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1  Experimental Microbial Evolution Theory and Applications in Model 
Organisms 

Experimental microbial evolutions (EME) involves studying closely a microbial popu-
lation after it has been through a large number of generations under controlled con-
ditions (Kussell 2013). Adaptive laboratory evolution (ALE) selects for fitness under 
experimentally imposed conditions (Bennett and Hughes 2009; Dragosits and Mat-
tanovich 2013). However, experimental evolution studies focusing on the contribu-
tions of genetic drift and natural mutation rates to evolution are conducted under 
non-selective conditions to avoid changes imposed by selection (Hindré et al. 2012). 

To understand the application of experimental evolutionary methods to ex-
tremophiles it is essential to consider the recent growth in this field over the last 
decade using model non-extremophilic microorganisms. This growth reflects both 
a greater appreciation of the power of experimental evolution for testing evolution-
ary hypotheses and, especially recently, the new power of genomic methods for an-
alyzing changes in experimentally evolved lineages. Since many crucial processes 
are driven by microorganisms in nature, it is essential to understand and appreci-
ate how microbial communities function, particularly with relevance to selection. 
However, many theories developed to understand microbial ecological patterns fo-
cus on the distribution and the structure of diversity within a microbial population 
comprised of single species (Prosser et al. 2007). Therefore an understanding of the 
concept of species is needed. A common definition of species using a genetic concept 
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is a group of interbreeding individuals that is isolated from other such groups by 
barriers of recombination (Prosser et al. 2007). An alternative ecological species 
concept defines a species as set of individuals that can be considered identical in 
all relevant ecological traits (Cohan 2001). This is particularly important because 
of the abundance and deep phylogenetic complexity of microbial communities. Co-
han postulated that “bacteria occupy discrete niches and that periodic selection will 
purge genetic variation within each niche without preventing divergence between 
the inhabitants of different niches”. The importance of gene exchange mechanisms 
likely in bacteria and archaea and therefore extremophiles, arises from the fact that 
their genomes are divided into two distinct parts, the core genome and the acces-
sory genome (Cohan 2001). The core genome consists of genes that are crucial for 
the functioning of an organism and the accessory genome consists of genes that are 
capable of adapting to the changing ecosystem through gain and loss of function. 
Strains that belong to the same species can differ in the composition of accessory 
genes and therefore their capability to adapt to changing ecosystems (Cohan 2001; 
Tettelin et al. 2005; Gill et al. 2005). Additional ecological diversity exists in plas-
mids, transposons and pathogenicity islands as they can be easily shared in a favor-
able environment but still be absent in the same species found elsewhere (Wertz 
et al. 2003). This poses a major challenge for studying ALE and community micro-
bial ecology indicating a continued need to develop a fitting theory that connects 
the fluid nature of microbial communities to their ecology (Wertz et al. 2003; Cole-
man et al. 2006). Understanding the nature and contribution of different processes 
that determine the frequencies of genes in any population is the biggest concern in 
population and evolutionary genetics (Prosser et al. 2007) and it is critical for an 
understanding of experimental evolution. Tatum and Lederberg (Tatum and Leder-
berg 1947) discovered laterally transferred genes in E. coli. However sequencing of 
the genomes of two isolates of Helicobacter pylori revealed that >6 % of the genes 
are unique (Alm et al. 1999). When recombination is rare and limited to few genes, 
almost all other genes will be transmitted through vertical inheritance. Mutations 
will accumulate slowly over the period and will result in irreversible divergence of 
lineages. In contrast, when recombinational events are common, genes will release 
themselves from the rest of the genome and diversity in genes linked to adaptive 
alleles will be purged through selection (Polz et al. 2006). This type of pan-mic-
tic population structure has been reported in Neisseria gonorrhoeae and Rhizobium 
meliloti lineages (Smith et al. 1993). 

Comparisons with founder or starting strains are made to quantify genotypic 
and phenotypic changes for example, DNA sequencing of specific genes or entire ge-
nomes is used to determine the mutational differences among evolved strains (Kus-
sell 2013). Adaptive laboratory evolution (ALE) is a common method in EME stud-
ies to gain insights into the basic mechanisms of molecular evolution and adaptive 
landscapes that accumulate in microbial populations during long term selection un-
der predefined growth conditions (Bennett et al. 1990). Over the past two to three 
decades, there have been an increasing number of experiments to understand the 
adaptive landscapes during ALE especially with E. coli and Saccharomyces cerevisiae 
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(Bennett et al. 1990; Paquin and Adams 1983). Microbial adaptation to new envi-
ronmental conditions mainly occurs via two different mechanisms: alteration of 
gene regulation without any heritable genetic change, or, selection of novel adap-
tive phenotypes conferred by stable mutations. Experimental evolution allows phe-
notypic changes to be associated with growth conditions that eventually select for 
traits (Hardison 2003). EME studies have led to significant insights and experimen-
tal proof for evolutionary biology (Bennett et al. 1990; Paquin and Adams 1983). The 
long term EME study of E. coli by Lenski’s group remains at the forefront of these 
studies where a single parallel E. coli adaptation experiment has exceeded 50,000 
generations (Sniegowski et al. 1997; Lenski et al. 1998; Cooper and Lenski 2000). 
These studies along with similar experiments conducted by others have provided 
insights into the genetic basis of increased microbial fitness (Barrick et al. 2009), 
their implications during evolution (Woods et al. 2011), understanding of popula-
tion size, evolvability (Bloom et al. 2007; Elena et al. 2007; Draghi et al. 2010) and 
clonal interference (Kao and Sherlock 2008). 

Experimental evolution allows the microorganisms to evolve through propaga-
tion thus relying on the inherent capacity of the organism to introduce mutations 
(Sauer 2001). Fast generation time, ease of maintaining large population sizes and 
storing them make microorganisms well suited to the study of ALE in a laboratory 
setting (Elena and Lenski 2003). However extensive cultivation periods are required 
for selecting a desired phenotype with a limited natural mutation rate. Adding to 
this, identifying mutations necessary for conferring a particular phenotype is dif-
ficult since neutral mutations end-accumulate thus making an “omic” based ap-
proach necessary to understand the observed phenotype (Bro and Nielsen 2004). 
Furthermore, experimental evolution provides an advantage over reverse genetics-
based approaches that employ targeted activation or inactivation of genes in that 
ALE can result in occurrence of mutations of unexpected composition that provide 
gain of function for the organism (Conrad et al. 2011). Growing knowledge about 
the biochemical and physiological natures of some of the model organisms along 
with the use of genetic and mapping techniques developed in the 1980s and 1990s, 
has opened up new avenues (Helling et al. 1987; Rosenzweig et al. 1994; Treves et 
al. 1998; Kinnersley et al. 2014; Ferenci 2007; Adams et al. 1992). These same ap-
proaches have been used to test both experimentally-evolved and naturally occur-
ring microorganisms for genome amplification, deletion, insertion and rearrange-
ment of genes or sequences (Cooper et al. 2003; Philippe et al. 2007; Kadam et al. 
2008; Bachmann et al. 2012; Gresham et al. 2008; Wenger et al. 2011). 

2  Technologies Relevant to Performing Experimental Microbial Evolution 

For both extremophilic and non-extremophilic microbes, methods of cultivation are 
fundamental, as they dictate physiologic status and therefore mutation formation. 
For this reason, they are critical to the field of experimental evolution. Extended lab-
oratory timescales of microbial growth in selective environments are also crucial. 
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Under these conditions, microbes are advantageous as evolutionary models due to 
their large population size, short generation time, relatively small genome and gen-
erally high supply of mutations (Gresham and Dunham 2014). Extremophiles may 
exhibit elongated generation times and but maintain normal mutation rates (Grogan 
et al. 2001), necessitating longer culture durations to achieve equivalent degrees of 
mutation formation. The understanding and application of continuous cultivation 
and serial batch culture passage has expanded the use of microbial systems to ad-
dress evolutionary questions. Although paramount to experimental evolution, these 
culturing technologies have remained relatively unused in the ALE of extremophiles 
and future research is warranted. 

Continuous long term culturing techniques for the purpose of mutation accu-
mulation and strain evolution was popularized in the mid-twentieth century. The 
chemostat is a continuous culturing device first described by (Monod 1942). The 
modern chemostat was introduced by Novick and Szilard and applied to the study 
of genetic changes of microorganisms (Novick and Szilard 1950). The basic concept 
of this culturing device is the continuous removal of medium with concurrent re-
placement of fresh medium at a defined rate. Microbial populations will grow in pro-
portion to this rate. Contemporary versions of this device have been scaled down-
wards to achieve larger numbers of experimental replicates or to the point of single 
cell analysis (Dénervaud et al. 2013). Discoveries made using chemostats are rooted 
in physiological responses to environmental stresses. The nature of some of these 
studies include: variation between and within species, mutation rates, mutational 
takeovers, population changes, quorum sensing, genomic rearrangements, emerg-
ing diversity, metabolism and energetics, and membrane transport (Ferenci 2008). 
Chemostats present a research opportunity for extremophilic experimental evolution 
in that the current use is mainly in bioprocess applications (Lorantfy et al. 2014). 

Similar to the chemostat is the turbidostat, popularized for experimental mi-
crobial evolution by (Bryson and Szybalski 1952). The main difference is that nu-
trients are not limited, and that fresh medium introduction is proportional to max-
imum culture turbidity, resulting in maximum growth rates of microorganisms in 
mid- exponential phase (Gresham and Dunham 2014). Both the chemostat and tur-
bidostat maintain a steady-state environment, but represent minimal or optimal 
resource conditions, respectively. These conditions result in different types of mu-
tations based on nutrient stress or growth enhancement and overall strain fitness 
improvement. Turbidostats have been employed in the study of evolutionary re-
sponses to anti-microbial compounds (Avrahami-Moyal et al. 2012; Toprak et al. 
2012). As with chemostats, turbidostats have seen limited use in the experimental 
evolution of extremophiles. 

Long term batch culture intended for the evolution of microbes requires serial 
dilution or passaging of cells at a known dilution and duration of culture (Atwood et 
al. 1951). This technique provides dynamic environment for microbial growth that 
is less conditionally consistent than continuous culture. Under this regimen, cells 
may be selected during all phases of cell growth. Moreover, this introduces a com-
plex environment for non-continuous selection as in the case of continuous culturing 
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devices. This approach has recently been introduced in the experimental evolution 
of the extremophile Sulfolobus solfataricus and is a prudent approach to the ALE 
of extremophiles without knowing the physiological responses required to design 
feeding regimes in continuous cultures (McCarthy 2015). 

2.1  High-Throughput Methods Evaluate Genotypic and Phenotypic Evolution 
in Extremophiles 

The method of analysis of evolutionary changes in microbial genomes has increased 
in throughput and resolution through the recent development of “omic” technol-
ogies, and must be considered regardless of the species of microorganism. High-
throughput technologies such as whole genome sequencing, transcriptomics, micro-
arrays and chromatin immunoprecipitation (ChIP-Seq) have enhanced resolution of 
the relationships between observable strain characteristics (traits) and the underly-
ing molecular mechanisms of evolution. Understandably, high-throughput technol-
ogies have become indispensable to the study of EME. Advances in DNA sequencing 
throughput has expanded the research potential of experimental microbial evolu-
tion in extremophiles (Araya et al. 2010; Barrick et al. 2009; Hong and Gresham 
2014; Kvitek and Sherlock 2013; Lang et al. 2013; Herring et al. 2006). Since the 
first archaeal genome was sequenced for Methanocaldococcus jannaschii (Bult et al. 
1996), many more genomes have become available for extremophiles (Allers and 
Mevarech 2005). Gene expression data can also be obtained in high throughput for-
mats using RNA sequencing (RNA-seq) or microarrays (DeRisi et al. 1997; Lashkari 
et al. 1997; Dunham et al. 2002; Gresham et al. 2006; Wurtzel et al. 2010), or pro-
teomics (Rigaut et al. 1999). In addition protein-protein interactions (Schwikowski 
et al. 2000) and protein-DNA interactions (ChIP-seq) have been developed for EME 
model organisms and extended to extremophiles (Gresham et al. 2006; Dunham et 
al. 2002; Wilbanks et al. 2012) 

3  Extending Experimental Evolution to Extremophiles 

3.1  Specific Challenges Associated with Extremophiles 

The application of experimental evolution to extremophiles must overcome spe-
cific difficulties associated with their cultivation and biophysical issues pertaining 
to their macromolecules arising from their extremophilic environments. Working 
with extremophiles in the laboratory requires special techniques and equipment to 
maintain their extreme environments and complex nutritional requirements. Many 
extremophiles have relatively slow growth rates compared to other microbial model 
systems. This means that ALE studies require longer time periods to achieve equiv-
alent number of generations. For example, this is especially true for extremophiles 
cultivated under lithoautotrophic conditions where energy limitation constrains rep-
lication rate (McCarthy et al. 2014; Maezato et al. 2012).  
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In the context of macromolecules, where EME impacts their identities, proteins 
constitute a specific barrier while lipids and various classes of small molecules can 
also present challenges. Proteins derived from hyperthermophilic extremophiles 
require high temperature for analysis and therefore the use of specialized instru-
mentation. Proteins derived from halophilic extremophiles are particularly diffi-
cult to purify and characterize because they are unstable in low salt concentrations 
and their fractionation is impeded by the incompatibility of methods such as elec-
trophoresis and ion-exchange with high salt concentrations (Anfinsen et al. 1995). 
Recombinant expression of extremophile proteins in non-extremophile hosts such 
as E. coli often face a similar problem: outside of the extreme conditions of their 
native environments halophilic proteins have a tendency to misfold and aggregate 
(Allers 2010). For these reasons, examining the performance of evolved extremo-
philic macromolecules within the native extremophile host becomes critical and de-
pends on the availability of genetic systems (Maezato et al. 2012). 

3.2  Cultivation and Preservation of Extremophiles 

One example of an extremophilic life style is a hyperthermophilic anaerobic bacte-
rium, Thermotoga maritima that was isolated from geothermal heated marine sedi-
ment at Vulcano, Italy (Huber and Stetter 1998). While most of the members of Ther-
motogales were isolated from hot springs and deep-sea hydrothermal vents, few of 
the members are able to cope with partially oxidative condition due to the partially-
oxygenated hot sediments and fluids in hydrothermal vent ecosystems (Rusch et al. 
2005). T. maritima, despite it description as a strict anaerobe, has been reported to 
grow in the presence of 0.5 % v/v oxygen (Le Fourn et al. 2008). Lack of abundant 
carbon in its marine thermal vent environment likely led to the ability of this or-
ganism to metabolize a broad diversity of sugars without apparent selectivity. For 
example this organism possess a significantly higher number of ABC-type substrate 
transporters than most other organisms (Nelson et al. 1999; Ren et al. 2007) T. ma-
ritima and its closely related relatives, T. neapolitana, Thermotoga sp. strain RQ2, T. 
naphthophila and T. petrophila thrive between 55 °C and 90 °C and pH range 5.5–
9.5 using simple and complex carbohydrates (Chhabra et al. 2003; Conners et al. 
2005). T. maritima can be cultivated in batch culture in biological replicates using 
Hungate tubes or serum bottles supplemented with diverse carbon sources. Tubes 
can be sealed with butyl rubber stoppers (Bellco Biotechnology), crimped with metal 
collars and the headspace can be exchanged with nitrogen gas. Medium inoculation 
can use sterile 1 cc syringes attached to 20½ G needles and cultures incubated an-
aerobically at 80 °C typically overnight. 

T. maritima is also of interest due to an apparent extensive degree of lateral 
gene transfer from an archaeal donor and a tendency to undergo continued genome 
size reduction (Nelson et al. 1999; Singh et al. 2015). Moreover, it is of applied in-
terest due to its ability to produce molecular hydrogen at rates surpassing those 
of other microorganisms (Schröder et al. 1994). Ongoing experimental evolution 
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studies concerned with expanding this capacity through the use of transient gene 
inactivation by targeted chromosomal recombination combined with purifying se-
lection have established novel cell lines with unique properties (Singh et al. 2015). 
The term transient gene inactivation refers to the use of temporary gene disrup-
tion of a chromosomal locus resulting from consecutive single crossover events. The 
term purifying selection is a classic genetic method that involves maintaining selec-
tive growth conditions while isolating clonal populations. 

Another example of an extremophile is the thermoacidophile Sulfolobus solfa-
taricus which was isolated from volcanic hot springs in both Italy and the United 
States (Brock et al. 1972). This organism grows from a temperature range of 65–90 
°C and a pH range of 2.5–5.0 with optimum growth conditions of 80 °C and pH 3.0 
(Brock et al. 1972; Grogan 1989). In the laboratory this organism is cultivated in a 
modified basal salts medium (Brock et al. 1972): complex media is supplemented 
with 0.2 % tryptone and minimal media is supplemented with 0.2 % sugars such 
as glucose. Cultures are incubated at 80 °C in glass screw-capped flasks with aer-
ation in orbital baths (Rolfsmeier and Blum 1995; Bini et al. 2002; Worthington et 
al. 2003) and growth is monitored by light absorption at a wavelength of 540 nm. 
S. solfataricus is a model organism in the archaea and it has an established genetic 
system (Maezato et al. 2011). This makes it ideal for ALE studies as genetic changes 
seen in experimental evolution experiments with this organism can be reconstructed 
in wild-type cell lines to verify their effects. S. solfataricus is of applied interest as 
a source of heat and acid stable enzymes for various industrial processes such as 
trehalose production and cellulose degradation (Antranikian et al. 2005). Ongoing 
experimental evolution studies in this organism have generated cell lines with in-
creased acid stability (McCarthy 2015). 

Extremophiles can be stored for long periods through the preparation of a fro-
zen permanent. This becomes essential during ALE to preserve intermediate stages 
of evolutionary changes resident within distinct microbial populations. To achieve 
this end, mid-exponential phase cultures are collected by centrifugation, washed 
with fresh medium, amended with 7 % (v/v) dimethyl sulfoxide (DMSO). The sam-
ple is then mixed and flash frozen using an ethanol-dry ice bath. Storage at −80 °C 
provides a long term method to preserve culturability (Maezato et al. 2012). 

4  Examples of Experimental Microbial Evolution Using Extremophiles 

A broad range of genome changes underlie evolutionary changes in non extremo-
philic microbes. Gene duplication, deletion (Kunin and Ouzounis 2003), transloca-
tion, inversion (Suyama and Bork 2001), lateral gene transfer (Garcia-Vallvé et al. 
2000; Nelson et al. 1999) and transposition (Kidwell and Lisch 2000) are some of 
the phenomenon that result in genome evolution (Fraser-Liggett 2005). Genome 
evolution in extremophiles can occur in a similar fashion because various genetic 
elements such as direct repeats (DR), inverted repeats (IR) and transposable ele-
ments exist in extremophiles. Since DRs and IRs have the potential to manipulate 
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the dynamics of a genome (Ussery et al. 2004), extremophiles should be capable of 
undergoing processes involving these sequences to result in genome evolution. The 
origins of DRs in non-thermophiles have been proposed to arise from lateral gene 
transfer, slip strand pairing and genome hopping (Achaz et al. 2002; Romero and 
Palacios 1997). As lateral gene transfer in Thermotogales has been described, these 
extremophiles can be used to study genome evolution. Close repeats or tandem re-
peats with smaller spacer regions are removed by RecA independent recombination 
(Bi and Liu 1994; Lovett et al. 1993) whereas direct repeats with a longer spacer 
depending on selection pressure may be stably maintained in the genome and are 
less likely to be deleted by illegitimate recombination (Lovett et al. 1994; Chédin et 
al. 1994). The biological relevance of repetitive sequence is to provide phenotypic 
variation in two ways. Repeats located in the regulatory region of a gene can mod-
ulate the expression of the gene (van Ham et al. 1993) and location inside a coding 
region could result in protein truncation when gene rearrangement results in loss 
of the repeat. Repetitive sequence retention also depends on selective pressure and 
this aspect of genomic instability can be experimentally tested. 

Transposable elements are hypothesized to be both harmful and occasion-
ally beneficial to their hosts (Schneider and Lenski 2004) by providing a source 
of genetic diversity through mutations, duplications, and genome rearrangements 
(Kidwell and Lisch 2000). Since transposable elements are broadly distributed in ex-
tremophiles their activity is again relevant to evolutionary change. In Lenski’s long-
term E. coli evolution experiments several pivotal changes in the different lineages of 
evolved cell lines were linked to transpositions, however the transposition rates did 
not correlate with the rates of adaptation: fitness showed a rapid increase in early 
generations and then sharply decelerated over time, while the rate of transposition 
remained relatively constant (Barrick et al. 2009; Schneider and Lenski 2004). In 
another EME study on thermal adaptation in E. coli the phenotypes of half of the 
derived heat-adapted cell lines could be explained by duplication events in a similar 
genomic region and a corresponding up-regulation of the duplicated genes. How-
ever, the other half of the adapted cell lines showed no duplications or transposi-
tion events and no change in expression of those same genes, indicating that these 
adapted through a different but unknown pathway (Riehle et al. 2001). These stud-
ies may be predictive of analogous efforts using extremophiles. 

4.1  The Hyperthermophilic Bacterial Anaerobe Thermotoga maritima  
and Deletion Formation 

T. maritima is one of the most well characterized members of the bacterial phy-
lum Thermotogae. This phylum contains a broad range of bacterial extremophiles 
noted for their thermophilicity and anaerobiosis (Huber and Stetter 1998). T. mari-
tima has been reported to undergone lateral gene transfer from an archaeon (Nel-
son et al. 1999), making it a promising model system to investigate experimental ge-
nome evolution, and an 8 kb deletion in the type strain supports the occurrence of 
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genome evolution in this organism (Zhaxybayeva et al. 2009). Bioinformatic anal-
ysis to find direct repeats (DRs) confirms the presence of various small and larger 
DRs in this organism that could contribute to genome evolution (Fig. 1). To iden-
tify the location of DRs that might contribute to genome evolution, the T. maritima 
genome was scanned to find those DRs ranging from 50 to 1500 bp using REPuter 
(Kurtz et al. 2001). The T. maritima genome reported by Nelson (Nelson et al. 1999) 
was used to describe the coordinates and gene locus tags. In T. maritima, repetitive 
sequences surround a variable spacer region and clustering of various DRs has gen-
erated a larger DR. This was evident when a region between TM1299 and TM1332 
where a bigger DR generated via clustering, was identified as a potential hot spot 
of genome evolution. Various arrangements of T. maritima DRs are presented (Fig. 
2). The biggest DRs of 921 bp exist in TM1322 (coordinates; 1340942–1341862) and 
TM1332 (1350970–1351890) surrounding a 10 kb spacer region. Considering the oc-
currence of large DRs (921 bp) in the genome, their location could constitute a hot 
spot for deletion of the intervening region. Such events would continue genome evo-
lution in this bacterium. While the organism has been shown to evolve by deleting 
an 8 kb gene naturally, an experimental evolutionary approach used to manipulate 
metabolite formation resulted in deletion of genes (Singh et al. 2015). A transient 
gene inactivation by targeted chromosomal recombination combined with purify-
ing selection established novel cell lines with unique properties (Singh). Genome 
resequencing identified a 10 kb deletion between TM1322 and TM1332 that resulted 
from crossover between flanking 921 bp DRs that deleted the intervening region 
(1341863–1351890). This is the first report of experimental microbial genome evo-
lution in T. maritima. The 10 kb deletion strain of T. maritima was named Tma200 
and due to its altered phenotype of hydrogen production may provide a strategy for 
further evolution of its extremophilic traits (Singh et al. 2015).  

Fig. 1. A potential hot spot of genome evolution in T. maritima. A specific colored block repre-
sents direct repeats of conserved length. Genomic coordinates and gene locus tags are shown 
according to the genome of T. maritima reported (Nelson et al. 1999) 
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4.2 The Archaeon Sulfolobus solfataricus and the Role if Insertion Sequence 
Elements 

Sulfolobus solfataricus is an extremely thermoacidophilic member of the Crenar-
chaeotal phylum of the Archaea. Ongoing studies concerned with evolving new cell 
lines with increased thermoacidophily have generated a series of novel lineages 
(McCarthy). Aspects of these lineages pertaining to ALE are presented here. Unlike 
other species in this genus, S. solfataricus has a genome that is rich in insertion se-
quence (IS) elements with over 200 IS elements (10 % of genome) and its genome 
is predicted to be continually changing due rearrangements caused by these trans-
posable elements (Redder and Garrett 2006; Brügger et al. 2004). It undergoes a 
high frequency of transposition and its gene order (synteny) is very different from 
other members of the Sulfolobus genus, indicating that it has undergone multiple 
rearrangements (Brügger et al. 2004). 

Several evolved S. solfataricus cell lines were isolated by extensive serial pas-
sage to select for increased acid resistance in an experimental evolution experiment 
(Fig. 3) (McCarthy). Intermediate isolates were purified to clonality using a solid 
complex medium and the clonal isolates were re-screened for the acid resistance 
phenotype. These cell lines maintained acid resistance after passaging at pH 3.0, 

Fig. 2. A proposed schematic of genome deletions mediated via cross-over between various 
direct repeats. Specific colored block represents direct repeats of conserved length. Identi-
cal direct repeats that could undergo homologous recombination are presented as a brack-
eted regions. 
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indicating that their phenotype was stable and heritable rather than a transient re-
sponse or stress-induced trait (McCarthy). The acid adapted S. solfataricus cell lines 
were resistant to a 150-fold greater acid concentration than the wild-type and was 
predicted to have a significant number of adaptive mutations based on transcrip-
tomic studies. RNA-seq analysis showed high (+5-fold or more) up-regulation of 27 
transposons and transposases throughout the entire genome in the adapted strains 
at low pH compared to the transcriptomes of wild-type cell lines growing at optimal 
pH. Eighteen of these elements were up-regulated tenfold or more and eight were 
up-regulated over 30-fold. The most up-regulated IS elements were all members 
of the same families including transposases ISC1217, 1234/ST1916, and IS1 (Fig. 4). 
Curiously however, genome re-sequencing of these strains showed very few trans-
position events. Two of the three adapted cell lines had a single event each and the 
third showed no transposition. The frequency of transposition in the adapted cell 
lines appeared to decrease, even though the expression of many transposase genes 
was increased at low pH. The lack of transpositions in the evolved cell lines indi-
cates that these were not a source of adaptation and this was surprising given the 
high frequency of IS elements in the genome. 

The overall transcriptomes of the acid-adapted cell lines gave additional clues 
to their mechanism of acid resistance. Many changes were observed in expression 
of putative transporters and genes predicted to be involved in signal transduction as 
well as overall metabolism (Fig. 5). Examining transcriptomics using RNAseq is rel-
atively new in prokaryotes and combining this approach with genomics of ALE rep-
resents a powerful approach for looking at the relative contributions of mutations 
and changes in gene expression to adaptation and the interaction between them.  

Fig. 3. Experimental microbial evolution by serial passage. Cells are sub-cultured into a 
slightly more extreme condition (indicated by changing coloration of the medium), passaged 
several times until they adapt to this condition, and then the condition is adjusted and the 
process is repeated. Colonies are isolated from adapted cultures and screened for the unique 
phenotype. The genomes and transcriptomes of experimentally evolved colonies are then ex-
amined to determine its cause. 
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Fig. 4. Transcriptomic profile of insertion elements in S. solfataricus evolved to strong acid 
resistance by EME. Bars represent the expression changes of individual transposase genes 
relative to the expression in pH 3.00-grown wild-type S. solfataricus. Most of these ele-
ments were upregulated in the evolved cell line, with the greatest changes seen in ISC1217 
and ISC1234/ST1916 family transposable elements. 

Fig. 5. Classes of ORFs with altered expression in experimentally evolved S. solfataricus. The 
number of ORFs in several functional categories that had small (two-to-fivefold) and large 
(5+-fold) expression changes in a pH 1.00-grown evolved cell line normalized to the total 
number of ORFs in each category in the genome are shown. The fold-changes are relative to 
pH 3.00- grown wild-type S. solfataricus. Biological replicates of all RNA-seq samples had 
Pearson correlation coefficients greater than 0.96.  
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