25 research outputs found

    Atrial Myopathy

    Get PDF
    This paper discusses the evolving concept of atrial myopathy by presenting how it develops and how it affects the properties of the atria. It also reviews the complex relationships among atrial myopathy, atrial fibrillation (AF), and stroke. Finally, it discusses how to apply the concept of atrial myopathy in the clinical setting—to identify patients with atrial myopathy and to be more selective in anticoagulation in a subset of patients with AF. An apparent lack of a temporal relationship between episodes of paroxysmal AF and stroke in patients with cardiac implantable electronic devices has led investigators to search for additional factors that are responsible for AF-related strokes. Multiple animal models and human studies have revealed a close interplay of atrial myopathy, AF, and stroke via various mechanisms (e.g., aging, inflammation, oxidative stress, and stretch), which, in turn, lead to fibrosis, electrical and autonomic remodeling, and a pro-thrombotic state. The complex interplay among these mechanisms creates a vicious cycle of everworsening atrial myopathy and a higher risk of more sustained AF and strokes. By highlighting the importance of atrial myopathy and the risk of strokes independent of AF, this paper reviews the methods to identify patients with atrial myopathy and proposes a way to incorporate the concept of atrial myopathy to guide anticoagulation in patients with AF.S

    A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources

    Get PDF
    KEY POINTS: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-specific genotype-phenotype relationships, as well as cell-to-cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole-cell model of iPSC-CMs, composed of single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC-CMs This framework links molecular mechanisms to cellular-level outputs by revealing unique subsets of model parameters linked to known iPSC-CM phenotypes ABSTRACT: There is a profound need to develop a strategy for predicting patient-to-patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient-specific proclivity to cardiac disease utilizes induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). A major strength of this approach is that iPSC-CMs contain donor genetic information and therefore capture patient-specific genotype-phenotype relationships. A cited detriment of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We postulated, however, that cell-to-cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole-cell model of iPSC-CMs composed of simple model components comprising ion channel models with single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally-observed variability in the ionic currents. The resulting population of cellular models predicts robust inter-subject variability in iPSC-CMs. This approach links molecular mechanisms to known cellular-level iPSC-CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers.S

    Anatomical targets and expected outcomes of catheter-based ablation of atrial fibrillation in 2020.

    Get PDF
    Anatomical-based approaches, targeting either pulmonary vein isolation (PVI) or additional extra PV regions, represent the most commonly used ablation treatments in symptomatic patients with atrial fibrillation (AF) recurrences despite antiarrhythmic drug therapy. PVI remains the main anatomical target during catheter-based AF ablation, with the aid of new technological advances as contact force monitoring to increase safety and effective radiofrequency (RF) lesions. Nowadays, cryoballoon ablation has also achieved the same level of scientific evidence in patients with paroxysmal AF undergoing PVI. In parallel, electrical isolation of extra PV targets has progressively increased, which is associated with a steady increase in complex cases undergoing ablation. Several atrial regions as the left atrial posterior wall, the vein of Marshall, the left atrial appendage, or the coronary sinus have been described in different series as locations potentially involved in AF initiation and maintenance. Targeting these regions may be challenging using conventional point-by-point RF delivery, which has opened new opportunities for coadjuvant alternatives as balloon ablation or selective ethanol injection. Although more extensive ablation may increase intraprocedural AF termination and freedom from arrhythmias during the follow-up, some of the targets to achieve such outcomes are not exempt of potential severe complications. Here, we review and discuss current anatomical approaches and the main ablation technologies to target atrial regions associated with AF initiation and maintenance.This work was supported by the European Regional Development Fund, the Spanish Ministry of Science and Innovation (SAF2016- 80324-R), and the Fundación Interhospitalaria para la Investigación Cardiovascular (FIC). The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Spanish Ministry of Science and Innovation and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Giulio La Rosa has received a fellowship grant from the joint program between the Heart Rhythm Association of the Spanish Society of Cardiology (ARC) and CNIC.S

    Transcriptome and proteome mapping in the sheep atria reveal molecular featurets of atrial fibrillation progression.

    Get PDF
    Atrial fibrillation (AF) is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. There is a clear demand for more inclusive and large-scale approaches to understand the molecular drivers responsible for AF, as well as the fundamental mechanisms governing the transition from paroxysmal to persistent and permanent forms. In this study, we aimed to create a molecular map of AF and find the distinct molecular programmes underlying cell type-specific atrial remodelling and AF progression. We used a sheep model of long-standing, tachypacing-induced AF, sampled right and left atrial tissue, and isolated cardiomyocytes (CMs) from control, intermediate (transition), and late time points during AF progression, and performed transcriptomic and proteome profiling. We have merged all these layers of information into a meaningful three-component space in which we explored the genes and proteins detected and their common patterns of expression. Our data-driven analysis points at extracellular matrix remodelling, inflammation, ion channel, myofibril structure, mitochondrial complexes, chromatin remodelling, and genes related to neural function, as well as critical regulators of cell proliferation as hallmarks of AF progression. Most important, we prove that these changes occur at early transitional stages of the disease, but not at later stages, and that the left atrium undergoes significantly more profound changes than the right atrium in its expression programme. The pattern of dynamic changes in gene and protein expression replicate the electrical and structural remodelling demonstrated previously in the sheep and in humans, and uncover novel mechanisms potentially relevant for disease treatment. Transcriptomic and proteomic analysis of AF progression in a large animal model shows that significant changes occur at early stages, and that among others involve previously undescribed increase in mitochondria, changes to the chromatin of atrial CMs, and genes related to neural function and cell proliferation.This work was supported by the Spanish government (BFU2017-84914-P to M.M.; FPI Fellowship to A.A.-F.; FPU Fellowship to R.R.), and in part by grants to J.J. from the National Heart, Lung and Blood Institute (R01 grant HL122352 NIH/NHLBI), the Leducq Foundation (Transatlantic Network of Excellence Program on Structural Alterations in the Myocardium and the Substrate for Cardiac Fibrillation), and the University of Michigan Health System–Peking University Health Science Center Joint Institute for Translational and Clinical Research (UMHS-PUHSC; project: Molecular Mechanisms of Fibrosis and the Progression from Paroxysmal to Persistent Atrial Fibrillation). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors

    Get PDF
    Cardiac fibroblasts (CFs) play critical roles in heart development, homeostasis, and disease. The limited availability of human CFs from native heart impedes investigations of CF biology and their role in disease. Human pluripotent stem cells (hPSCs) provide a highly renewable and genetically defined cell source, but efficient methods to generate CFs from hPSCs have not been described. Here, we show differentiation of hPSCs using sequential modulation of Wnt and FGF signaling to generate second heart field progenitors that efficiently give rise to hPSC-CFs. The hPSC-CFs resemble native heart CFs in cell morphology, proliferation, gene expression, fibroblast marker expression, production of extracellular matrix and myofibroblast transformation induced by TGFβ1 and angiotensin II. Furthermore, hPSC-CFs exhibit a more embryonic phenotype when compared to fetal and adult primary human CFs. Co-culture of hPSC-CFs with hPSC-derived cardiomyocytes distinctly alters the electrophysiological properties of the cardiomyocytes compared to co-culture with dermal fibroblasts. The hPSC-CFs provide a powerful cell source for research, drug discovery, precision medicine, and therapeutic applications in cardiac regeneration.J.L.C. received funding from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Fundação de Amparo à Pesquisa do Distrito Federal. The work was funded by NIH R01 HL129798 (T.J.K.); NIH U01 HL134764 (T.J.K.); S10RR025644 (T.J.K.); and the UW Institute for Clinical and Translational Research, grant UL1TR000427, from the Clinical and Translational Science Award of the NCATS/NIH.S

    Extracellular Kir2.1C122Y Mutant Upsets Kir2.1-PIP2 Bonds and Is Arrhythmogenic in Andersen-Tawil Syndrome.

    Get PDF
    BACKGROUND Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.The authors thank the Centro Nacional de Investigaciones Cardiovasculares (CNIC) Viral Vectors Unit for producing the adeno-associated virus serotype 9. Confocal experiments were conducted at the CNIC Microscopy and Dynamic Imaging Unit. The authors thank the CNIC Bioinformatics Unit for generating the in silico homology modeling simulations, F-function analysis, and helpful discussions. The authors also thank the Centro de Supercomputación de Galicia for the use of the Finis Terrae III supercomputer to perform molecular dynamics studies. The CNIC was supported by the Instituto de Salud Carlos III, the Ministerio de Ciencia, Innovación y Universidades, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIU/AEI/10.13039/501100011033). This work was supported by the National heart, Lung and Blood Institute under National Institutes of Health (NIH) grant R01HL163943; the La Caixa Banking Foundation project code HR18-00304 (grant LCF/PR/HR19/52160013); grants PI-FIS-2020, PI20/01220, PI-FIS-2023, and PI23/01039 from the Instituto de Salud Carlos III and cofunded by the Fondo Europeo de Desarrollo Regional (FEDER) and the European Union, respectively; grants PID2020-116935RB-I00 and BFU2016-75144-R funded by MICIU/AEI/10.13039/501100011033; the Fundación La Marató de TV3 (736/C/2020) amb el suport de la Fundació La Marató de TV3; the CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Cardiovasculares (grant CB16/11/00458); the European Union’s Horizon 2020 grant agreement GA-965286; and the Program S2022/BMD7229-CM ARCADIACM funded by the Comunidad de Madrid to J. Jalife; grant PID2021-126423OB-C22 (to M. Martín-Martínez) funded by MICIU/AEI/10.13039/501100011033; and European Regional Development Fund (ERDF) grant PID2022-137214OB-C22 (to M. Gutierrez-Rodríguez) funded by MICIU/AEI/10.13039/501100011033. The imaging studies were performed in the TRIMA@CNIC (Infraestructura de Imagen Traslacional Avanzada del CNIC) node of the ICTS ReDIB (Infraestructuras Científicas y Técnicas Singulares: Red Distribuida de Imagen Biomédica) grant ICTS-2018- 04-CNIC-16 funded by MICIU/AEI/10.13039/501100011033 and ERDF, and project EQC2018-005070-P funded by MICIU/AEI/10.13039/501100011033 and FEDER. A.I. Moreno-Manuel holds an formación profesional universitaria (FPU) contract (FPU20/01569) from the Ministerio de Universidades. J.M. Ruiz Robles holds an FPU contract (FPU22/03253) from the Ministerio de Universidades. L.K. Gutiérrez holds an FPI contract (PRE2018-083530) from the Ministerio de Economía y Competitividad de España cofunded by the Fondo Social Europeo, attached to project SEV-2015-0505-18-2. I. Martínez-Carrascoso holds a PFIS (Contratos predoctorales de formación en investigación en salud) contract (FI21/00243) funded by Instituto de Salud Carlos III and the Fondo Social Europeo Plus cofunded by the European Union. M.L. Vera-Pedrosa held contract PEJD-2019-PRE/BMD15982 funded by the Consejería de Educación e Investigación de la Comunidad de Madrid y Fondo Social Europeo.S

    Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status

    Full text link
    Background: Early prognosis in comatose survivors after cardiac arrest due to ventricular fibrillation (VF) is unreliable, especially in patients undergoing mild hypothermia. We aimed at developing a reliable risk-score to enable early prediction of cerebral performance and survival. Methods: Sixty-one out of 239 consecutive patients undergoing mild hypothermia after cardiac arrest, with eventual return of spontaneous circulation (ROSC), and comatose status on admission fulfilled the inclusion criteria. Background clinical variables, VF time and frequency domain fundamental variables were considered. The primary and secondary outcomes were a favorable neurological performance (FNP) during hospitalization and survival to hospital discharge, respectively. The predictive model was developed in a retrospective cohort (n = 32; September 2006 September 2011, 48.5 ± 10.5 months of follow-up) and further validated in a prospective cohort (n = 29; October 2011 July 2013, 5 ± 1.8 months of follow-up). Results: FNP was present in 16 (50.0%) and 21 patients (72.4%) in the retrospective and prospective cohorts, respectively. Seventeen (53.1%) and 21 patients (72.4%), respectively, survived to hospital discharge. Both outcomes were significantly associated (p < 0.001). Retrospective multivariate analysis provided a prediction model (sensitivity = 0.94, specificity = 1) that included spectral dominant frequency, derived power density and peak ratios between high and low frequency bands, and the number of shocks delivered before ROSC. Validation on the prospective cohort showed sensitivity = 0.88 and specificity = 0.91. A model-derived risk-score properly predicted 93% of FNP. Testing the model on follow-up showed a c-statistic ≥ 0.89. Conclusions: A spectral analysis-based model reliably correlates time-dependent VF spectral changes with acute cerebral injury in comatose survivors undergoing mild hypothermia after cardiac arrest.the CNIC is supported by the Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation.Filgueiras-Rama, D.; Calvo Saiz, CJ.; Salvador-Montañés, Ó.; Cádenas, R.; Ruiz-Cantador, J.; Armada, E.; Rey, JR.... (2015). Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status. International Journal of Cardiology. 186:250-258. doi:10.1016/j.ijcard.2015.03.074S25025818

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/
    corecore