD) SF score at follow-up	Mean (SD) RE score at baseline	Mean (SD) RE score at follow-up	Mean (SD) MH score at baseline	Mean (SD) MH score at follow-up
46.4 (8.2)	40.6 (9.7)	51.8 (8.7)	38.1 (12.2)	47.9 (7.8)	36.7 (13.8)	46.2 (8.6)	42.6 (12.1)	50.0 (9.0)
45.4 (7.9) ^{a,b}	39.2 (9.4)	49.6 (8.3) ^{a,b}	35.2 (12.2)	45.9 (7.4) ^{a,b}	37.5 (13.9)	44.5 (7.9) ^{a,b}	41.4 (11.9)	48.0 (8.7)
48.2 (8.2)	40.0 (10.0)	52.9 (8.8) ^{a,b}	38.3 (12.0)	48.7 (7.4)	38.4 (14.1)	47.3 (8.1)	42.1 (12.2)	49.9 (8.8)
47.2 (8.2)	40.6 (9.7)	53.7 (8.5)	38.1 (12.2)	49.2 (7.6)	36.7 (13.8)	48.1 (8.0)	42.6 (12.1)	51.1 (9.3)
46.7 (8.1) ^{a,b}	39.2 (9.4)	51.4 (8.4) ^{a,b}	35.2 (12.2)	48.0 (7.6) ^{a,b}	37.5 (13.9)	45.8 (7.9) ^{a,b}	41,4 (11.9)	49.2 (8.7)
49.5 (8.3)	40.0 (10.0)	54.7 (9.0) ^{a,b}	38.3 (12.0)	49.9 (7.4)	38.4 (14.1)	49.1 (7.8)	42.1 (12.2)	51.1 (8.7)

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in PF score	Mean (SD) change from baseline in RP score	Mean (SD) change from baseline in BP score	Mean (SD) change from baseline in GH score	Mean (SD) change from baseline in VT score	Mean (SD) change from baseline in SF score	Mean (SD) change from baseline in RE score	Mean (SD) change from baseline in MH score
ERA ¹⁵⁷	MTX + PBO	52 weeks	10.4 (0.8)	9.9 (0.9)	10.1 (0.7)	3.4 (0.7)	6.8 (0.8)	8.1 (0.9)	4.7 (1.0)	5.8 (0.8)
	ETN 25 mg every 2 weeks + PBO	52 weeks	9.7 (0.8)	10.8 (0.9)	10.5 (0.8)	4.5 (0.7)	7.9 (0.8)	8.4 (0.9)	4.0 (1.1)	4.4 (0.8)
BP, bodily pa VT, vitality	n; ERA, Early Rheuma	atoid Arthritis (eta	anercept); GH, ger	neral health; MH,	mental health; PF	, physical functior	ning; RE, role-emo	otional; RP, role–p	ohysical; SF, social	functioning;

ETN = ETN 25 mg twice a week subcutaneously.

TABLE 375 The 0-100 SF-36 domains scores: mean change from baseline - population 1 RCTs of biologic vs. DMARD(s) or PBO

**APPENDIX 4** 

$\circ$
×
2
5
0
ŝ
×
문
4
3
5
Š.
>
. <u>u</u>
õ
<u> </u>
0
ā
÷
0
<u>`</u> ~
5
ž
_
`
5
·∺
at
1
ă
ō
Q
ě,
F
8
ŝ
Ω,
Ċ,
ě
Ъ
ă
F
5
ö
S
F
e
Ξ.
2
5
é
·=
ŝ
5
ō
÷
ä
ъ
σ
٦
L
0
<u> </u>
Ę
õ
5
č
8
÷
Ч
<u> </u>
<u>و</u>
The (
The (
76 The (
376 The (
E 376 The (
LE 376 The (
BLE 376 The (
ABLE 376 The (

	Treatment arms							Mean (SD)
Trial name	for which data extraction performed	Assessment point	Mean (SD) PCS at baseline (0–100)	Mean (SD) PCS at follow-up (0–100)	Mean (SD) change from baseline in PCS (0–100)	Mean (SD) MCS at baseline (0–100)	Mean (SD) MCS at follow-up (0–100)	change from baseline in MCS (0–100)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	31.7 (19.3, 44.5) ^a	43.3 (26.1, 55.8) ^a	10.6 (–11.26, 22.7) ^a	46.7 (25.7, 60.1) ^a	54.8 (40.4, 65.7) ^a	4.3 (–9.3, 27.4)ª
	ADA + MTX + steroid	12 months	30.9 (13.1, 50.6) ^a	49.2 (29.9, 56.6) ^{a,b}	13.2 (-2.3, 33.0) ^{a,b}	47.0 (28.6, 60.6) ^a	55.7 (35.8, 62.6) ^a	5.5 (-8.5, 20.1) ^a
MCS, mental ADA = ADA 4 a Median (5t b $\rho < 0.05$ .	component score; PCS, pl 0 mg every other week su h, 95th percentile range).	ıysical componer Ibcutaneously.	it score.					

Trial name/ study	Treatment arms for which data extraction performed	Assessment point	Mean (SD) SF-6D score at baseline	Mean (SD) SF-6D score at follow-up	Mean (SD) change from baseline in RAQoL score	% change from baseline in RAQoL score
Bejarano et al.,	PBO + MTX	56 weeks	NR	NR	-4.7 (8.4)	NR
2008''	ADA + MTX	56 weeks	NR	NR	-7.6 (7.4) ^a	NR
PREMIER ¹⁵⁵	MTX + PBO	1 year	0.56 (0.11)	0.72 (0.14)	NR	NR
	ADA monotherapy + PBO step-up week 16	1 year	0.54 (0.11)	0.70 (0.14) ^{a,b}	NR	NR
	ADA + MTX step-up week 16	1 year	0.45 (0.11)	0.75 (0.13) ^{a,b}	NR	NR
PREMIER ¹⁵⁵	MTX + PBO	2 years	0.56 (0.11)	0.73 (0.14)	NR	NR
	ADA monotherapy + PBO step-up week 16	2 years	0.54 (0.11)	0.70 (0.13) ^{a,b}	NR	NR
	ADA + MTX step-up week 16	2 years	0.45 (0.11)	0.76 (0.14) ^{a,b}	NR	NR
Quinn <i>et al.</i> ,	MTX + PBO	14 weeks	NR	NR	NR	7 ^b (worse)
2005	IFX 3 mg/kg + MTX	14 weeks	NR	NR	NR	-74 ^{a,b} (improved)
Quinn <i>et al.</i> ,	MTX + PBO	54 weeks	NR	NR	NR	0 ^b
2005	IFX 3 mg/kg + MTX	54 weeks	NR	NR	NR	–82 ^{a,b} (improved)

### TABLE 377 The 0–100 SF-6D and RAQoL: population 1 RCTs of biologic vs. DMARD(s) or PBO

NR, not reported.

ADA = ADA 40 mg every other week subcutaneously.

IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response).

a p < 0.05. b Estimated from graphical data.
Trial name	Treatment arms for which data extraction performed	Assessment point	Mean EQ-5D score at baseline (0–1)	Mean EQ-5D score at follow-up (0–1)	Mean (SD) change from baseline in EQ-5D score (0–1)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	0.64 (0.22, 0.80) ^a	0.78 (0.49, 1.00) ^a	0.20 (-0.06, 0.56) ^a
	ADA + MTX + steroid	12 months	0.61 (0.17, 0.80) ^a	0.82 (0.38, 1.00) ^{a,b}	0.22 (-0.05, 0.67) ^a
BeST ¹⁵⁸	Sequential monotherapy	6 months	0.5 ^c	0.65 ^c	-0.15 (NR)
	Step-up combination therapy	6 months	0.5 ^c	0.6 ^c	-0.1 (NR)
	Initial combination therapy with prednisone	6 months	0.5 ^c	0.75 ^c	–0.25 (NR)
	Initial combination therapy with IFX	6 months	0.5 ^c	0.8 ^c	–0.03 (NR)

## TABLE 378 The 0-100 EQ-5D: population 1 RCTs of biologic vs. DMARD(s) or PBO

NR, not reported.

ADA = ADA 40 mg every other week subcutaneously.

IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after

week 12 if lack of response). a Median (5th, 95th percentile range).

b *p* < 0.05.

c Estimated from graphical data.

Data are shown to the level of accuracy available in the source material.

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean PCS at baseline	Mean PCS at follow-up	Mean change from baseline in PCS	Mean MCS at baseline	Mean MCS at follow-up	Mean change from baseline in MCS
ATTEST ⁷⁴	PBO + MTX	Day 197	NR	NR	4ª	NR	NR	1 ^a
	IFX + MTX	Day 197	NR	NR	7ª	NR	NR	4ª
	ABT + MTX	Day 197	NR	NR	8 ^a	NR	NR	$5^{\rm a}$
AMPLE ¹⁴⁴	ABT s.c. + MTX	1 year	NR	NR	9.37	NR	NR	3.92
	ADA + MTX	1 year	NR	NR	8.84	NR	NR	3.62
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA	24 weeks	NR	NR	9.2	NR	NR	7.9
	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	NR	NR	7.6	NR	NR	5.0 ^b
MCS, mental cd ABT i.v. = BT $\approx$ ABT s.c. = ABT ADA = ADA 40 TCZ = TCZ 8 mg a Estimated frc b $p < 0.05$ . Data are shown	omponent score; NR, not reported, 10 mg/kg intravenously on weeks 1 125 mg once per week subcutaned mg every other week subcutaneou j/kg intravenously every 4 weeks. om graphical data.	: PCS, physical compone 0, 2 and 4, and every 4 ously, following an optic usly. in the source material.	ent score. weeks thereafter. onal i.v. loading dos	e of ≈ 10 mg/kg ba	sed on weight range			

TABLE 379 The 0-100 SF-36 components scores: populations 2 and 3 biologic head-to-head RCTs

۵ –	Treatment arms for which data extraction performed	Assessment point	Mean change from baseline in PF score	Mean change from baseline in RP score	Mean change from baseline in BP score	Mean change from baseline in GH score	Mean change from baseline in VT score	Mean change from baseline in SF score	Mean change from baseline in RE score	Mean change from baseline in MH score
	ABT s.c. + MTX	1 year	7.92	8.87	10.67	5.44	5.84	7.33	9	4.21
	ADA + MTX	1 year	7.81	7.91	10.65	5.26	5.51	6.5	5.84	3.86
y pain; ( = ABT 1. DA 40 n shown <b>381 Th</b>	GH, general health, 25 mg once per wee to the level of accur to <b>0–100 FO-5D</b> ut	MH, mental healthek subcutaneously. ek subcutaneously. acy available in the actore: nonula	n; PF, physical fu , following an op e source materia <b>stions 2 and 3 h</b>	nctioning; RE, rolk otional i.v. loading I. viologic head-to-	<del>e c</del> motional; RP, j dose of ≈ 10 mi thead RCTs	role—physical; SF, g/kg based on we	social functioning ight range.	;; VT, vitality.		
		- -		5						
name	Treatment data extrac	arms for which ction performed	Assessr	nent point	Mean EQ-5 at baseline	D score (0–1)	Mean (SD) EQ-5 at follow-up (0–	D score	Mean (SD) cha baseline in EQ	nge from -5D score (0–1)
5EA ¹¹⁴	ADA ( <i>n</i> = 60	((	12 mon	iths	0.52 (0.06–0	).66) ^a	0.59 (0.52–0.69)		0.07 (NR)	
	ETN $(n = 60)$		12 mon	iths	0.52 (0.06–0	).69) ^a	0.59 (0.24-0.73)		0.07 (NR)	
ot repor = ADA 4 ETN 25 dian (10	ted. 0 mg every other wi mg twice a week su R)	eek subcutaneous <mark>h</mark> ubcutaneoush.	ż							

555

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) PCS at baseline	Mean (SD) PCS at follow-up	Mean (SD) change from baseline in PCS	% change from baseline in PCS	Mean (SD) MCS at baseline	Mean (SD) MCS at follow-up	Mean (SD) change from baseline in MCS	Mean % change from baseline in MCS
AIM ^{61,62}	MTX + PBO	1 year	30.7 (7.5)	35ª	4.3 (NR)	NR	40.8 (11.2)	46ª	5.2 (NR)	NR
	ABT + PBO	1 year	30.6 (7.3)	40 ^{a,b}	9.4 (NR)	NR	41.8 (11.4)	49 ^{a,c}	7.2 (NR)	NR
CERTAIN ⁷⁹	PBO + cDMARDs	24 weeks	NR	NR	1.7 (5.6)	NR	NR	NR	0.5 (9.6)	NR
ClinicalTrials.gov	CTZ + cDMARDs	24 weeks	NR	NR	6.0 (7.50)	NR	NR	NR	4.0 (9.77)	NR
(NCT00674362)										
APPEAL ⁶⁸	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	30.1	37.3	7.2 (NR)	22.8 improvement	42.4	47.8	5.4 (NR)	13.3 improvement
	ETN + MTX	16 weeks	30.5	40.4 ^b	9.9 (NR)	31.4 ^b improvement	42.9	50.2 [€]	7.3 (NR)	17.5 ^c improvement
GO-FORWARD ⁹²	PBO + MTX	Week 24	NR	NR	2.54 (8.06) improvement	NR	NR	NR	0.75 (9.68) improvement	NR
	GOL 50 mg + MTX	Week 24	NR	NR	8.28 (8.33) ^b improvement	R	NR	R	1.83 (10.87) improvement	NR
ATTRACT ¹⁵⁹	PBO i.v. + MTX	54 week	NR	NR	NR	NR	NR	NR	NR	9 improvement
	IFX i.v. monotherapy	54 week	NR	NR	NR	NR	NR	NR	NR	34 ^b improvement
TOWARD ¹²¹	PBO + cDMARDs	24 weeks	NR	NR	4.1 improvement	NR	NR	NR	2.3 improvement	NR
	TCZ 8 mg/kg i.v. + DMARDs	24 weeks	NR	NR	8.9 ^b improvement	NR	NR	NR	5.3 ^b improvement	NR

TABLE 382 The 0-100 SF-36 components scores: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

Treatr for wh extrac perfor	nent arms hich data tion rmed	Assessment point	Mean (SD) PCS at baseline	Mean (SD) PCS at follow-up	Mean (SD) change from baseline in PCS	% change from baseline in PCS	Mean (SD) MCS at baseline	Mean (SD) MCS at follow-up	Mean (SD) change from baseline in MCS	Mean % change from baseline in MCS
nation RDs		AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	NR
or + DMA	RD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	NR
iate respoi travenous veeks 1, 2 veek subci veeks subci vesks sub vesks sub vusly at we nously eve il data.	ly on viders 1 ly on 4 and 4 utanec utanec cutan seks 0, ry 4 w	to Methotrexate; weeks 0, 2 and 2 wesly. eously. , 2, 6 and every 8 veeks.	: MCS, mental d 4, and every 4 v very other weel 8 weeks therea	component sco weeks thereafte k. fter (with dose	ere; NR, not report er. escalation permit	ed; PCS, physical ted after week 12	component sco 2 if lack of respo	nse).		

## **TABLE 383** The 0–100 SF-36 domains scores: baseline and follow-up – populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment point	Mean (SD) PF score at baseline	Mean (SD) PF score at follow-up	Mean (SD) RP score at baseline	Mean (SD) RP score at follow-up	Mean (SD) BP score at baseline	Mean (SD) BP score at follow-up
Durez et al.,	MP + MTX	14 weeks	27 (26)	24 (26)	13 (28)	35 (41)	26 (16)	32 (24)
2004	IFX + MTX	14 weeks	36 (22)	55 (23) ^a	42 (48)	45 (42)	35 (23)	52 (16)
TACIT ¹⁴¹	Combination cDMARDs	AiC information has been removed						
	TNF inhibitor + DMARD	AiC information has been removed						

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role–emotional; RP, role–physical; SF, social functioning; VT, vitality.

IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response).

a *p* < 0.05.

Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
(SD) GH	(SD) GH	(SD) VT	(SD) VT	(SD) SF	(SD) SF	(SD) RE	(SD) RE	(SD) MH	(SD) MH
score at	score at	score at	score at	score at	score at	score at	score at	score at	score at
baseline	follow-up	baseline	follow-up	baseline	follow-up	baseline	follow-up	baseline	follow-up
26 (19)	29 (22)	27 (20)	29 (22)	44 (16)	40 (25)	22 (39)	39 (47)	45 (21)	45 (22)
40 (16)	50 (16) ^a	31 (25)	45 (20)	53 (30)	66 (22) ^a	58 (47)	67 (42)	52 (25)	60 (23)
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information	information	information	information	information	information	information	information	information	information
has been	has been	has been	has been	has been	has been	has been	has been	has been	has been
removed	removed	removed	removed	removed	removed	removed	removed	removed	removed
AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC	AiC
information	information	information	information	information	information	information	information	information	information
has been	has been	has been	has been	has been	has been	has been	has been	has been	has been
removed	removed	removed	removed	removed	removed	removed	removed	removed	removed

			500 000					0		
Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in PF score	Mean (SD) change from baseline in RP score	Mean (SD) change from baseline in BP score	Mean (SD) change from baseline in GH score	Mean (SD) change from baseline in VT score	Mean (SD) change from baseline in SF score	Mean (SD) change from baseline in RE score	Mean (SD) change from baseline in MH score
CERTAIN ⁷⁹	PBO + cDMARDs	24 weeks	0.4 (8.90)	1.7 (7.81)	2.8 (8.50)	0.9 (8.06)	0.6 (8.41)	0.8 (8.89)	-0.2 (12.33)	1.2 (7.72)
ClinicalTrials.gov	CTZ + cDMARDs	24 weeks	5.1 (7.36)	4.7 (9.77)	8.0 (8.70)	5.0 (7.59)	6.4 (8.74)	4.3 (10.21)	3.2 (13.74)	5.2 (8.43)
(NCT00674362)										
ТАСIТ ¹⁴¹	Combination cDMARDs	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
	TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
BP, bodily pain; G CTZ=s.c. CTZ 40	iH, general health; MF 0 mg at weeks 1, 2 an	H, mental health; d 4, then 200 m	PF, physical func g every other we	tioning; RE, role- ek.	-emotional; RP, n	ole–physical; SF, s	social functioning.	; VT, vitality.		

TABLE 384 The 0-100 SF-36 domains scores: mean change from baseline - populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

AiC information has been removed

AiC information has been removed

AiC information has been

AiC information has been removed

AiC information has been removed

TNF inhibitor + DMARD

NR, not reported. ETN = ETN 25 mg twice a week subcutaneously.

been removed

been removed

removed

removed

been removed

been removed

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean EQ-5D score at baseline (0–1)	Mean (SD) EQ-5D score at follow-up (0–1)	Mean (SD) change from baseline in EQ-5D score (0–1)	Mean (SD) change from baseline in EQ-5D VAS (0–100)
ADORE ^{59,60}	ETN monotherapy	16 weeks	NR	NR	0.1883 (0.33)	19.76 (27.24)
	ETN + MTX	16 weeks	NR	NR	0.2399 (0.32)	21.00 (26.61)
racit ¹⁴¹	Combination cDMARDs	AiC information has	AiC information has	AiC information has been	AiC information has	AiC information has

(SD) change baseline in VAS (0–100)

TABLE 385 The 0-100 EQ-5D: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

## TABLE 386 The 0–100 EQ-5D domains scores: mean change form baseline – populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in usual activities (0–1)	Mean (SD) change from baseline in self-care (0–1)	Mean (SD) change from baseline in pain/ discomfort (0–1)	Mean (SD) change from baseline in mobility (0–1)	Mean (SD) change from baseline in anxiety/ depression (0–1)
ADORE ⁵⁹	ETN monotherapy	16 weeks	0.3077 (0.61)	0.1731 (0.55)	0.3718 (0.62)	0.3077 (0.50)	0.2323 (0.59)
	ETN + MTX	16 weeks	0.2867 (0.55)	0.3533 (0.55)ª	0.4400 (0.65)	0.2318 (0.52)	0.24 (0.65)

ETN = ETN 25 mg twice a week subcutaneously.

GOL = GOL 50 mg every 4 weeks subcutaneously.

a p < 0.05. Data are shown to the level of accuracy available in the source material.

## TABLE 387 The 0–100 EuroQol VAS scores: populations 2 and 3 RCTs of biologic vs. DMARD(s) or PBO

Trial name	Treatment arms for which data extraction performed	Assessment point	Mean (SD) baseline score	Mean % change
ETN study 309 ⁸⁹	SSZ + PBO	24 weeks	44.6 (19.0)	20.1
	ETN + PBO	24 weeks	45.5 (21.3)	64.6 ^a (vs. SSZ)
	ETN + SSZ	24 weeks	43.1 (22.4)	$67.6^{a (vs. SSZ)}$
ETN = ETN 25 mg twice	a week subcutaneously.			

TABLE 388 Adve	erse events and discontinuation	ons due to AEs: p	opulation 1 RCT	s of biologic interve	ntions vs. DMARD(s) or I	BD
Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), <i>n/</i> N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
GUEPARD ⁹³	Initial MTX 12 weeks, then sten-up therapy in both	RCT	52 weeks	NR	NR	5/32 (16)
	groups based on DAS28					Five patients were hospitalised for the following reasons: one for vasculitis with revision of diagnosis to Sharp syndrome (week 6), one for hepatitis secondary to MTX (week 4), one for a hip prosthesis operation (week 12), one for weight loss (week 36) and one for haemopthysis (week 32)
	Initial ADA + MTX	RCT	52 weeks	NR	NR	5/33 (15)
	i z weeks, uren skep-up therapy in both groups based on DAS28					One had hepatitis (week 6), the other had MTX pneumonia (week 6) and the last had acoustic neuroma (week 10) plus two malignancy
HIT HARD ⁹⁴	PBO + MTX	RCT	24 weeks	4/85 (4.7)	NR	NR
	ADA + MTX	RCT	24 weeks	2/87 (2.3)	NR	NR
HIT HARD ⁹⁴	PBO + MTX for 24 weeks followed by MTX for	LTE	48 weeks	7/85 (8.2)	NR	22/85 (25.9)
	24 weeks					Four serious infections (two urosepsis, one pneumonia), one stroke, one diplopia, one paraesthesia, three cardiac disorders (one bypass surgery, one claudication, one myocarditis), one reactive depression, three solid malignant tumours (one prostate, two cervix), one peripheral artery angioplasty, one shoulder impingment syndrome, one prolapsed lumbar disc, one fracture, three arthritis flare, one nephrolithiasis
	ADA + MTX for 24 weeks	LTE	48 weeks	4/87 (4.6)	NR	12/87 (13.8)
	24 weeks					Three serious infections (one bronchitis, two abscess), one concussion, one syncope, one benign neoplasm (prostate), one subileus, one gastric haemorrhage, one varicose veins, one vasculitis, one coxarthrosis, one fracture
						continued

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), <i>n/</i> N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
OPERA ¹⁰⁷	PBO + MTX + steroid	RCT	12 months	1/91 (1.1)	NR	10/91 (11.0)
						Two malignancies (one urothelial carcinoma, one basocellular carcinoma), three serious infections (one pneumonia, one bronchitis, one dental abscess), two fivefold increased serum alanine aminotransferase, one disease exacerbation, one leucopoenia, one polyneuropathia, one peptic ulcer, one coronary bypass, one hip fracture, one coxarthrosis
						One patient who terminated due to non-compliance at 6 months died due to pneumonia 4 months later
	ADA + MTX + steroid	RCT	12 months	2/89 (2.2)	NR	14/89 (15.7)
						Three malignancies (one small cell lung carcinoma, one myelodysplastic syndrome, one basocellular carcinoma), three serious infections (one empyema, one pneumonia, one bronchitis), one suspected but unconfirmed infectious arthritis, one local s.c. atrophy, one blurred vision, one acute myocardial infarction, one tachicardia, one gonarthrosis
OPTIMA ¹⁰⁸	PBO + MTX	RCT	26 weeks	16/517 (3)	NR	NR
					Infections in 36.4%	Six serious infections
	ADA + MTX	RCT	26 weeks	21/515 (4)	NR	NR
						Two malignancies (one malignant melanoma in situ, one squamous cell carcinoma), 13 serious infections, one case of lupus-like syndrome, no lymphoma or demyelinating disease

TABLE 388 Adverse events and discontinuations due to AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

continued						
cancer, three breast cancer, two bladder cancer, one malignant melanoma, one tongue neoplasm, one pancreatic neoplasm, one lung cancer, one gastric cancer, one colon cancer. No lupus-like syndrome or demyelinating disease					monotherapy	
Two TB, one lymphoma, one non-melanoma skin cancer three breast cancer two bladder cancer	NR	14.2%	5 years	LTE	ADA + MTX to OL ADA	
buring open-label period: 3.3 serious intections per 100 person-years	NR	10.7%	5 years	LTE	ADA monotherapy + PBO to OL ADA monotherapy	
2/497 (0.4)	NR	7.7%	5 years	LTE	PBO+MTX to OL ADA monotherapy	PREMIER ¹⁰⁹
Nine serious infections [three pulmonary infections (including one plaural tuberculosis)], one sinus infection, one wound infection, one septic arthritis, one infected hygroma, one cellulitis, one urinary tract infection), two malignancies (one ovarian, one prostate)	262/268 (97.8)	32/268 (11.9)	2 years	RCT	ADA + MTX	
Three serious infections (one pneumonia, one cellulitis, one septic arthritis), one lupus-like reaction, four malignancies (breast, colon, multiple myeloma, metastatic cancer with unknown primary site)	262/274 (95.6)	26/274 (9.5)	2 years	RCT	ADA monotherapy + PBO	
Seven serious infections (two pneumonia, one septic arthritis, one sinusitis, one abscess, one bacteraemia, one parotitis), four malignancies (lymphoma, melanoma, prostate, breast)	245/257 (95.3)	19/257 (7.4)	2 years	RCT	PBO+MTX	PREMIER ¹⁰⁹
Number of patients experiencing one or more serious AE, <i>n/</i> N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Discontinuation due to AE(s), <i>n/</i> N (%)	Assessment time point	RCT/LTE phase	Treatment arms for which data extraction performed	Trial name/ author, year

Number of patients experiencing one or more serious AE, <i>n/</i> N (%)	34/268 (12.7) % NR if less than 1% Cardiac, two Eye, one Gastrointestinal, four Gastrointestinal, four General and administration site, one Infection, eight (3%) Injury, poisoning, and procedural complications, four Injury, poisoning, and procedural complications, four Infection, eight (3%) Netrous and procedural complications, four Paboratory values, one Musculoskeletal and connective tissue, nine (3%) Nervous system, one Psychiatric, one Renal and urinary, one Renal and urinary, one Real and urinary, one Surgical and medical procedures, two Vascular, two Malignancy, four
Number of patients experiencing one or more AE, <i>n/</i> N (%)	246/268 (91.8)
Discontinuation due to AE(s), n/N (%)	34/268 (12.7)
Assessment time point	52 weeks
RCT/LTE phase	RCT period 1, 52 weeks
Treatment arms for which data extraction performed	PBO + MTX
Trial name/ author, year	COMET ⁸¹⁻⁸³

TABLE 388 Adverse events and discontinuations due to AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

Number of patients experiencing one or more serious AE, <i>n/</i> N (%)	33/274 (12.0)	Cardiac, two	Ear and labyrinth, one	Gastrointestinal, one	General and administration site, two	Hepatobiliary, three	Infection, five (2%)	Injury, poisoning and procedural complications, three	Laboratory values, one	Metabolic and nutritional, two	Musculoskeletal and connective tissue, four	Nervous system, four	Psychiatric, one	Renal and urinary, one	Respiratory, thoracic and mediastinal, three	Skin and s.c. tissue, one	Surgical and medical procedures, one	Vascular, one	Malignancy, four	continuec
Number of patients experiencing one or more AE, <i>n/</i> N (%)	247/274 (90.2)																			
Discontinuation due to AE(s), <i>n/</i> N (%)	28/274 (10.2)																			
Assessment time point	52 weeks																			
RCT/LTE phase	RCT period 1,																			
Treatment arms for which data extraction performed	ETN + MTX																			
Trial name/ author, year																				

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n</i> /N (%)
COMET/Emery	MTX in year 1, MTX in	RCT period 2	Weeks	NR	79/99 (79.8)	12/99 (12.1)
0107	year z		401-2C			One death
						Three malignancies
						Remainder serious infections
	MTX year 1, ETN + MTX in	RCT period 2	Weeks	NR	71/90 (78.9)	11/90 (12.2)
	year z		401-2C			Five malignancies
						Remainder serious infections
	ETN + MTX in year 1,	RCT period 2	Weeks	NR	91/111 (82.0)	8/111 (7.2)
	EIN + MIX IN Year Z		401-7c			Serious infections
	ETN + MTX in year 1,	RCT period 2	Weeks	NR	89/111 (80.2)	10/111 (9.0)
	EIN IN Year Z		P2-104			One malignancy
						Rest serious infections
ERA ¹³⁹	PBO + MTX	RCT	12 months	22/217 (10)	NR	NR
						Two malignancies (bladder cancer, colon cancer)
						Infections requiring hospitalisation/i.v. antibiotics in $< 3\%$
	ETN + PBO	RCT	12 months	10/207 (5)	NR	NR
						Three malignancies (carcinoid lung cancer, Hodgkin's disease and prostate cancer)
						Infections requiring hospitalisation/i.v. antibiotics in $< 3\%$

TABLE 388 Adverse events and discontinuations due to AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

0/14 0/15 1/15 (6.7) One case of MTX-related pneumonitis continued	0/14 0/15 1/15 (6.7)	0/14 0/15 1/15 (6.7)	52 weeks 52 weeks 52 weeks	RCT RCT	X + MTX X TM +
16/372 (4.3) (pneumonia, myocardial inf asthma, three TB, two infusion reactions	NR 2	34/373 (9.1)	54 weeks	RCT	
2/291 (0.7) (myocardial infarction)	NR	9/298 (3.0)	54 weeks	RCT	
13.7% (NR)	NR	NR	Week 104	LTE	
N/A	NR	NR	Week 104	LTE	
10/185 (5.4) (NR for extracted treatment arm)	129/158 (81.6)	6/158 (3.8)	24 weeks	RCT	
11/160 (6.9) (NR for extracted treatment arm)	116/160 (72.5)	2/160 (1.3)	24 weeks	RCT	
Four malignancies					
Seven patients had infections requiring hospitalisation/ i.v. antibiotics					
NR	NR	15/207 (7.2)	2 years	LTE	
Three malignancies					
Nine patients had infections requiring hospitalisation/i.v antibiotics					
NR	NR	27/217 (12)	2 years	LTE	
Number of patients experiencing one or more serious AE, <i>n/</i> N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Discontinuation due to AE(s), <i>n/</i> N (%)	Assessment time point	RCT/LTE phase	ns for traction

			-	Ŋ		
Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n/N</i> (%)
Quinn <i>et al.</i> ,	PBO + MTX	LTE	104 weeks	0/10	NR	NR
2007	IFX + MTX	LTE	104 weeks	1/10 (10)	NR	ZR
						One cutaneous vasculitis (after single injection; withdrawn)
ASPIRE, Active on nduction THera with Methotrex:	controlled Study of Patients rect py with Anti-Rheumatic Drugs ate and Adalimumab; TB, tuber	eiving Infliximab fo (adalimumab and culosis.	or the treatment of methotrexate); N/A	Rheumatoid arthritis A, not applicable; NR,	of Early onset; ERA, Early F not reported; OL, open lab	theumatoid Arthritis (etanercept); HIT HARD, High bel; OPTIMA, OPTimal protocol for treatment Initiation

TABLE 388 Adverse events and discontinuations due to AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

ADA = ADA 40 mg every other week subcutaneously. ETN = ETN 25 mg twice a week subcutaneously. IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response).

r more								two urinary cobacter cell state cancer, psoriasis, tic vasculitis, us sjögren's jögren's ree bacterial culitis, , one small ma), Raynaud's A	continued
eriencing one o								tree pneumonia enteritis, one hela (two squamous (two squamous phoma, one pre ma of lung), one no eutaneo episcleritis, one episcleritis, one episcleritis, one divert lococcal bursitis al cell carcinom tional cell carcinom tional cell carcinom tional cell carcinom tional cell carcinom tional cell carcinom tional cell carcinom	
of patients exp E, <i>n/</i> N (%)	1.8) (type NR)	1.5) (type NR)	) (type NR)		3.2) (type NR)	6) (type NR)	0.1)	<ul> <li>bus infections (tf tion, one gastro tive malignancies of skin, one lyrr oud's phenomen (c vasculitis, one ic vasculitis, one ic vasculitis, one sinfections (tw ne chest wall ab ligitis, one staphy nancies (two ba: ancer, one trans sis, one erytherr ity</li> </ul>	
Number o serious A	13/110 (1	19/165 (1	8/156 (5.1	I	30/165 (18	15/156 (9.	32/318 (10	Seven seri tract infect gastritis), f carcinoma one squan one synde lymphocyt syndrome 30/328 (9. Nine seriou arthritis, o one menir four malig cell lung c one psoria phenomer	
of patients ing one or <i>n/</i> N (%)	3.6)	34.8)	32.7)		<b>93.3</b> )	39.1)	38.1)	863)	
Number d experiend more AE,	92/110 (85	140/165 (8	129/156 (8	I	154/165 (9	139/156 (8	280/318 (8	283/328 ((	
ntinuation AE(s), 6)	(6.0)	(4.8)	(1.3)		5 (7.3)	(3.2)	3 (3.5)	8 (6. 1) 2	
Discor due tc <i>n/</i> N (%	1/110	8/165	2/156	I	12/165	5/156	11/318	20/328	
Assessment time point	Day 197	Day 197	Day 197	Day 365	Day 365	Day 365	1 year	1 year	
RCT/LTE phase	RCT	RCT	RCT	RCT	RCT	RCT	RCT	RCT	
rms for xtraction				~		~			
Treatment a which data e performed	PBO + MTX	IFX + MTX	ABT + MTX	(1) PBO + MT>	(2) IFX + MTX	(3) ABT + MTX	ABT s.c.	ADA	
Trial name/ study	ATTEST ⁷⁴			ATTEST ⁷⁴			AMPLE ⁶⁶		

TABLE 389 Adverse events and discontinuations due to AEs: populations 2 and 3 head-to-head biologic RCTs

rse events and discontinuations due to AEs: populations 2 and 3 head-to-head biologic RCTs ( <i>continued</i> )	Treatment arms for which data extraction RCT/LTE Assessment due to AE(s), experiencing one or Number of patients experiencing one or more performed phase time point <i>n/</i> N (%) more AE, <i>n/</i> N (%) serious AE, <i>n/</i> N (%)	ADA + cDMARDs RCT 12 months 10/60 (16.7) NR 6/60 (10)	There were two deaths, both occurring in patients allocated ADA and resulting from ischaemic heart disease, one occurred a week after drug withdrawal	Other events possibly related to therapy were acute cholecystitis (ADA)	One ovarian cancer	ETN50 + cDMARDs RCT 12 months 12/60 (20) NR 7/60 (11.7)	One diagnosed with heart failure 2 weeks after drug withdrawal: an event believed to be possibly related to the reatment events possibly related to therapy	A patient hospitalised with chest symptoms	One acute myeloid leukaemia, group not specified	Other serious AEs included hospitalisation for a ruptured popliteal cyst; chest symptoms; syncope; suspected femoral fracture; angioedema and urticaria; stillbirth from pregnancy while on treatment and
dverse events and disc	Treatment arms which data extra performed	ADA + cDMARDs				ETN50 + cDMARD				
TABLE 389 Ac	Trial name/ study	RED-SEA ¹¹⁴								

Number of patients experiencing one or more serious AE, <i>n/</i> N (%)	19/162 (11.7) (including infections, two myocardial infarction/acute coronary syndrome, one stroke, one cancer)	16/162 (9.9) (including infections, two myocardial infarction/acute coronary syndrome, one stroke, one cancer, one hypersensitivity reaction)	je. . of response).
Number of patients experiencing one or more AE, <i>n/</i> N (%)	133/162 (82.1)	134/162 (82.7)	/kg based on weight rang itted after week 12 if lack
Discontinuation due to AE(s), <i>n/</i> N (%)	9/163 (5.5)	10/163 (6.1)	sly; NR, not reported. nereafter. oading dose of $\approx 10  \text{mg}$ th dose escalation perm
Assessment time point	24 weeks	24 weeks	eek subcutaneous d every 4 weeks th g an optional i.v. l eks thereafter (wi
RCT/LTE phase	RCT	RCT	t 50 mg once a w ks 0, 2 and 4, and neously, followin eously. 6 and every 8 we 5.
Treatment arms for which data extraction performed	TCZ + s.c. PBO	ADA+i.v. PBO	pnucleic acid; ETN50, etanercep 10 mg/kg intravenously on wee 125 mg once per week subcuta mg every other week subcutan kg intravenously at weeks 0, 2, ø/kg intravenously every 4 week
Trial name/ study	ADACTA ⁵⁸		DNA, deoxyrib, ABT i.v. = BT $\approx$ ABT s.c. = ABT ABT s.c. = ABT ADA = ADA 40 IFX = IFX 3 mg/ TCZ = TCZ 8 mg

DOI: 10.3310/hta20350

Number of patients experiencing one or more serious AE, <i>n/</i> N (%)	26/219 (11.9)	Related to study drug, one (0.5%)	Discontinuations due to serious AEs, three (1.4%)	Musculoskeletal and connective tissue disorders, 10 (4.6%)	Infections, five (2.3%)	Nervous system disorders, four (1.8%)	Cardiac disorders), two (0.9%)	Neoplasms (benign, malignant and unspecified), two (0.9%)	65/433 (15.0)	Related to study drug, 15 (3.5%)	Discontinuations due to serious AEs, 10 (2.3%)	Musculoskeletal and connective tissue disorders, 20 (4.6%)	Infections, 17 (3.9%)	Nervous system disorders, six (1.4%)	Cardiac disorders, four (0.9%)	Neoplasms (benign, malignant and unspecified), four (0.9%)
Number of patients experiencing one or more AE, <i>n/</i> N (%)	184/219 (84.0)								378/433 (87.3)							
Discontinuation due to AE(s), n/N (%)	1.8								4.2							
Assessment time point	12 months								12 months							
RCT/LTE phase	RCT								RCT							
Treatment arms for which data extraction performed	PBO + MTX								ABT i.v. + MTX							
Trial name/ author, year	AIM ^{61,62}															

TABLE 390 Adverse events and discontinuations due to AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO

ial name/ ithor, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), <i>n/</i> N (%)	Number of patients experiencing one or more AE, <i>n</i> /N (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
Vet	ABT i.v. + MTX 2 years or MTX + PBO 1 year then ABT i.v. + MTX 1 year	ΓLE	2 years	38/593 (6.4)	550/593 (92.7)	149/593 (25.1) Excluding worsening of arthritis, the most frequent serious AEs were osteoarthritis, pneumonia, basal cell carcinoma and chest pain, all of which occurred in > 0.5% of patients during the cumulative study period
M ⁶⁵	ABT i.v. + MTX 2 years or MTX + PBO 1 year then ABT i.v. + MTX 1 year	LTE	3 years	55/593	569/593 (96)	L K K K K K K K K K K K K K K K K K K K
SET ⁷²	PBO + MTX	RCT	4 months	0/23	14/23 (60.9)	2/23 (8.7)
	ABT i v + MTX	RCT	4 months	27/0	(141)	One atrial fibrillation, one study drug overdose
SET ⁷²	ABT i.v. + MTX	ГТЕ	1 year	0/49	41/49 (83.7)	6/49 (12.2)
						One pneumonia, one hyperthyroidism and post-operative wound infection (in same patient), one study drug overdose and coronary artery disease (in same patient), one chronic anaemia, one worsening of RA, one depression
JGUST II ⁷⁶	PBO + MTX	38-week follow-up of 26-week RCT treatment	38 weeks	2/76 (2.6)	38/76 (50)	<b>N</b> R
	ADA + MTX	38-week follow-up of 26-week RCT treatment	38 weeks	2/79 (2.5)	50/79 (63)	NR
						continued

	or more										nd the ory, one testinal,		the ory, five itestinal)
	beriencing on										16 neoplasms ¿ ns: four respirat ry, one gastroii portunistic		neoplasms and ns: nine respira ny, two gastroi
ntinued)	f patients exp , <i>n/</i> N (%)				specified		iancies	specified		.2)	us infections, ` erious infectior ical, one urina ologic, two op	1.7)	nfections, 27 r erious infectior ical, four urina
) or PBO (co	Number of serious AE	8/87 (9.2)	17/91 (18.7	One death	Others not	NR	Two malign	Others not	NR	51/418 (12.	Seven serio following se dermatolog one gynaec	100/856 (1	22 serious i following se dermatolog
s. DMARD(s)	f patients ng one or n/N (%)	2)	(6			0.5)				6.1)		9.7)	
erventions v	Number of experienci more AE, <i>I</i>	71/87 (81.6	90/91 (98.9			181/200 (9			NR	360/418 (8		768/856 (8	
[:] biologic int	tinuation AE(s), )	6)	13.2)							(4.3)		(5.0)	
d 3 RCTs of	Discon [:] due to <i>n/</i> N (%	4/87 (4.	12/91 (			NR			NR	18/418		43/856	
pulations 2 and	Assessment time point	24 weeks	24 weeks			52 weeks			52 weeks	1 year		1 year	
e to AEs: po	/LTE ise												
iations du	RCT pha	RCT	RCT			RCT			RCT	RCT		RCT	
events and discontinu	Treatment arms for which data extraction performed	PBO	ADA monotherapy			PBO + MTX			ADA + MTX	PBO + cDMARDs		ABT + cDMARDs	
TABLE 390 Advers	Trial name/ author, year	CHANGE ⁸⁰				DE019 ⁸⁴				ASSURE ⁷³			

or more				4)						9)					continued
Number of patients experiencing one o serious AE, <i>n/</i> N (%)	22/318 (6.9)	Six serious infections	Others not specified	Severe or life-threatening AEs, 49/318 (15.	17/318 (5.3)	Four serious infections	One death	One malignancy	Others not specified	Severe or life-threatening AEs, 38/318 (11.	16/110 (14.5)	13/113 (11.5)	NR	NR	
Number of patients experiencing one or more AE, <i>n/</i> N (%)	263/318 (82.7)				275/318 (86.5)						105/110 (95.5)	NR	NR	NR	
Discontinuation due to AE(s), <i>n/</i> N (%)	8/318 (2.5)	(Of which one	non-treatment	leiateu)	9/318 (2.8)						1/110 (0.9)	6/113 (5.3)	2/62 (3.2)	0/67 (0)	
Assessment time point	24 weeks				24 weeks						26 weeks	26 weeks	24 weeks	24 weeks	
RCT/LTE phase	RCT				RCT						RCT	RCT	RCT	RCT	
Treatment arms for which data extraction performed	PBO + cDMARDs				ADA + cDMARDs ( $n = 318$ )						PBO s.c.	ADA monotherapy	PBO + MTX	ADA + MTX	
Trial name/ author, year	STAR ¹¹⁷										Van De Putte <i>et</i>	<i>al.,</i> 2004'**	ARMADA ^{69,70}		

umber of patients experiencing one or more srious AE, <i>n/</i> N (%)	63 (9.5)	τ	65 (10.8)	re number of serious AEs reported was omparable between the ADA group and the PBO oup. Three of the seven serious AEs reported in ie ADA group were of infectious aetiology (two neumonia and one disseminated tuberculosis), one as a complication due to the serious AE of neumonia (acute respiratory distress syndrome), of the other was vasovagal attack	ne death in the ADA treatment group	R (7.1)	erious infections in 1.0%	R (5.2)	srious infections in 5.2%
Number of patients experiencing one or N more AE, n/N (%) s	82.5%	(Possibly related to Nstudy drug 28.6%)	84.6%	(Possibly related to TI study drug 26.2%) co ff tf m m m m m a	0	NR (67.3) N	S	NR (68.8) N	Ŭ
Discontinuation due to AE(s), n/N (%)	NR		NR			NR		NR	
Assessment time point	24 weeks		24 weeks			24 weeks		24 weeks	
RCT/LTE phase	RCT		RCT			RCT		RCT	
Treatment arms for which data extraction performed	PBO + MTX		ADA + MTX			PBO + cDMARDs		CTZ + DMARDs	
Trial name/ author, year	Kim et al.,	200×				CERTAIN ⁷⁹			

TABLE 390 Adverse events and discontinuations due to AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

s rr Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
Number of patients experiencing one or Numb more AE, <i>n/</i> V (%) seriou
continuation Number to AE(s), experier (%) more AE
Discontinu: nt due to AE(s t n/N (%)
Assessment time point
RCT/LTE phase
Treatment arms for which data extraction performed
Trial name/ author, year

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, <i>n/</i> V (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
ETN study 309 ⁸⁹	SSZ + PBO	RCT	2 years	NR	NR	2/50 (4)
					Non-infectious AEs 32/50 (64)	
					Infectious AEs 21/50 (42.0)	
					32	
	ETN + PBO	RCT	2 years	NR	NR	27/103 (26.2)
					Non-infectious AEs 90/103 (87.4)	
					Infectious AEs 76/103 (73.8)	
	ETN + SSZ	RCT	2 years	NR	NR	23/101 (22.8)
					Non-infectious AEs 80/101 (79.2)	
					Infectious AEs 60/101 (59.4)	
JESMR ¹⁴⁰	ETN monotherapy	RCT	52 weeks	4/71 (5.6)	NR	2/71 (2.8)
						Two bone fractures
	ETN + MTX	RCT	52 weeks	1/76 (13.1)	NR	7/76 (9.2)
						Three bone fractures, one congestive heart failure, one cellulitis (in same patient as one of the fractures), one herpes zoster, one brain, one mammary carcinoma

TABLE 390 Adverse events and discontinuations due to AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n/N</i> (%)
Lan <i>et al.</i> , 2004 ¹⁰¹	PBO+MTX	RCT	12 weeks	1/29 (3.4)	NR	NR One bronchiolitis obliterans
	ETN + MTX	RCT	12 weeks	1/29 (3.4)	NR	ZR
					Most frequently occurring AEs in line with summary of product characteristics	One viral pneumonia
LARA ¹⁰²	MTX + DMARD	RCT	24 weeks	NR	97/142 (68.3)	2/142 (1.4)
						Specific AEs NR
	ETN50 + MTX	RCT	24 weeks	NR	193/281 (68.7)	10/281 (3.6)
						Specific AEs NR
						continued

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
RACAT ¹¹¹	MTX + SSZ + HCQ	RCT including crossover	48 weeks	12/222 (5.4)	170/222 (76.6)	25/222 (11.3) (some patients counted in more than one event)
	On treatment analysis, n = 222 (some patients					Cardiac disorders, four
	exposed to both treatments throughout					Gastrointestinal disorders, five
	trial)					Infections and infestations, four
						Renal and urinary disorders, one
						Respiratory, thoracic and mediastinal disorders, four
						Surgical and medical procedures, three
						Vascular disorders, three
						Other (events occurring fewer than three times), nine
	ETN50 + MTX	RCT including crossover	48 weeks	5/219 (2.3)	165/219 (75.3)	26/219 (11.9) (some patients counted in more than one event)
	On treatment analysis, n = 219 (some patients					Cardiac disorders, one
	exposed to both treatments throughout					Gastrointestinal disorders, four
	urai)					Infections and infestations, 12
						Renal and urinary disorders, three
						Respiratory, thoracic and mediastinal disorders, one
						Surgical and medical procedures, five
						Vascular disorders, four
						Other (events occurring fewer than three times), nine

TABLE 390 Adverse events and discontinuations due to AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, <i>n/</i> V (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
Weinblatt <i>et al.</i> ,	PBO + MTX	RCT	24 weeks	1/30 (3.3)	NR	NR
1999'24	ETN + MTX	RCT	24 weeks	2/59 (3.4)	NR	NR
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ	RCT	16 weeks	8/103 (7.8)	79/103 (77)	3/103 (3)
						One infection/infestation, two increased alanine aminotransferase
	ETN + MTX	RCT	16 weeks	3/197 (1.5)	134/197 (68)	6/197 (3)
						One cardiac disorder, one gastrointestinal disorder, one general disorder, three infections and infestations, two poisoning and procedural complications
GO-FORTH ⁹¹	PBO + MTX	RCT	24 weeks	NR	67/88 (76.1)	1/88 (1.1)
						One intervertebral disc protrusion
	GOL + MTX	RCT	24 weeks	NR	70/86 (81.4)	2/86 (2.3)
						One ileus, one bone neoplasm (borderline or low malignancy potential)
GO-FORWARD ⁹²	PBO + MTX	RCT	24 weeks	5/133 (3.8)	89/134 (66.4)	5/134 (3.7) (type NR)
	GOL + MTX	RCT	24 weeks	2/89 (2.2)	87/212 (41.0)	9/212 (4.2) (type NR)
GO-FORWARD ⁹²	PBO + MTX	RCT	52 weeks	8/133 (6.0)	98/133 (73.7)	6/133 (4.5) (type NR)
	GOL + MTX	RCT	52 weeks	7/212 (3.3)	167/212 (78.8)	17/212 (8.0) (type NR)
Kay <i>et al.</i> , 2008 ⁹⁸	IFX + MTX (PBO group crossed over to IFX at week 20)	RCT	52 weeks	3/25 (12.0)	16/25 (64.0)	3/25 (12.0) (type NR)
	GOL + MTX		52 weeks	4/37 (10.8)	34/37 (91.9)	7/37 (18.9) (type NR)
Abe <i>et al.</i> ,	PBO + MTX	RCT	14 weeks	1/47 (2.1)	NR	1/47 (2.1) (type NR for extracted arm)
20002	IFX + MTX	RCT	14 weeks	1/49 (2.0)	NR	0
						continued

Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), <i>n/</i> N (%)	Number of patients experiencing one or more AE, <i>n/</i> N (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
Abe <i>et al.</i> , 2006 ⁵⁶	PBO group crossover to IFX	LTE	To week 36 of LTE	9/41 (22.0)	NR	6/41 (14.6) (type NR for extracted arm)
	IFX + MTX	LTE	To week 36 of LTE	4/49 (8.2)	NR	2/49 (4.1) (type NR for extracted arm)
ATTRACT ¹⁴⁶	PBO + MTX	RCT	54 weeks	7/88 (8.0)	94%	18/86 (20.9) (type NR)
	IFX + MTX	RCT	54 weeks	5/86 (5.8)	NR	10/88 (11.4) (type NR)
ATTRACT ³²⁴	PBO + MTX	LTE	102 weeks	NR	NR	28/NR (33) (type NR)
	IFX + MTX	LTE	102 weeks	NR	NR	29/NR (33) (type NR)
START ¹¹⁸	PBO + MTX	RCT	22 weeks	5/361 (1.4)	239/361 (66.2)	27/361 (7.5)
						One fever, one osteoarthritis, four RA
	IFX + MTX	RCT	22 weeks	0/360	251/360 (69.7)	28/360 (7.8)
						Two pneumonia, one cellulitis, one chest pain, two osteoarthritis, one cardiac failure, one myocardial infarction, two uterine fibroid, one RA
START ¹¹⁸	IFX + MTX	LTE	54 weeks	NR	211/244 (86.5)	39/244 (16.0)
						Five pneumonia, one active TB, one abscess, two pyelonephritis
Swefot ¹¹⁹	SSZ + HCQ + MTX	RCT	24 months	22/130 (16.9)	NR/130 (45)	Serious AEs = one (1) (generalised symptoms)
	IFX + MTX	RCT	24 months	19/128 (14.8)	NR/128 (38)	Serious AEs = two (2) (persistent fever and generalised symptoms)
Zhang et al.,	PBO + MTX	RCT	18 weeks	4/86 (4.7)	48/86 (55.8)	NR
7000	IFX + MTX	RCT	18 weeks	6/87 (6.9)	57/87 (65.5)	NR
ACT-RAY ¹⁵²	TCZ + oral PBO	RCT	52 weeks	NR	228/276 (82.6)	26/276 (9.4)
	TCZ + MTX	RCT	52 weeks	NR	277/277 (81.9)ª	24/277 (8.7)

more				(most i= 7, 4, acute		us AEs	(2.1%) :h r sepsis		us AEs	.9%) upper cellulitis, s zoster, sentified	oression	rthritis,	continued
cing one o				rgery <i>n</i> = 2( pes zoster <i>i</i> racture <i>n</i> =		t other seric	orted: three o (1.4%) wi n with uppe s zoster and		t other seric	ted: three ( 1.3%) with 1.3%) with eritis, herpe and an uni	spinal com ure)	infectious ¿ e)	
experiene				ng joint su a <i>n</i> = 9, her humerus f		s listed, no	ns were rep nteritis, two (0.7%) eacl tion, herpe		s listed, no	were repor onia, two (' tion, two (' gastroenti nal abscess	nonia, one neck fractu	nonia, one le headach	
of patients E, <i>n/</i> N (%)	(type NR)	2 8 mg/kg		3.8) [includi pneumonia pture $n = 5$ , n = 2)	3)	us infection	us infectior ith gastroe a and one tract infec	8)	us infection	infections ith pneumo tract infec ) each with plex, perial	(one pneur ne femoral	(one pneur c polyp, or	
Number o serious A	2/53 (3.8)	NR for TCZ	I	77/143 (53 common), tendon ruț bronchitis	NR/145 (1.	Only serio	Eight serio patients w pneumoni respiratory	NR/157 (1	Only serio	12 serious patients w respiratory one (0.6% herpes sim infection	3/64 (4.7) fracture, o	4/61 (6.6) one coloni	
atients one or / (%)											104 AEs)	211 AEs)	
mber of p. periencing re AE, <i>n/</i> N	(53 (56)	(55 (51)			)/145 (82)			)/157 (89)			64 (71.9) (	61 (91.8) (2	
om exp n	NR/	NR/	I	NR	119			140			46/	56/	
ntinuatio o AE(s), %)	(7.5)	(3.6)		l3 (22.4)	(3.4)			7 (10.8)			(4.7)	(3.3)	
Disco due t n/N ('	4/53 (	2/55 (	I	32/14	5/145			17/15			3/64 (	2/61 (	
essment e point	veeks	veeks	'ear 5	ear 5	veeks			veeks			veeks	veeks	
Ass time	12 v	12 v	То у	Тоу	52 v			52 v			24 v	24 v	
T/LTE ase	F	н			Т			н			F	μ	
እ <del>የ</del>	RC	RC	LT	Ë,	RC			RC			RC	RC	
rms for extraction											×	psules	
atment a iich data e formed	) i.v.		) i.v.	N	MARDs			~			0 i.v. + MT	z + PBO ca	
Tre Wh Der	<i>.</i> , РВС	TC2	PB(	f., TC:	CDI			TC.			PB(	TC:	
l name/ Ior, year	imoto <i>et a</i>		AM/	imoto et a 3 ³²⁵ (LTE o imoto et a t ¹⁰⁶ )	IURAI ¹¹⁵						DRI ¹¹⁶		
Trial auth	Nishi	7007	STRE	NISN 2005 Nishi 2002	SAM						SATC		

TABLE 390 Adver	se events and discontinuatior	ns due to AEs: po	pulations 2 and 3	RCTs of biologic int	erventions vs. DMARD(s)	or PBO (continued)
Trial name/ author, year	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Discontinuation due to AE(s), n/N (%)	Number of patients experiencing one or more AE, n/N (%)	Number of patients experiencing one or more serious AE, <i>n/</i> N (%)
TOWARD ¹²¹	PBO + stable cDMARDs	RCT	24 weeks	8/414 (1.9)	253/414 (61.1)	18/414 (4.3)
	TCZ + stable DMARDs	RCT	24 weeks	31/802 (3.9)	584/802 (72.8)	[Related serious AE = 6 (1.4) type NR] 54/802 (6.7)
						[related serious $AE = 23$ (2.9) type NR]
TACIT ¹⁴¹	(1) Combination cDMARDs	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
	(2) TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
TACIT ¹⁴¹	(1) Combination cDMARDs	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
	(2) TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
AIM, Abatacept ir in Japan with Ada TOcilizumab for RI ABT i.v. = BT $\approx$ 10 ADA = ADA 40 mc CTZ = s.c. CTZ 400 ETN = ETN 25 mg GOL = GOL 50 mg IFX = IFX 3 mg/kg i TCZ = TCZ 8 mg/kg a Calculated by re	Inadequate responders to Meth limurab applying staNdard and neumatoid arthritis patients with mg/kg intravenously on weeks ( l every other week subcutaneou ) mg at weeks 1, 2 and 4, then wice a week subcutaneously. every 4 weeks subcutaneously. ntravenously every 4 weeks. view authors.	hotrexate; ASSET, . 1 General Evaluation of an Inadequate re 0, 2 and 4, and ev usly. 200 mg every othe nd every 8 weeks	Abatacept Systemic in study; ETN50, et sponse to methotra ery 4 weeks therea er week. ir week. thereafter (with do	: SclErosis Trial; CHAN anercept 50 mg once a exate; STAR, Safety Tri fter. se escalation permitted	GE, Clinical investigation in a week subcutaneously; NR al of Adalimumab in Rheur a of Adalimumab in Rheur a of Adalimumab in Rheur a of Adalimumab in a theur a data theur a	Highly disease-affected rheumatoid Arthritis patients t, not reported; SATORI, Study of Active controlled matoid arthritis. esponse).

Trial name/ study	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/</i> N (%)	Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n/</i> N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	RCT	52 weeks	NR	1/32 (3)	NR	0	NR	N/A
	Initial ADA + MTX 12 weeks, then step-up therapy in both groups based on DAS28	RCT	52 weeks	NR	2/33 (6)	NR	2/33 (6)	R	N/A
HIT HARD ⁹⁴	MTX + PBO for 24 weeks followed by OL MTX for 24 weeks	LTE	48 weeks	10/85 (11.8)	4/85 (4.7)	NR	3/85 (3.5)	4/85 (4.7)	NR
	ADA + MTX for 24 weeks followed by OL MTX for 24 weeks	LTE	48 weeks	16/87 (18.4)	3/87 (3.4)	NR	0/87	14/87 (16.1)	NR R
OPERA ¹⁰⁷	PBO + MTX + steroid	RCT	12 months	NR	3/91 (3.3)	NR	2/91 (2.2)	NR	NR
	ADA + MTX + steroid	RCT	12 months	NR	3/89 (3.4)	NR	3/89 (3.4)	NR	NR
PREMIER ¹⁰⁹	ADA (all patients who received ≥1 dose)	LTE	5 years	NR	NR; 3.3 events per 100 patient-years	NR	11/497 (2.2)	NR	NR
COMET ⁸¹	PBO + MTX	RCT period 1, 52 weeks	52 weeks	8/268 (3.0)	NR	NR	4/268 (1.5)	NR	NR
	ETN + MTX	RCT period 1, 52 weeks	52 weeks	5/274 (1.8)	NR	NR	4/274 (1.5)	NR	NR
COMET ⁸²	MTX in year 1, MTX in year 2	RCT period 2	Weeks 52–104	NR	2/99 (2.0)	NR	3/99 (3.0)	NR	NR
									continued

Trial name/	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/</i> N (%)	Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n/</i> N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
COMET ⁸¹	MTX in year 1, ETN + MTX in year 2	RCT period 2	Weeks 52–104	NR	(1.1) 06/1	NR	5/90 (5.6)	NR	NR
COMET ⁸¹	ETN + MTX in year 1, ETN + MTX in year 2	RCT period 2	Weeks 52–104	NR	1/111 (0.9)	NR	(0) 0	NR	NR
COMET ⁸¹	ETN + MTX in year 1, ETN in year 2	RCT period 2	Weeks 52–104	NR	2/111 (1.8)	NR	1/111 (0.9)	NR	NR
ERA ¹³⁹	PBO + MTX	RCT	12 months	NR	NR	< 3%	2/217 (0.9)	16/217 (7.4)	NR
	ETN + PBO	RCT	12 months	NR	NR	< 3%	3/207 (1.4)	77/207 (37.2)	NR
ERA ¹³⁹	PBO + MTX	LTE	2 years	NR	9/217 (4.1)	NR	3/217 (1.4)	19/217 (8.8)	NR
	ETN + PBO	ΓТΕ	2 years	NR	7/207 (3.4)	NR	4/207 (1.9)	81/207 (39.1)	NR
GO-BEFORE ⁹⁰	PBO + MTX	RCT	24 weeks	52/160 (32.5)	3/160 (1.9)	NR	2/160 (1.3)	3/160 (1.9)	N/A
	GOL + MTX	RCT	24 weeks	54/158 (34.2)	2/158 (1.3)	NR	1/158 (0.6)	7/158 (4.4)	N/A
GO-BEFORE ¹⁴³	PBO + MTX	LTE	Week 104	NR	NR	NR	Two (no <i>n</i> provided, assumed <i>n</i> = 160)	NR	NR
	GOL + MTX	ГТЕ	Week 104	NR	5.5%	R	Six (no <i>n</i> provided, assumed <i>n</i> = 158)	NR	R

TABLE 391 Specific categories of AEs: population 1 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)
Trial name/	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>D</i> /N (%)	Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s. c. administration), <i>n/</i> N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
ASPIRE ⁷¹	PBO i.v. + MTX	RCT	54 weeks	NR	21/372 (5.6)	NR	0	N/A	20/291 (6.9)
	IFX + MTX	RCT	54 weeks	R	PBO i.v. + MTX = 6/291 (2.1)	NR	O	N/A	79/372 (21.2) (two classed as serious)
					IFX + MTX = 21/372 (5.6) ^a				
Durez <i>et al.</i> ,	MTX	RCT	52 weeks	14/14 (100)	0/14	NR	NR	NR	NR
2007	MTX + MP	RCT	52 weeks	12/15 (80)	0/15	NR	NR	NR	NR
	IFX + MTX	RCT	52 weeks	12/15 (80)	1/15 (6.7)	NR	NR	NR	NR
Quinn <i>et al.</i> ,	PBO + MTX	LTE	104 weeks	NR	NR	NR	NR	NR	0/10
2007	IFX + MTX	LTE	104 weeks	NR	NR	NR	NR	NR	1/10 (10)
ASPIRE, Active c Induction THerat ADA = ADA 40 n ETN = ETN 25 m GOL = GOL 50 m IFX = IFX 3 mg/kg a $p$ = 0.02.	ontrolled Study of Patients rec oy with Anti-Rheumatic Drugs ng every other week subcutan g twice a week subcutaneously ig every 4 weeks subcutaneou j intravenously at weeks 0, 2,	eiving Infliximab fc (adalimumab and eously.  sly. 6 and every 8 wee	or the treatment o methotrexate); Nv sks thereafter (wit	f Rheumatoid art A, not applicable h dose escalation	hritis of Early ons ; NR, not reporte permitted after v	et; ERA, Early Rhe 3; OL, open label; veek 12 if lack of	umatoid Arthritis TB, tuberculosis. response).	(etanercept); HIT H/	ARD, High

Trial name/ author. vear	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>D/N</i> (%)	Number of patients experiencing one or more serious infection,	Number of patients experiencing any infection requiring antibiotics,	Number of patients experiencing one or more malignancy,	Number of patients experiencing one or more injection-site reaction (s.c. administration),	Number of patients experiencing one or more infusion-related reaction (i.v. administration),
ATTEST ⁷⁴	PBO + MTX	RCT	Day 197	NR	3/110 (2.7)	NR	1/110 (0.9)	N/A	10.0%
	IFX + MTX	RCT	Day 197	NR	7/165 (4.2)	NR	2/165 (1.2)	N/A	18.2%
	ABT + MTX	RCT	Day 197	NR	2/156 (1.3)	NR	1/156 (0.6)	N/A	5.1%
ATTEST ⁷⁴	PBO + MTX	RCT	Day 365	I	I	I	I	I	I
	IFX + MTX	RCT	Day 365	NR	14/165 (8.5)	NR	2/165 (1.2)	N/A	41/165 (24.8)
	ABT + MTX	RCT	Day 365	NR	3/156 (1.9)	NR	1/156 (0.6)	N/A	11/156 (7.1)
AMPLE ⁶⁶	ABT s.c.	RCT	2 years	63.2%	7/318 (2.2)	NR	5/318 (1.6)	12/318 (3.8)	N/A
	ADA	RCT	2 years	61.3%	9/328 (2.7)	NR	4/328 (1.2)	30/328 (9.1)	N/A
RED-SEA ¹¹⁴	ADA + cDMARDs	RCT	12 months	NR	NR	NR	1/60 (1.7)	9/60 (15)	N/A
	ETN50+cDMARDs	RCT	12 months	NR	NR	NR	1/60 (1.7)	19/60 (31.7)	N/A
ADACTA ⁵⁸	TCZ + s.c. PBO	RCT	24 weeks	77/162 (47.5)	5/162 (3.1)	NR	1/162	N/A	NR
	ADA + i.v. PBO	RCT	24 weeks	68/162 (42.0)	5/162 (3.1)	NR	1/162	NR	N/A

TABLE 392 Specific categories of AEs: populations 2 and 3 head-to-head biologic RCTs

f ng slated .v. tion),		
Number o patients experienci one or mo infusion-re reaction (i. administra	NR	
Jumber of batients experiencing one or more njection-site eaction (s.c. dministration), //V (%)	AV	
	P er	
Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	4/143 (2.8) (bladder canc breast cancer large intestine carcinoma, intraductal papilloma)	nge. :k of response).
lumber of atients xperiencing ny infection equiring /// (%)	Ľ	d on weight rar r week 12 if lac
	() ()	kg base ted afte
Number of patients experienciny one or more serious <i>n/</i> N (%)	25/143 (17.5, (pneumonia, herpes zoster acute bronch pyelonephriti	d. se of ≈ 10 mg/ alation permit
of nore		t reporte ding do: dose esc
Number patients experiei one or r infectioi <i>n/</i> N (%)	R	e; NR, no nal i.v. loa ter (with
Assessment time point	To year 5	V/A, not applicable bllowing an optior y 8 weeks thereaf
RCT/LTE phase	LTE	cutaneously, h utaneously, fc taneously. 2, 6 and ever eeks.
Treatment arms for which data extraction performed	TCZ	pt 50 mg once a week sub. 25 mg once per week subc ng every other week subcu j intravenously at weeks 0, kg intravenously every 4 w
Trial name/ author, year	ADACTA ⁵⁸	ETN50, etanerce ABT s.c. = ABT 1 ADA = ADA 40 n IFX = IFX 3 mg/kg TCZ = TCZ 8 mg/

DOI: 10.3310/hta20350

						)			
Trial name/ study	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment	Number of patients experiencing one or more infection, <i>n/</i> N (%)	Number of patients experiencing one or more serious infection, n/N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection (s.c. administration), <i>n</i> /N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
AIM ⁶²	PBO + MTX	RCT	12 months	<b>N</b> R	5/219 (2.3)	R	NR	NR	Acute infusional AEs
									37/219 (16.9)
	ABT i.v. + MTX	RCT	12 months	NR	17/433 (3.9)	R	NR	NR	Acute infusional AEs
									38/433 (8.8)
AIM ⁶⁴	ABT i.v. + MTX 2 years or MTX + PBO 1 year then ABT i.v. + MTX 1 year	LTE	2 years	400/593 (67.5)	43/593 (7.3)	NR	R	NR	NR
ASSET ⁷²	PBO + MTX	RCT	4 months	6/23 (26.1)	0/23 (0)	NR	0/23 (0)	N/A	Acute infusion events: 4/23 (17.4)
									Peri-infusional events: 5/23 (21.7)
	ABT i.v. + MTX	RCT	4 months	10/27 (37.0)	0/27 (0)	NR	0/27 (0)	N/A	Acute infusion events: 0/27
									Peri-infusional events: 4/27 (14.8)
ASSET ⁷²	ABT i.v. + MTX (OLE)	LTE	1 year	26/49 (53.1)	1/49 (2.0)	NR	0/49 (0)	N/A	Acute infusion events: 2/49 (4.1)
									Peri-infusional events: 6/49 (12.2)

l name/	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/</i> N (%)	Number of patients experiencing one or more serious n/N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n/N</i> (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
(E ⁷³	PBO + cDMARDs	RCT	1 year	224/418 (53.6)	7/418 (1.7)	NR	NR	NR	NR
	ABT + cDMARDs	RCT	1 year	470/856 (54.9)	22/856 (2.6)	NR	NR	NR	NR
ST II ⁷⁶	PBO + MTX	38 week follow-up of 26-week RCT treatment	38 weeks	NR	1/76 (1.3)	R	R	N	N/A
	ADA + MTX	38 week follow-up of 26-week RCT treatment	38 weeks	NR	3/79 (3.8)	R	R	N	N/A
GE ⁸⁰	PBO	RCT	24 weeks	32/87 (36.8)	1/87 (1.1)	NR	2/87 (2.3)	2/87 (2.3)	NR
	ADA monotherapy	RCT	24 weeks	41/91 (45.1)	6/91 (6.6)	NR	0 (0)	28/91 (30.8)	NR
									continued

DOI: 10.3310/hta20350

TABLE 393 Spe	cific categories of AEs: p	opulations 2	and 3 RCTs of l	biologic interventio	ns vs. DMARD(s) o	r PBO (continu∈	( <i>p</i> ;		
Trial name/ study	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/</i> N (%)	Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n/</i> N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
DE019 ⁸⁴	PBO + MTX	RCT	52 weeks	Upper respiratory tract infection, 13.5% Infection, 4.5%	N N	X	0	48/200 (24%)	N
	ADA + MTX	RCT	52 weeks	Upper respiratory tract infection, 19.8%	NR	NR	Across both ADA groups, four ADA-treated	54/207 (26%)	NR
				Infection, 7.2%			patients developed nonklin cancers, including adenocarcinoma, testicular seminoma, and breast cancer (not stated which ADA		
STAR ¹¹⁷	PBO + cDMARDs	RCT	24 weeks	157/318 (49.4)	6/318 (1.9)	NR	0	37 (11.6%)	N/A
	ADA + cDMARDs	RCT	24 weeks	166 (52.2%)	4 (1.3%)	NR	1/318 (0.3)	62 (19.5%) ^a	N/A
Van De Putte	PBO s.c.	RCT	26 weeks	NR	NR	NR	1/110 (0.9)	1/1 10 (0.9)	N/A
et al., 2004 '	ADA monotherapy	RCT	26 weeks	NR	R	NR	4/434 (0.9) (of all four ADA groups)	11/113 (9.7)	NA

2 4 . . -19 ť ć 2 ٢ ų ÿ ċ 

Trial name/ study	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/</i> N (%)	Number of patients experiencing one or more serious <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n/</i> N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
ARMADA ^{69,70}	PBO + MTX ( $n = 62$ )	RCT	24 weeks	Any infection, NR	NR	NR	NR	Pain, 3.2%	N/A
				Upper respiratory tract infection, 9.7%				Reaction, 0%	
	ADA + MTX (n = 67)	RCT	24 weeks	Any infection, NR	NR	NR	NR	Pain, 10.4%	N/A
				Upper respiratory tract infection, 14.9%				Reaction, 1.5%	
Kim <i>et al.</i> ,	PBO + MTX	RCT	24 weeks	22/63 (34.9)	NR	NR	0	NR	NR
£200/	ADA + MTX	RCT	24 weeks	24/65 (36.9)	NR	NR	0	NR	NR
CERTAIN ⁷⁹	PBO + cDMARDs	RCT	24 weeks	NR	NR (1.0)	NR	NR	NR	NR
	CTZ + DMARDs	RCT	24 weeks	NR	NR (2.1)	NR	NR	NR	NR
ADORE ^{59,60}	ETN monotherapy	RCT	16 weeks	39/159 (24.5)	2/159 (1.3)	NR	NR	NR	NR
	ETN + MTX	RCT	16 weeks	50/155 (32.3)	1/155 (0.6)	NR	NR	NR	NR
CREATE IIb ⁹⁶	PBO + DMARD	RCT	24 weeks	NR	0/65	NR	NR	NR	NR
	ETN50 + DMARD	RCT	24 weeks	NR	0/64	NR	NR	NR	NR
ETN study 309 ⁸⁹	SSZ + PBO	RCT	24 weeks	13/50 (26)	0	NR	0	1/50 (2)	NR
	ETN + PBO	RCT	24 weeks	47/103 (45.6) ^{a (vs. 552)}	2/103 (1.9)	NR	2/103 (1.9)	33/103 (32.0) ^{a (xs. 552)}	NR
	ETN + SSZ	RCT	24 weeks	31/101 (30.7) ^a (vs SSZ vs ETN+PBO)	0	NR	0	16/101 (15.8) ^a (vs. SSZ vs. ETN+PBO)	NR
									continued

Trial name/ study	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection,	Number of patients experiencing one or more serious <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n/</i> N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
ETN309 ⁸⁹	SSZ + PBO	RCT	2 years	21/50 (42.0)	NR	NR	NR	2/50 (4.0)	NR
	ETN + PBO	RCT	2 years	76/103 (73.8) ^{a (vs. 552)}	R	NR	NR	34/103 (33.0) ^{a (15. 552)}	NR
	ETN + SSZ	RCT	2 years	60/101 (59.4) ^{a (vs. ETN+PBO)}	R	NR	NR	21/101 (20.8) ^{a (vs. 552)}	NR
JESMR ¹⁴⁰	ETN monotherapy	RCT	52 weeks	19/71 (26.8)	0/71	NR	NR	13/71 (18.3)	NR
	ETN + MTX	RCT	52 weeks	21/76 (27.6)	2/76 (2.6)	NR	NR	7/76 (9.2)	NR
Lan <i>et al.</i> ,	PBO + MTX	RCT	12 weeks	NR	NR	NR	NR	0/29	NR
2004	ETN + MTX	RCT	12 weeks	NR	NR	NR	NR	1/29 (3.4)	NR
LARA ¹⁰²	MTX + DMARD	RCT	24 weeks	31/142 (21.8)	0	NR	NR	NR	NR
	ETN50 + MTX	RCT	24 weeks	107/281 (38.1) ^a	5/281 (1.8)	NR	NR	NR	NR
Moreland <i>et al.</i> ,	PBO	RCT	6 months	NR	NR	NR	NR	10/80 (13)	NR
666	ETN + PBO	RCT	6 months	NR	NR	NR	NR	38/78 (49) ^b	NR

TABLE 393 Specific categories of AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

r of s sncing more n-related n (i.v. stration),								continued
Numbe patient experie one or infusio reactio admini admini	N N	Z	NR NR	NR NR	NR	N/A	N/A	
Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n</i> /N (%)	R	NR	NR NR	21/30 (7) 25/59 (42)	NR	7/88 (8.0)	8/86 (9.3)	
Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	ж	R	1/105 (1.0) 0/111	NR NR	3/79 (3.8)	0/88	0/86	
Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	ж	Z	NR NR	NR NR	NR	NR	NR	
Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	4/222 (1.8)	9/219 (4.1)	N N N	NR NR	4/79 (5.1) required hospitalisation	0/88	0/86	
Number of patients experiencing one or more infection, <i>n/</i> N (%)	56/222 (25.2)	82/219 (37.4)	NR NR	19/30 (63) 30/59 (51)	NR	39/88 (44.3)	36/86 (41.9)	
Assessment time point	48 weeks	48 weeks	12 weeks 12 weeks	24 weeks 24 weeks	3-year LTE	24 weeks	24 weeks	
RCT/LTE phase	RCT including crossover	RCT including crossover	RCT RCT	RCT RCT	LTE	RCT	RCT	
Treatment arms for which data extraction performed	MTX + SSZ + HCQ On treatment analysis, n = 222 (some patients exposed to both treatments throughout trial)	ETN50 + MTX On treatment analysis, n = 219 (some patients exposed to both treatments throughout trial)	PBO	PBO + MTX ETN + MTX	ETN + MTX or MTX + PBO followed by ETN + MTX ( <i>n</i> = 79)	PBO + MTX	GOL + MTX	
Trial name/	RACAT ¹¹¹		Wajdula 2000 (reported in Chen <i>et al.</i> , 2006 ¹²³ )	Weinblatt e <i>t al.</i> , 1999 ¹²⁴	Kremer <i>et al.</i> , 2003 ¹⁶⁰ (LTE of Weinblatt <i>et al.</i> , 1999 ¹²⁴ )	GO-FORTH ⁹¹		

TABLE 393 Speci	fic categories of AEs: pc	opulations 2	and 3 RCTs of	biologic interventio	ons vs. DMARD(s) o	ır PBO (continue	( <i>p</i> :		
Trial name/ study	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/N</i> (%)	Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n</i> /N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
GO-FORWARD ⁹²	PBO + MTX	RCT	24 weeks	37/134 (27.6)	1/134 (0.7)	NR	1/134 (0.7)	4/134 (3.0)	N/A
	GOL+MTX	RCT	24 weeks	34/212 (16.0)	(Urinary tract infection) 2/212 (0.9)	NR	(Basal cell cancer) 0	5/212 (2.4)	A/A
					(One cellulitis, one s.c. abscess)				
GO-FORWARD ⁹²	PBO + MTX	RCT	52 weeks	42/133 (31.6)	1/133 (0.8)	NR	2/133 (1.5)	4/133 (3.0)	N/A
	GOL + MTX	RCT	52 weeks	98/212 (46.2)	4/212 (1.9)	NR	3/212 (1.4)	10/212 (4.7)	N/A
Kay <i>et al.,</i> 2008 ⁹⁸	IFX + MTX (PBO group crossed over to IFX at week 20)	RCT	52 weeks	9/25 (36.0)	1/25 (4.0)	NR	0/25	N/A	NR
	GOL+MTX	RCT	52 weeks	23/37 (62.2)	1/37 (2.7)	NR	1/37 (2.7)	6/37 (16.2)	N/A
Abe <i>et al.,</i> 2006 ⁵⁶	PBO + MTX	RCT	14 weeks	17/47 (36.2)	NR	NR	NR	N/A	17/47 (36.2)
					(Pneumonia = 0)				
	IFX + MTX	RCT	14 weeks	22/49 (44.9)	NR	NR	NR	N/A	23/49 (46.9)
					[Pneumonia = 1 (2.0)]				
Abe <i>et al.</i> , 2006 ⁵⁶	PBO group crossover to IFX	LTE	To week 36 of LTE	22/41 (53.7)	NR	NR	NR	N/A	17/41 (41.5)
	IFX + MTX	LTE	To week 36 of LTE	31/49 (63.3)	NR	NR	NR	N/A	33/49 (67.3)

	Treatment arms for which data extraction performed	RCT/LTE phase	Assessment time point	Number of patients experiencing one or more infection, <i>n/N</i> (%)	Number of patients experiencing one or more serious <i>n/N</i> (%)	Number of patients experiencing any infection requiring antibiotics, <i>n/N</i> (%)	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n</i> /N (%)	Number of patients experiencing one or more infusion-related reaction (i.v. administration), <i>n/</i> N (%)
PBO i.v. + M	Ϋ́	RCT	54 weeks	NR	7/86 (8.1)	35%	0	N/A	Serious infusion reactions = 0
IFX + MTX		RCT	54 weeks	NR	2/88 (2.3)	NR	0	N/A	0
PBO i.v. + h	ИТХ	LTE	102 weeks	NR	11/NR (13)	NR	1/NR (1)	N/A	Serious infusion reactions = 0
IFX + MTX		LTE	102 weeks	NR	10/NR (11)	NR	1/NR (1)	N/A	Serious infusion reactions = 0
MP+MT)	×	RCT	14 weeks ( <i>n</i> unclear)	NR	0/NR	NR	NR	N/A	0/NR
IFX + MT)	×		14 weeks ( <i>n</i> unclear)	NR	0/NR	NR	NR	N/A	0/NR
PBO + MT	×	RCT	22 weeks	38/361 (10.5)	6/361 (1.7)		0/361		Serious infusion
				(Upper respiratory tract infection)					(0.3)
IFX + MT>	×	RCT	22 weeks	35/360 (9.7)	6/360 (1.7)		2/360 (0.6)		Serious infusion
				(Upper respiratory tract infection)					
IFX + MT) escalated	<pre>&lt; (not dose )</pre>	LTE	54 weeks	119/244 (49)	11/244 (4.5)		1/244 (0.4)		Serious infusion reactions: 2/244 (0.8)
SSZ + HC	Q + MTX	RCT	24 months	AEs=1/130 (0.8)	NR	NR	AEs = 0	NR	NR
IFX + MT	×	RCT	24 months	AEs=8/128 (6.3)	NR	NR	AEs = 1/128 (0.8)	NR	NR
									continued

	mber of ients beriencing s or more usion-related ction (i.v. (%)			%	%				_	157 (7.0)		1 (11.5)		
	Nur pat exp infi rea rea	NR	NR	159	169	I	NR		⊿/N	11/	NR	2//2	NR	NR
	Number of patients experiencing one or more injection-site reaction (s.c. administratior <i>n</i> /N (%)	N/A	N/A	N/A	N/A	I	N/A		NR	NR	N/A	N/A	N/A	N/A
	Number of patients experiencing one or more malignancy, <i>n/</i> N (%)	NR	NR	NR	NR	I	4/143 (2.8)	(Bladder cancer, breast cancer, large intestine carcinoma, intraductal papilloma)	0/145	3/157 (1.9)	NR	NR	NR	NR
	Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	NR	NR	NR	NR	I	NR		NR	NR	NR	NR	NR	NR
	Number of patients experiencing one or more serious infection, <i>n/</i> N (%)	9/276 (3.3)	10/277 (3.6)	NR	NR	I	25/143 (17.5)		8/145 (5.5)	12/157 (7.6)	NR	NR	8/414 (1.9)	22/802 (2.7)
	Number of patients experiencing one or more infection, <i>n/</i> N (%)	NR	NR	NR	NR	I	NR		NR	NR	NR	NR	131/414 (31.6)	300/802 (37.4)
	Assessment time point	52 weeks	52 weeks	12 weeks	12 weeks	To year 5	To year 5		52 weeks	52 weeks	24 weeks	24 weeks	24 weeks	24 weeks
	RCT/LTE phase	RCT	RCT	RCT	RCT	LTE	LTE		RCT	RCT	RCT	RCT	RCT	RCT
1	Treatment arms for which data extraction performed	TCZ + oral PBO	TCZ + MTX	PBO	TCZ	PBO	TCZ		cDMARDs	TCZ	PBO + MTX	TCZ + PBO capsules	PBO i.v. + stable cDMARDs	TCZ + stable DMARDs
	Trial name/ study	ACT-RAY ¹⁵²		Nishimoto et al.,	2004	STREAM ³²⁵ (LTE	of Nishimoto <i>et al.</i> , 2004 ¹⁰⁶ )		SAMURAI ¹¹⁵		SATORI ¹¹⁶		TOWARD ¹²¹	

TABLE 393 Specific categories of AEs: populations 2 and 3 RCTs of biologic interventions vs. DMARD(s) or PBO (continued)

: ng lated v. tion),			atients label
Number of patients experienci one or mo infusion-re reaction (i, administra <i>n/</i> N (%)	AiC information has been removed	AiC information has been removed	coid Arthritis p ed; OLE, open mab in
Number of patients experiencing one or more injection-site reaction (s.c. administration), <i>n</i> /N (%)	AiC information has been removed	AiC information has been removed	ase-affected rheumat cable; NR, not reporti afety Trial of Adalimu
Number of patients experiencing one or more malignancy, <i>n</i> /N (%)	AiC information has been removed	AiC information has been removed	ion in Highly dise sly, N/A, not appli otrexate; STAR, S, k of response).
Number of patients experiencing any infection requiring antibiotics, <i>n/</i> N (%)	AiC information has been removed	AiC information has been removed	Clinical investigat eek subcutaneous response to meth ter week 12 if lac
Number of patients experiencing one or more serious <i>n/N</i> (%)	AiC information has been removed	AiC information has been removed	Erosis Trial; CHANGE, cept 50 mg once a w s with an Inadequate scalation permitted af
Number of patients experiencing one or more infection, <i>n/N</i> (%)	AiC information has been removed	AiC information has been removed	acept Systemic Scl ady; ETN50, etaner id arthritis patients i weeks thereafter. eek. aafter (with dose e
Assessment time point	AiC information has been removed	AiC information has been removed	te; ASSET, Abai al Evaluation sti b for Rheumatc d 4, and every 4 j every other we y 8 weeks ther
RCT/LTE phase	AiC information has been removed	AiC information has been removed	s to Methotrexa dard and Gener bled TOcilizuma n weeks 0, 2 and cutaneously. then 200 mg eously. neously. 0, 2, 6 and evel weeks.
Treatment arms for which data extraction performed	Combination cDMARDs	TNF inhibitor + DMARD	in Inadequate responder dalimumab applying staN JRI, Study of Active contra hritis. 10 mg/kg intravenously or mg every other week sub con mg at weeks 1, 2 and g twice a week subcutan g every 4 weeks subcutan g intravenously at weeks /kg intravenously every 4
Trial name/	TACIT ¹⁴¹		AIM, Abatacep in Japan with A extension; SATG Rheumatoid art ABT i.v. = BT $\approx$ ADA = ADA 40 CTZ = s.c. CTZ 4 ETN 25 m GOL = GOL 501 IFX = IFX 3 mg/k TCZ = TCZ 8 mg a $p < 0.05$ . b $p < 0.01$ .

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, n/N (%)	Cause of death	Considered by investigators/ adjudicators to be related to study drug?
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	1 year	0/32	N/A	N/A
	Initial ADA + MTX 12 weeks, then step-up therapy in both groups based on DAS28 RACAT	1 year	0/33	N/A	N/A
HIT HARD ⁹⁴	MTX + PBO for 24 weeks followed by OL MTX for 24 weeks	48 weeks	0/85	N/A	N/A
	ADA + MTX for 24 weeks followed by OL MTX for 24 weeks	48 weeks	0/87	N/A	N/A
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	1/91 (1.1)	Pneumonia 4 months after terminating the study	NR
	ADA + MTX + steroid	12 months	0/89	N/A	N/A
PREMIER ¹⁰⁹	MTX + PBO	2 years	1/257 (0.4)	Pneumonia	NR
	ADA monotherapy + PBO	2 years	4/274 (1.5)	One chronic obstructive pulmonary disease/pulmonary disease and pulmonary hypertension sudden death; one metastatic liver cancer (unknown primary); one metastatic colon cancer; one liver failure (pre-existing cirrhosis)	NR
	ADA + MTX	2 years	1/268 (0.4)	Ovarian cancer	NR
PREMIER ¹⁰⁹	MTX + PBO to OL ADA monotherapy	5 years LTE	NR (0.6)	NR	NR
	ADA monotherapy + PBO to OL ADA monotherapy	5 years LTE	NR (0.6)	NR	NR
	ADA + MTX to OL ADA monotherapy	5 years LTE	NR (1.1)	NR	NR
COMET ⁸³	MTX in year 1, MTX in year 2	2 years	1/99	Pneumonia and adenocarcinoma of the lungs with metastasis	NR
	MTX in year 1, ETN + MTX in year 2	2 years	0	N/A	N/A
	ETN + MTX in year 1, ETN + MTX in year 2	2 years	0	N/A	N/A
	ETN + MTX in year 1, ETN in year 2	2 years	1/111	Pneumonia	NR

### TABLE 394 Number of deaths: population 1 RCTs biologic vs. cDMARD(s) or PBO

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, n/N (%)	Cause of death	Considered by investigators/ adjudicators to be related to study drug?
ERA ¹³⁹	MTX + PBO	12 months	0/217 (0)	N/A	N/A
	ETN + PBO	12 months	1/207 (0.5)	Non-infectious complications resulting from dissection of a pre-existing aortic aneurysm	NR
ERA ¹³⁹	MTX + PBO	2 years	0/217 (0)	N/A	N/A
	ETN + PBO	2 years	1/207 (0.5)	See above	N/A
GO-BEFORE ¹⁴³	PBO + MTX	RCT 24 weeks	0	N/A	N/A
	GOL + MTX	RCT 24 weeks	1	Suicide	NR
GO-BEFORE ¹⁴³	PBO + MTX	LTE 104 weeks	0	N/A	N/A
	GOL + MTX	LTE 104 weeks	4/159 (2.5)	One hypoglycaemic coma, one lung cancer, one septic shock, one probable non-small cell lung cancer	NR
ASPIRE ⁷¹	PBO i.v. + MTX	RCT 54 weeks	2	One due to respiratory failure attributed to MTX-related drug toxicity, one due to upper gastrointestinal bleed	NR
	IFX + MTX	RCT 54 weeks	1	Cardiac arrest	NR
Durez et al.,	MTX	52 weeks	0/14	N/A	N/A
2007120	MTX + MP	52 weeks	0/15	N/A	N/A
	IFX + MTX	52 weeks	0/15	N/A	N/A

#### TABLE 394 Number of deaths: population 1 RCTs biologic vs. cDMARD(s) or PBO (continued)

ASPIRE, Active controlled Study of Patients receiving Infliximab for the treatment of Rheumatoid arthritis of Early onset; ERA, Early Rheumatoid Arthritis (etanercept); HIT HARD, High Induction THerapy with Anti-Rheumatic Drugs (adalimumab and methotrexate); N/A, not applicable; NR, not reported; OL, open label.

ADA = ADA 40 mg every other week subcutaneously.

CTZ = s.c. CTZ 400 mg at weeks 1, 2 and 4, then 200 mg every other week.

ETN = ETN 25 mg twice a week subcutaneously.

GOL = GOL 50 mg every 4 weeks subcutaneously

IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response).

Trial name	Treatment arms for which data extraction performed	Assessment time point	Deaths, <i>n/N</i>	Cause of death	Considered by investigators/adjudicators to be related to study drug?
ATTEST ⁷⁴	PBO + MTX	RCT day 197	0	N/A	N/A
	IFX + MTX	RCT day 197	1/165	Cerebrovascular accident	NR
	ABT + MTX	RCT day 197	1/156	Fibrosarcoma	NR
ATTEST ⁷⁴	PBO + MTX	RCT day 365	No further deaths	N/A	N/A
	IFX + MTX	RCT day 365	One additional death	Patient with peritoneal tuberculosis, death due to septic shock following surgery	NR
	ABT + MTX	RCT day 365	No further deaths	N/A	N/A
AMPLE ⁶⁶	ABT s.c.	1 year	1/318	Sudden cardiac arrest	No
	ADA	1 year	0/328	N/A	N/A
RED-SEA ¹¹⁴	ADA + cDMARDs	12 months	2/60	Both ischaemic heart disease	NR
	ETN50 + cDMARDs	12 months	0/60	N/A	N/A
ADACTA ⁵⁸	TCZ + oral PBO	24 weeks	2/162	One sudden death, one illicit drug overdose	Overdose considered by study team unrelated to study drug. Sudden death considered by study team to be possibly related to study drug (unautopsied)
	ADA+i.v. PBO	24 weeks	0	N/A	N/A

#### TABLE 395 Number of deaths: populations 2 and 3 head-to-head biologic RCTs

ETN50, etanercept 50 mg once a week subcutaneously; N/A, not applicable; NR, not reported.

ABT s.c. = ABT 125 mg once per week subcutaneously, following an optional i.v. loading dose of  $\approx$  10 mg/kg based on weight range.

ADA = ADA 40 mg every other week subcutaneously.

IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response).

TCZ = TCZ 8 mg/kg intravenously every 4 weeks.

	י טו טבפנווט. אטאטופנוטווט ב פווט י	ם הכוש הוטוטעוב איירי בשוע			
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, <i>n/</i> /	Cause of death	Considered by investigators/adjudicators to be related to study drug?
AIM ^{61,62}	MTX + PBO	12 months	1/219	Pneumonia, sepsis, and multiorgan failure	NR
	ABT i.v. + MTX	12 months	1/433	History of tuberculosis, asbestos exposure and pulmonary fibrosis, died of bronchopneumonia, pulmonary aspergillosis, and septicaemia	NR
AIM ⁶⁵	ABT i.v. + MTX 2 years or MTX + PBO 1 year then ABT i.v. + MTX 1 year	LTE 3 years	9/593 during LTE	Myocardial ischaemia with postprocedural complications, lobar pneumonia, lung cancer, pneumonia/sepsis, malignant melanoma, aortic aneurysm, three cases of cardiac arrest	NR
ASSET ⁷²	PBO + MTX	4 months	0/23	MA	N/A
	ABT i.v. + MTX	4 months	0/27	WA	N/A
ASSET ⁷²	ABT i.v. + MTX	1-year LTE	0/49	WA	N/A
ASSURE ⁷³	PBO + cDMARDs	1 year	4/418 (1.0%)	Congestive heart failure, cardiopulmonary arrest, cardiac arrest, pneumonia	Three no, one possibly
	ABT + cDMARDs	1 year	5/856 (0.6%)	Hypertensive heart disease, coronary atherosclerosis/acute ischaemic cardiopathy, central atherosclerosis/advanced coronary atherosclerosis with focal stenosis, cardiac arrest	Four no, one cannot tell (unautopsied)
AUGUST II ⁷⁶	MTX + PBO	38-week follow-up of 26-week RCT treatment	0/76	N/A	N/A
	ADA + MTX	38-week follow-up of 26-week RCT treatment	6/70	N/A	N/A
CHANGE ⁸⁰	PBO	24 weeks	0/87	MA	N/A
	ADA monotherapy	24 weeks	1/91 (1.1%)	Interstitial lung disease and lung infection	Considered possibly related to treatment
					continued

TABLE 396 Number of deaths: populations 2 and 3 RCTs biologic vs. cDMARD(s) or PBO

© Queen's Printer and Controller of HMSO 2016. This work was produced by Stevenson *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

605

		)			
Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, <i>n/</i> /	Cause of death	Considered by investigators/adjudicators to be related to study drug?
DE019 ⁸⁴	MTX + PBO	52 weeks	0/200	N/A	N/A
	ADA + MTX	52 weeks	2/207	One related to multiple fractures and one related to urosepsis	NR
STAR ¹¹⁷	PBO + cDMARDs	24 weeks	0/318	N/A	N/A
	ADA + cDMARDs	24 weeks	1/318 (0.3%)	Secondary streptococcal A superinfection	NR
Van De Putte	PBO s.c.	26 weeks	-	Complications of bowel obstruction	All stated by authors to be
et al., 2004	ADA monotherapy	26 weeks	Three in ADA group (dose not specified)	Metastatic adenocarcinoma, cholangiocarcinoma, and myocardial infarction	unrelated or unlikely to be related to study drug
ARMADA ⁶⁹	MTX + PBO	24 weeks	0/62	N/A	N/A
	ADA + MTX	24 weeks	0/67	N/A	N/A
ARMADA ⁷⁰	ADA+MTX	4 years LTE	6/262	Congestive heart failure, acute myocardial insufficiency, aortic aneurysm previously treated surgically, cerebrovascular accident, intracranial haemorrhage, acute kidney failure	NR
Kim <i>et al.</i> , 2007 ⁹⁹	MTX + PBO	24 weeks	0/63	N/A	N/A
	ADA + MTX		1/65	Acute respiratory distress syndrome	NR
ADORE ^{59,60}	ETN monotherapy	16 weeks	0/159	N/A	N/A
ADORE ⁵⁹	ETN + MTX	16 weeks	3/155	Cardiac arrhythmia that occurred 1 month after the patient discontinued study drugs, second due to cardiac arrest and third due to massive cerebral haemorrhage	All considered to be unrelated to study drugs by the investigator
CREATE IIb ⁹⁶	DMARD + PBO	24 weeks	0/65	N/A	N/A
	ETN50 + DMARD	24 weeks	0/64	N/A	N/A

TABLE 396 Number of deaths: populations 2 and 3 RCTs biologic vs. cDMARD(s) or PBO (continued)

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, <i>n/N</i>	Cause of death	Considered by investigators/adjudicators to be related to study drug?
ETN study 309 ⁸⁹	SSZ + PBO	24 weeks	0/50	N/A	N/A
	ETN + PBO	24 weeks	0/103	N/A	N/A
	ETN + SSZ	24 weeks	0/101	N/A	N/A
RACAT ¹¹¹	MTX + SSZ + HCQ	48 weeks	0/222	MA	N/A
	On treatment analysis, n = 222 (some patients exposed to both treatments throughout trial)				
	ETN50 + MTX	48 weeks	<i>n</i> =1 (0.5%)	Pneumonia	NR
	On treatment analysis, n = 219 (some patients exposed to both treatments throughout trial)		Originally randomised and received MTX + SSZ + HCQ, switched to ETN50 + MTX		
Weinblatt <i>et al.</i> 1999 ¹⁶⁰	PBO + MTX	24 weeks (and 30 days after treatment)	0/30	WA	MA
Weinblatt <i>et al.</i> 1999 ¹⁶⁰	ETN 25 mg twice weekly + MTX	24 weeks (and 30 days after treatment)	0/59	N/A	MA
Weinblatt <i>et al.</i> 1999 ¹⁶⁰	ETN + MTX or MTX + PBO followed by ETN + MTX	3-year LTE	1/79	Myocardial infarction	NR
APPEAL ^{67,68}	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	0/103	N/A	MA
	ETN + MTX	16 weeks (study RCT end point)	1/197 (0.5%)	Gastrointestinal haemorrhage thought to be result of NSAID therapy following accidental fall and pelvic fracture	No
					continued

607

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, <i>n/N</i>	Cause of death	Considered by investigators/adjudicators to be related to study drug?
GO-FORTH ⁹¹	PBO + MTX	24 weeks	0/88	N/A	N/A
	GOL + MTX	24 weeks	0/86	N/A	N/A
GO-FORWARD ⁹²	PBO + MTX	24 weeks	0/133	N/A	N/A
	GOL+MTX	24 weeks	0/89	MA	N/A
			One death in unlicensed GOL 100 mg every 4 weeks arm (ileus, aspiration pneumonia and death from sepsis)		
Kay <i>et al.</i> , 2008 ⁹⁸	PBO + MTX (crossover to IFX + MTX at week 20)	52 weeks	0/35	WA	MA
	GOL+ MTX	52 weeks	0/35	N/A	N/A
Abe <i>et al.</i> , 2006 ⁵⁶	PBO + MTX	14 weeks	0/47	N/A	N/A
	IFX + MTX	14 weeks	0/49 [two deaths but not in 3 mg/kg extracted dose (both due to pneumonia)]	NR	ZR
Abe <i>et al.</i> , 2006 ⁵⁶	PBO group crossover to IFX	To week 36 of LTE	N/A	N/A	N/A
	IFX+MTX	To week 36 of LTE	0/129	N/A	N/A
ATTRACT ³²⁴	PBO + MTX	LTE 102 weeks	4/88 (4.5%)	Left ventricle rupture resulting in cardiopulmonary arrest, intestinal gangrene, arrhythmia and cardiopulmonary failure	Judged to be unrelated to study drug
	IFX + MTX	LTE 102 weeks	3/86 (3.5%)	Not reported separately for extracted arm	NR

TABLE 396 Number of deaths: populations 2 and 3 RCTs biologic vs. cDMARD(s) or PBO (continued)

Trial name/ study	Treatment arms for which data extraction performed	Assessment time point	Deaths, <i>n/N</i>	Cause of death	Considered by investigators/adjudicators to be related to study drug?
START ¹¹⁸	PBO + MTX	22 weeks	1/361	Septic shock	NR
	IFX + MTX	22 weeks	0/360	N/A	N/A
Swefot ¹⁴⁷	SSZ + HCQ + MTX	24 months	0/130	N/A	N/A
	IFX + MTX	24 months	1/128 (0.8%)	Complications of acute myeloid leukaemia	NR
ACT-RAY ⁵⁷	TCZ + oral PBO	To week 52	2/276 (0.7%)	Causes of death in four patients: sepsis, septic shock preceded by scrotal abscess, skin necrosis, acute renal failure and congestive heart failure, myocardial infarction, and sepsis with meningitis	NR
	TCZ + MTX	To week 52	2/277 (0.7%)	NR	NR
Nishimoto <i>et al.</i> ,	PBO	12 weeks	0/53	N/A	N/A
2004	TCZ	12 weeks	1/55 (1.8%)	Due to reactivation of chronic Epstein–Barr virus and consequent haemophagocytosis syndrome 61 days after single dose of TCZ 8 mg/kg i.v.	NR
TOWARD ¹²¹	PBO i.v. + stable cDMARDs	24 weeks	2/413 (0.5%)	Pneumonia, intestinal obstruction	NR
	TCZ + stable DMARDs	24 weeks	2/803 (0.3%)	Haemorrhagic stroke, postprocedural complications from triple coronary artery bypass graft	NR
					continue

T ¹⁴¹ Combination cDMARDs		Deaths, <i>n/</i> V	Cause of death	investigators/adjudicators to be related to study drug?
	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed
41 Combination cDMARDs	AiC information has been removed	AiC information has been removed)	AiC information has been removed	AiC information has been removed
TNF inhibitor + DMARD	AiC information has been removed	AiC information has been removed	AiC information has been removed	AiC information has been removed

TABLE 396 Number of deaths: populations 2 and 3 RCTs biologic vs. cDMARD(s) or PBO (continued)

in Japan with Adalimumab applying staNdard and General Evaluation study; ETN50, etanercept 50 mg once a week subcutaneously; N/A, not applicable; NR, not reported; STAR, Safety Trial of Adalimumab in Rheumatoid arthritis. ABT i.v. = BT ≈ 10 mg/kg intravenously on weeks 0, 2 and 4, and every 4 weeks thereafter. ADA = ADA 40 mg every other week subcutaneously.

ETN 25 mg twice a week subcutaneously. GOL = GOL 50 mg every 4 weeks subcutaneously. IFX = IFX 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response). TC2 = TC2 8 mg/kg intravenously every 4 weeks.

# EME HS&DR HTA PGfAR PHR

Part of the NIHR Journals Library www.journalslibrary.nihr.ac.uk

This report presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health

## Published by the NIHR Journals Library