27 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Activity profiling of papain-like cysteine proteases in plants

    No full text
    Transcriptomic and proteomic technologies are generating a wealth of data that are frequently used by scientists to predict the function of proteins based on their expression or presence. However, activity of many proteins, such as transcription factors, kinases, and proteases, depends on posttranslational modifications that frequently are not detected by these technologies. Therefore, to monitor activity of proteases rather than their abundance, we introduce protease activity profiling in plants. This technology is based on the use of biotinylated, irreversible protease inhibitors that react with active proteases in a mechanism-based manner. Using a biotinylated derivative of the Cys protease inhibitor E-64, we display simultaneous activities of many papain-like Cys proteases in extracts from various tissues and from different plant species. Labeling is pH dependent, stimulated with reducing agents, and inhibited specifically by Cys protease inhibitors but not by inhibitors of other protease classes. Using one-step affinity capture of bintinylated proteases followed by sequencing mass spectrometry, we identified proteases that include xylem-specific XCP2, desiccation-induced RD21, and cathepsin B- and aleurain-like proteases. Together, these results demonstrate that this technology can identify differentially activated proteases and/or characterize the activity of a particular protease within complex mixtures

    Solid-phase synthesis of succinylhydroxamate peptides:Functionalized matrix metalloproteinase inhibitors

    No full text
    A novel solid-phase synthesis strategy toward succinylhydroxamate peptides, using an appropriately protected hydroxamate building block, is described. Rapid and efficient access is gained to amine-functionalized peptides, which can be decorated with, for instance, a fluorescent label. In addition, we demonstrate an on-resin synthesis of a biotinylated photoactivatable hydroxamate peptide, which can be used as an activity-based probe for matrix metalloproteinases and ADAMs

    Genetically engineered silk-collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response

    No full text
    Genetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2SH48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications

    Comparison of Imaging Strategies with Conditional Contrast-enhanced CT and Unenhanced MR Imaging in Patients Suspected of Having Appendicitis: A Multicenter Diagnostic Performance Study

    No full text
    Purpose: To compare the diagnostic performance of imaging strategies with magnetic resonance (MR) imaging and computed tomographic (CT) imaging in adult patients suspected of having appendicitis. Materials and Methods: Institutional review board approval was obtained prior to study initiation, and patients gave written informed consent. In a multicenter diagnostic performance study, adults suspected of having appendicitis were prospectively identified in the emergency department. Consenting patients underwent ultrasonography (US) and subsequent contrast-enhanced CT if US imaging yielded negative or inconclusive results. Additionally, all patients underwent unenhanced MR imaging, with the Results: Between March and September 2010, 229 US, 115 CT, and 223 MR examinations were performed in 230 patients (median age, 35 years; 40% men). Appendicitis was the final diagnosis in 118 cases. Conditional and immediate MR imaging had sensitivity and specificity comparable to that of conditional CT, which resulted in 3% (three of 118; 95% confidence interval [CI]: 1%, 7%) missed appendicitis, and 8% (10 of 125; 95% CI: 4%, 14%) false-positives. Conditional MR missed appendicitis in 2% (two o Conclusion: The accuracy of conditional or immediate MR imaging was similar to that of conditional CT in patients suspected of having appendicitis, which implied that strategies with MR imaging may replace conditional CT for appendicitis detection. (C) RSNA, 201

    Genetically engineered silk-collagen-like copolymer for biomedical applications: production, characterization and evaluation of cellular response

    No full text
    Item does not contain fulltextGenetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2S(H)48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications
    corecore