27 research outputs found
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis
Recommended from our members
Defining an ageing-related pathology, disease or syndrome: International Consensus Statement
Around the world, individuals are living longer, but an increased average lifespan does not always equate to an increased health span. With advancing age, the increased prevalence of ageing-related diseases can have a significant impact on health status, functional capacity and quality of life. It is therefore vital to develop comprehensive classification and staging systems for ageing-related pathologies, diseases and syndromes. This will allow societies to better identify, quantify, understand and meet the healthcare, workforce, well-being and socioeconomic needs of ageing populations, whilst supporting the development and utilisation of interventions to prevent or to slow, halt or reverse the progression of ageing-related pathologies. The foundation for developing such classification and staging systems is to define the scope of what constitutes an ageing-related pathology, disease or syndrome. To this end, a consensus meeting was hosted by the International Consortium to Classify Ageing-Related Pathologies (ICCARP), on February 19, 2024, in Cardiff, UK, and was attended by 150 recognised experts. Discussions and voting were centred on provisional criteria that had been distributed prior to the meeting. The participants debated and voted on these. Each criterion required a consensus agreement of ≥ 70% for approval. The accepted criteria for an ageing-related pathology, disease or syndrome were (1) develops and/or progresses with increasing chronological age; (2) should be associated with, or contribute to, functional decline or an increased susceptibility to functional decline and (3) evidenced by studies in humans. Criteria for an ageing-related pathology, disease or syndrome have been agreed by an international consortium of subject experts. These criteria will now be used by the ICCARP for the classification and ultimately staging of ageing-related pathologies, diseases and syndromes
Activity profiling of papain-like cysteine proteases in plants
Transcriptomic and proteomic technologies are generating a wealth of data that are frequently used by scientists to predict the function of proteins based on their expression or presence. However, activity of many proteins, such as transcription factors, kinases, and proteases, depends on posttranslational modifications that frequently are not detected by these technologies. Therefore, to monitor activity of proteases rather than their abundance, we introduce protease activity profiling in plants. This technology is based on the use of biotinylated, irreversible protease inhibitors that react with active proteases in a mechanism-based manner. Using a biotinylated derivative of the Cys protease inhibitor E-64, we display simultaneous activities of many papain-like Cys proteases in extracts from various tissues and from different plant species. Labeling is pH dependent, stimulated with reducing agents, and inhibited specifically by Cys protease inhibitors but not by inhibitors of other protease classes. Using one-step affinity capture of bintinylated proteases followed by sequencing mass spectrometry, we identified proteases that include xylem-specific XCP2, desiccation-induced RD21, and cathepsin B- and aleurain-like proteases. Together, these results demonstrate that this technology can identify differentially activated proteases and/or characterize the activity of a particular protease within complex mixtures
Synthesis of thermoresponsive poly(2-oxazoline) polymers for biomedical applications
Item does not contain fulltex
Solid-phase synthesis of succinylhydroxamate peptides:Functionalized matrix metalloproteinase inhibitors
A novel solid-phase synthesis strategy toward succinylhydroxamate peptides, using an appropriately protected hydroxamate building block, is described. Rapid and efficient access is gained to amine-functionalized peptides, which can be decorated with, for instance, a fluorescent label. In addition, we demonstrate an on-resin synthesis of a biotinylated photoactivatable hydroxamate peptide, which can be used as an activity-based probe for matrix metalloproteinases and ADAMs
Genetically engineered silk-collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response
Genetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2SH48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications
Comparison of Imaging Strategies with Conditional Contrast-enhanced CT and Unenhanced MR Imaging in Patients Suspected of Having Appendicitis: A Multicenter Diagnostic Performance Study
Purpose: To compare the diagnostic performance of imaging strategies with magnetic resonance (MR) imaging and computed tomographic (CT) imaging in adult patients suspected of having appendicitis. Materials and Methods: Institutional review board approval was obtained prior to study initiation, and patients gave written informed consent. In a multicenter diagnostic performance study, adults suspected of having appendicitis were prospectively identified in the emergency department. Consenting patients underwent ultrasonography (US) and subsequent contrast-enhanced CT if US imaging yielded negative or inconclusive results. Additionally, all patients underwent unenhanced MR imaging, with the Results: Between March and September 2010, 229 US, 115 CT, and 223 MR examinations were performed in 230 patients (median age, 35 years; 40% men). Appendicitis was the final diagnosis in 118 cases. Conditional and immediate MR imaging had sensitivity and specificity comparable to that of conditional CT, which resulted in 3% (three of 118; 95% confidence interval [CI]: 1%, 7%) missed appendicitis, and 8% (10 of 125; 95% CI: 4%, 14%) false-positives. Conditional MR missed appendicitis in 2% (two o Conclusion: The accuracy of conditional or immediate MR imaging was similar to that of conditional CT in patients suspected of having appendicitis, which implied that strategies with MR imaging may replace conditional CT for appendicitis detection. (C) RSNA, 201
Genetically engineered silk-collagen-like copolymer for biomedical applications: production, characterization and evaluation of cellular response
Item does not contain fulltextGenetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2S(H)48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications
