77 research outputs found
Anterior pituitary cell networks
Both endocrine and non-endocrine cells of the pituitary gland are organized into structural and functional
networks which are formed during embryonic development but which may be modified throughout life.
Structural mapping of the various endocrine cell types has highlighted the existence of distinct network
motifs and relationships with the vasculature which may relate to temporal differences in their output.
Functional characterization of the network activity of growth hormone and prolactin cells has revealed a
role for cell organization in gene regulation, the plasticity of pituitary hormone output and remarkably
the ability to memorize altered demand. As such, the description of these endocrine cell networks alters
the concept of the pituitary from a gland which simply responds to external regulation to that of an oscillator
which may memorize information and constantly adapt its coordinated networks’ responses to the
flow of hypothalamic inputs
An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks
Human cutaneous leishmaniasis (CL) has previously been reported in West Africa, but more recently, sporadic reports of CL have increased. Leishmania major has been identified from Mauritania, Senegal, Mali, and Burkina Faso. Three zymodemes (MON-26, MON-117, and MON-74, the most frequent) have been found. The geographic range of leishmaniasis is limited by the sand fly vector, its feeding preferences, and its capacity to support internal development of specific species of Leishmania. The risk of acquiring CL has been reported to increase considerably with human activity and epidemics of CL have been associated with deforestation, road construction, wars, or other activities where humans intrude the habitat of the vector. In the Ho Municipality in the Volta Region of Ghana, a localised outbreak of skin ulcers, possibly CL, was noted in 2003 without any such documented activity. This outbreak was consistent with CL as evidenced using various methods including parasite identification, albeit, in a small number of patients with ulcers
Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori
Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction
Dietary Essential Amino Acids Affect the Reproduction of the Keystone Herbivore Daphnia pulex
Recent studies have indicated that nitrogen availability can be an important determinant of primary production in freshwater lakes and that herbivore growth can be limited by low dietary nitrogen availability. Furthermore, a lack of specific essential nitrogenous biochemicals (such as essential amino acids) might be another important constraint on the fitness of consumers. This might be of particular importance for cladoceran zooplankton, which can switch between two alternative reproductive strategies – the production of subitaneously developing and resting eggs. Here, we hypothesize that both the somatic growth and the type of reproduction of the aquatic keystone herbivore Daphnia is limited by the availability of specific essential amino acids in the diet. In laboratory experiments, we investigated this hypothesis by feeding a high quality phytoplankton organism (Cryptomonas) and a green alga of moderate nutritional quality (Chlamydomonas) to a clone of Daphnia pulex with and without the addition of essential amino acids. The somatic growth of D. pulex differed between the algae of different nutritional quality, but not dependent on the addition of dissolved amino acids. However, in reproduction experiments, where moderate crowding conditions at saturating food quantities were applied, addition of the essential amino acids arginine and histidine (but not lysine and threonine) increased the total number and the developmental stage of subitaneous eggs. While D. pulex did not produce resting eggs on Cryptomonas, relatively high numbers of resting eggs were released on Chlamydomonas. When arginine and histidine were added to the green algal diet, the production of resting eggs was effectively suppressed. This demonstrates the high, but previously overlooked importance of single essential amino acids for the reproductive strategy of the aquatic keystone herbivore Daphnia
Highly Active Microbial Phosphoantigen Induces Rapid yet Sustained MEK/Erk- and PI-3K/Akt-Mediated Signal Transduction in Anti-Tumor Human γδ T-Cells
BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+) T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+) TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vgamma9(+) T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Membrane Cholesterol Regulates Lysosome-Plasma Membrane Fusion Events and Modulates Trypanosoma cruzi Invasion of Host Cells
Trypanosoma cruzi, is the etiological agent of a neglected tropical malady known as Chagas' disease, which affects about 8 million people in Latin America. 30–40% of affected individuals develop a symptomatic chronic infection, with cardiomyopathy being the most prevalent condition. T. cruzi utilizes an interesting strategy for entering cells: T. cruzi enhances intracellular calcium levels, which in turn trigger the exocytosis of lysosomal contents. Lysosomes then donate their membrane for the formation of the parasitophorous vacuole. Membrane rafts, cholesterol-enriched microdomains in the host cell plasma membrane, have also been implicated in T. cruzi invasion process. Since both plasma membrane and lysosomes collaborate in parasite invasion, we decided to study the importance of these membrane domains for lysosomal recruitment and fusion during T. cruzi invasion into host cells. Our results show that drug dependent depletion of plasma membrane cholesterol changes raft organization and induces excessive lysosome exocytosis in the earlier stages of treatment, leading to a depletion of lysosomes near the cell cortex, which in turn compromises T. cruzi invasion. Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events of pre-docked lysosomes, reducing lysosome availability at the cell cortex and consequently compromising T. cruzi infection
P2 receptors in atherosclerosis and postangioplasty restenosis
Atherosclerosis is an immunoinflammatory process that involves complex interactions between the vessel wall and blood components and is thought to be initiated by endothelial dysfunction [Ross (Nature 362:801–09, 1993); Fuster et al. (N Engl J Med 326:242–50, 1992); Davies and Woolf (Br Heart J 69:S3–S11, 1993)]. Extracellular nucleotides that are released from a variety of arterial and blood cells [Di Virgilio and Solini (Br J Pharmacol 135:831–42, 2002)] can bind to P2 receptors and modulate proliferation and migration of smooth muscle cells (SMC), which are known to be involved in intimal hyperplasia that accompanies atherosclerosis and postangioplasty restenosis [Lafont et al. (Circ Res 76:996–002, 1995)]. In addition, P2 receptors mediate many other functions including platelet aggregation, leukocyte adherence, and arterial vasomotricity. A direct pathological role of P2 receptors is reinforced by recent evidence showing that upregulation and activation of P2Y2 receptors in rabbit arteries mediates intimal hyperplasia [Seye et al. (Circulation 106:2720–726, 2002)]. In addition, upregulation of functional P2Y receptors also has been demonstrated in the basilar artery of the rat double-hemorrhage model [Carpenter et al. (Stroke 32:516–22, 2001)] and in coronary artery of diabetic dyslipidemic pigs [Hill et al. (J Vasc Res 38:432–43, 2001)]. It has been proposed that upregulation of P2Y receptors may be a potential diagnostic indicator for the early stages of atherosclerosis [Elmaleh et al. (Proc Natl Acad Sci U S A 95:691–95, 1998)]. Therefore, particular effort must be made to understand the consequences of nucleotide release from cells in the cardiovascular system and the subsequent effects of P2 nucleotide receptor activation in blood vessels, which may reveal novel therapeutic strategies for atherosclerosis and restenosis after angioplasty
- …