90 research outputs found

    Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: New insights into the mechanisms involved

    Get PDF
    International audienceThe impact of 100 Hz (Hertz) acoustic frequency airflow on sinus drug deposition of aerosols was investigated using a human plastinated nasal cast. The influence of drug concentration and endonasal anatomical features on the sinus deposition enhanced by the 100 Hz acoustic airflow was also examined. Plastinated models were anatomically, geometrically and aerodynamically validated (endoscopy, CT scans, acoustic rhinometry and rhinomanometry). Using the gentamicin as a marker, 286 experiments of aerosol deposition were performed. Changes of airborne particles metrology produced under different nebulization conditions (100 Hz acoustic airflow and gentamicin concentration) were also examined. Aerodynamic and geometric investigations highlighted a global behaviour of plastinated models in perfect accordance with a nasal decongested healthy subject. The results of intrasinus drug deposition clearly demonstrated that the aerosols can penetrate into the maxillary sinuses. The 100 Hz acoustic airflow led to increase the deposition of drug into the maxillary sinuses by a factor 2-3 depending on the nebulization conditions. A differential intrasinus deposition of active substance depending on maxillary ostium anatomical features and drug concentration was emphasized. The existence of a specific transport mechanism of penetration of nebulized particles delivered with acoustic airflow was proposed

    The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe

    Get PDF
    Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non‐crop habitats, and species’ dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7‐ and 1.4‐fold respectively. Arable‐dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield‐enhancing ecosystem services

    The IASLC Lung Cancer Staging Project: A Renewed Call to Participation

    Get PDF
    Over the past two decades, the International Association for the Study of Lung Cancer (IASLC) Staging Project has been a steady source of evidence-based recommendations for the TNM classification for lung cancer published by the Union for International Cancer Control and the American Joint Committee on Cancer. The Staging and Prognostic Factors Committee of the IASLC is now issuing a call for participation in the next phase of the project, which is designed to inform the ninth edition of the TNM classification for lung cancer. Following the case recruitment model for the eighth edition database, volunteer site participants are asked to submit data on patients whose lung cancer was diagnosed between January 1, 2011, and December 31, 2019, to the project by means of a secure, electronic data capture system provided by Cancer Research And Biostatistics in Seattle, Washington. Alternatively, participants may transfer existing data sets. The continued success of the IASLC Staging Project in achieving its objectives will depend on the extent of international participation, the degree to which cases are entered directly into the electronic data capture system, and how closely externally submitted cases conform to the data elements for the project

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study

    Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat

    Get PDF
    BACKGROUND: Metagenomics is emerging as a powerful method to study the function and physiology of the unexplored microbial biosphere, and is causing us to re-evaluate basic precepts of microbial ecology and evolution. Most marine metagenomic analyses have been nearly exclusively devoted to photic waters. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a metagenomic fosmid library from 3,000 m-deep Mediterranean plankton, which is much warmer (approximately 14 degrees C) than waters of similar depth in open oceans (approximately 2 degrees C). We analyzed the library both by phylogenetic screening based on 16S rRNA gene amplification from clone pools and by sequencing both insert extremities of ca. 5,000 fosmids. Genome recruitment strategies showed that the majority of high scoring pairs corresponded to genomes from Rhizobiales within the Alphaproteobacteria, Cenarchaeum symbiosum, Planctomycetes, Acidobacteria, Chloroflexi and Gammaproteobacteria. We have found a community structure similar to that found in the aphotic zone of the Pacific. However, the similarities were significantly higher to the mesopelagic (500-700 m deep) in the Pacific than to the single 4000 m deep sample studied at this location. Metabolic genes were mostly related to catabolism, transport and degradation of complex organic molecules, in agreement with a prevalent heterotrophic lifestyle for deep-sea microbes. However, we observed a high percentage of genes encoding dehydrogenases and, among them, cox genes, suggesting that aerobic carbon monoxide oxidation may be important in the deep ocean as an additional energy source. CONCLUSIONS/SIGNIFICANCE: The comparison of metagenomic libraries from the deep Mediterranean and the Pacific ALOHA water column showed that bathypelagic Mediterranean communities resemble more mesopelagic communities in the Pacific, and suggests that, in the absence of light, temperature is a major stratifying factor in the oceanic water column, overriding pressure at least over 4000 m deep. Several chemolithotrophic metabolic pathways could supplement organic matter degradation in this most depleted habitat

    Experimental Microbial Evolution of Extremophiles

    Get PDF
    Experimental microbial evolutions (EME) involves studying closely a microbial population after it has been through a large number of generations under controlled conditions (Kussell 2013). Adaptive laboratory evolution (ALE) selects for fitness under experimentally imposed conditions (Bennett and Hughes 2009; Dragosits and Mattanovich 2013). However, experimental evolution studies focusing on the contributions of genetic drift and natural mutation rates to evolution are conducted under non-selective conditions to avoid changes imposed by selection (Hindré et al. 2012). To understand the application of experimental evolutionary methods to extremophiles it is essential to consider the recent growth in this field over the last decade using model non-extremophilic microorganisms. This growth reflects both a greater appreciation of the power of experimental evolution for testing evolutionary hypotheses and, especially recently, the new power of genomic methods for analyzing changes in experimentally evolved lineages. Since many crucial processes are driven by microorganisms in nature, it is essential to understand and appreciate how microbial communities function, particularly with relevance to selection. However, many theories developed to understand microbial ecological patterns focus on the distribution and the structure of diversity within a microbial population comprised of single species (Prosser et al. 2007). Therefore an understanding of the concept of species is needed. A common definition of species using a genetic concept is a group of interbreeding individuals that is isolated from other such groups by barriers of recombination (Prosser et al. 2007). An alternative ecological species concept defines a species as set of individuals that can be considered identical in all relevant ecological traits (Cohan 2001). This is particularly important because of the abundance and deep phylogenetic complexity of microbial communities. Cohan postulated that “bacteria occupy discrete niches and that periodic selection will purge genetic variation within each niche without preventing divergence between the inhabitants of different niches”. The importance of gene exchange mechanisms likely in bacteria and archaea and therefore extremophiles, arises from the fact that their genomes are divided into two distinct parts, the core genome and the accessory genome (Cohan 2001). The core genome consists of genes that are crucial for the functioning of an organism and the accessory genome consists of genes that are capable of adapting to the changing ecosystem through gain and loss of function. Strains that belong to the same species can differ in the composition of accessory genes and therefore their capability to adapt to changing ecosystems (Cohan 2001; Tettelin et al. 2005; Gill et al. 2005). Additional ecological diversity exists in plasmids, transposons and pathogenicity islands as they can be easily shared in a favorable environment but still be absent in the same species found elsewhere (Wertz et al. 2003). This poses a major challenge for studying ALE and community microbial ecology indicating a continued need to develop a fitting theory that connects the fluid nature of microbial communities to their ecology (Wertz et al. 2003; Coleman et al. 2006). Understanding the nature and contribution of different processes that determine the frequencies of genes in any population is the biggest concern in population and evolutionary genetics (Prosser et al. 2007) and it is critical for an understanding of experimental evolution

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Identification des parametres rheologioues du sang en regime dybamique

    No full text
    Sous taux de cisaillement constant faible, le sang normal présente un comportement non linéaire corrélé à l'apparition et à la modification continue d'une structure aggrégative des globules rouges. Energie et cinétique de changement de structure ont été étudiées à partir des cycles d'hystérèse contrainte -taux de cisaillement. Nous envisageons ici certains aspects de l'étude fine d'un ensemble discret de telles structures à l'état stationnaire, induites par des taux de cisaillement moyens constants, à travers leur réponse en fréquence à des variations de cisaillement de faible amplitude, du type bruit blanc, superposées au cisaillement moyen. La stationnarité du système est vérifiée au 1er et au second ordres. Deux techniques d'exploitation des mesures sont utilisées. Une technique de Fourier classique aboutit, après déconvolution par la réponse impulsionnelle de l'appareillage, à une estimation de la réponse en fréquence dans la seule bande passante du montage. Pour aboutir à une représentation paramétrique, il faut tenir compte de la pondération variable des différents coefficients de transfert. Une technique d'identification dans le domaine temps des paramètres de l'équation différentielle régissant le système étudié, utilisant un filtre de bruit, rend la correction d'appareillage plus sûre dans les cas où l'on peut reconnaître dans l'équation brute les paramètres de l'appareillage (ces derniers ne sont pas totalement indépendants de ceux du sang)
    corecore