280 research outputs found
Objective, computerized video-based rating of blepharospasm severity
OBJECTIVE: To compare clinical rating scales of blepharospasm severity with involuntary eye closures measured automatically from patient videos with contemporary facial expression software.
METHODS: We evaluated video recordings of a standardized clinical examination from 50 patients with blepharospasm in the Dystonia Coalition's Natural History and Biorepository study. Eye closures were measured on a frame-by-frame basis with software known as the Computer Expression Recognition Toolbox (CERT). The proportion of eye closure time was compared with 3 commonly used clinical rating scales: the Burke-Fahn-Marsden Dystonia Rating Scale, Global Dystonia Rating Scale, and Jankovic Rating Scale.
RESULTS: CERT was reliably able to find the face, and its eye closure measure was correlated with all of the clinical severity ratings (Spearman ρ = 0.56, 0.52, and 0.56 for the Burke-Fahn-Marsden Dystonia Rating Scale, Global Dystonia Rating Scale, and Jankovic Rating Scale, respectively, all p < 0.0001).
CONCLUSIONS: The results demonstrate that CERT has convergent validity with conventional clinical rating scales and can be used with video recordings to measure blepharospasm symptom severity automatically and objectively. Unlike EMG and kinematics, CERT requires only conventional video recordings and can therefore be more easily adopted for use in the clinic
Long gamma-ray bursts and core-collapse supernovae have different environments
When massive stars exhaust their fuel they collapse and often produce the
extraordinarily bright explosions known as core-collapse supernovae. On
occasion, this stellar collapse also powers an even more brilliant relativistic
explosion known as a long-duration gamma-ray burst. One would then expect that
long gamma-ray bursts and core-collapse supernovae should be found in similar
galactic environments. Here we show that this expectation is wrong. We find
that the long gamma-ray bursts are far more concentrated on the very brightest
regions of their host galaxies than are the core-collapse supernovae.
Furthermore, the host galaxies of the long gamma-ray bursts are significantly
fainter and more irregular than the hosts of the core-collapse supernovae.
Together these results suggest that long-duration gamma-ray bursts are
associated with the most massive stars and may be restricted to galaxies of
limited chemical evolution. Our results directly imply that long gamma-ray
bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9
February 2006, online publication 10 May 2006. Supplementary material
referred to in the text can be found at
http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new
version contains minor changes to match the final published versio
A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson’s Disease
Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7 % in 70 % of the patients.Centro de Investigación Biomédica en RedDepto. de Psicología Experimental, Procesos Cognitivos y LogopediaDepto. de Radiología, Rehabilitación y FisioterapiaFac. de PsicologíaFac. de MedicinaTRUEpu
Type Ia Supernovae as Stellar Endpoints and Cosmological Tools
Empirically, Type Ia supernovae are the most useful, precise, and mature
tools for determining astronomical distances. Acting as calibrated candles they
revealed the presence of dark energy and are being used to measure its
properties. However, the nature of the SN Ia explosion, and the progenitors
involved, have remained elusive, even after seven decades of research. But now
new large surveys are bringing about a paradigm shift --- we can finally
compare samples of hundreds of supernovae to isolate critical variables. As a
result of this, and advances in modeling, breakthroughs in understanding all
aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version.
Shortened, update
What we talk about when we talk about "global mindset": managerial cognition in multinational corporations
Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
Adaptive and Innate Immune Responses in Autism: Rationale for Therapeutic Use of Intravenous Immunoglobulin
Autism is a complex polygenic neurodevelopmental disorder characterized by deficits in communication and social interactions as well as specific stereotypical behaviors. Both genetic and environmental factors appear to contribute to the pathogenesis of autism. Accumulating data including changes in immune responses, linkage to major histocompatibility complex antigens, and the presence of autoantibodies to neural tissues/antigens suggest that the immune system plays an important role in its pathogenesis.
In this brief review, we discuss the data regarding changes in both innate and adaptive immunity in autism and the evidence in favor of the role of the immune system, especially of maternal autoantibodies in the pathogenesis of a subset of patients with autism. The rationale for possible therapeutic use of intravenous immunoglobulin is also discussed
No Differential Regulation of Dopamine Transporter (DAT) and Vesicular Monoamine Transporter 2 (VMAT2) Binding in a Primate Model of Parkinson Disease
Radioligands for DAT and VMAT2 are widely used presynaptic markers for assessing dopamine (DA) nerve terminals in Parkinson disease (PD). Previous in vivo imaging and postmortem studies suggest that these transporter sites may be regulated as the numbers of nigrostriatal neurons change in pathologic conditions. To investigate this issue, we used in vitro quantitative autoradioradiography to measure striatal DAT and VMAT2 specific binding in postmortem brain from 14 monkeys after unilateral internal carotid artery infusion of 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP) with doses varying from 0 to 0.31 mg/kg. Quantitative estimates of the number of tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in substantia nigra (SN) were determined with unbiased stereology, and quantitative autoradiography was used to measure DAT and VMAT2 striatal specific binding. Striatal VMAT2 and DAT binding correlated with striatal DA (rs = 0.83, rs = 0.80, respectively, both with n = 14, p<0.001) but only with nigra TH-ir cells when nigral cell loss was 50% or less (r = 0.93, n = 8, p = 0.001 and r = 0.91, n = 8, p = 0.002 respectively). Reduction of VMAT2 and DAT striatal specific binding sites strongly correlated with each other (r = 0.93, n = 14, p<0.0005). These similar changes in DAT and VMAT2 binding sites in the striatal terminal fields of the surviving nigrostriatal neurons demonstrate that there is no differential regulation of these two sites at 2 months after MPTP infusion
MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain
Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
- …