72 research outputs found

    Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disorder characterised by selective loss of motor neurons leading to fatal paralysis. Current therapeutic approaches are limited in their effectiveness. Substantial advances in understanding ALS disease mechanisms has come from the identification of pathogenic mutations in dominantly inherited familial ALS (FALS). We previously reported a coding mutation in D-amino acid oxidase (DAOR199W) associated with FALS. DAO metabolises D-serine, an essential co-agonist at the N-Methyl-D-aspartic acid glutamate receptor subtype (NMDAR). Using primary motor neuron cultures or motor neuron cell lines we demonstrated that expression of DAOR199W, promoted the formation of ubiquitinated protein aggregates, activated autophagy and increased apoptosis. The aim of this study was to characterise the effects of DAOR199W in vivo, using transgenic mice overexpressing DAOR199W. Marked abnormal motor features, e.g. kyphosis, were evident in mice expressing DAOR199W, which were associated with a significant loss (19%) of lumbar spinal cord motor neurons, analysed at 14 months. When separated by gender, this effect was greater in females (26%; p< 0.0132). In addition, we crossed the DAOR199W transgenic mouse line with the SOD1G93A mouse model of ALS to determine whether the effects of SOD1G93A were potentiated in the double transgenic line (DAOR199W/SOD1G93A). Although overall survival was not affected, onset of neurological signs was significantly earlier in female double transgenic animals than their female SOD1G93A littermates (125 days vs 131 days, P = 0.0239). In summary, some significant in vivo effects of DAOR199W on motor neuron function (i.e. kyphosis and loss of motor neurons) were detected which were most marked in females and could contribute to the earlier onset of neurological signs in double transgenic females compared to SOD1G93A littermates, highlighting the importance of recognizing gender effects present in animal models of ALS

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons

    Get PDF
    Our understanding of the molecular processes underlying Alzheimer’s disease (AD) is still limited, hindering the development of effective treatments, and highlighting the need for human-specific models. Advances in identifying components of the amyloid cascade are progressing, including the role of the protein clusterin in mediating β-amyloid (Aβ) toxicity. Mutations in the clusterin gene (CLU), a major genetic AD risk factor, are known to have important roles in Aβ processing. Here we investigate how CLU mediates Aβ-driven neurodegeneration in human induced pluripotent stem cell (iPSC)-derived neurons. We generated a novel CLU-knockout iPSC line by CRISPR/Cas9-mediated gene editing to investigate Aβ-mediated neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPSCs. We measured response to Aβ using an imaging assay and measured changes in gene expression using qPCR and RNA sequencing. In wild type neurons imaging indicated that neuronal processes degenerate following treatment with Aβ25-35 peptides and Aβ1-42 oligomers, in a dose dependent manner, and that intracellular levels of clusterin are increased following Aβ treatment. However, in CLU knockout neurons Aβ exposure did not affect neurite length, suggesting that clusterin is an important component of the amyloid cascade. Transcriptomic data were analyzed to elucidate the pathways responsible for the altered response to Aβ in neurons with the CLU deletion. Four of the five genes previously identified as downstream to Aβ and Dickkopf-1 (DKK1) proteins in an Aβ-driven neurotoxic pathway in rodent cells were also dysregulated in human neurons with the CLU deletion. AD and lysosome pathways were the most significantly dysregulated pathways in the CLU knockout neurons, and pathways relating to cytoskeletal processes were most dysregulated in Aβ treated neurons. The absence of neurodegeneration in the CLU knockout neurons in response to Aβ compared to the wild type neurons supports the role of clusterin in Aβ-mediated AD pathogenesis

    The effect of using an interactive booklet on childhood respiratory tract infections in consultations: Study protocol for a cluster randomised controlled trial in primary care

    Get PDF
    Background: Respiratory tract infections in children result in more primary care consultations than any other acute condition, and are the most common reason for prescribing antibiotics (which are largely unnecessary). About a fifth of children consult again for the same illness episode. Providing parents with written information on respiratory tract infections may result in a reduction in re-consultation rates and antibiotic prescribing for these illnesses. Asking clinicians to provide and discuss the information during the consultation may enhance effectiveness. This paper outlines the protocol for a study designed to evaluate the use of a booklet on respiratory tract infections in children within primary care consultations. Methods/Design: This will be a cluster randomised controlled trial. General practices will be randomised to provide parents consulting because their child has an acute respiratory tract infection with either an interactive booklet, or usual care. The booklet provides information on the expected duration of their child's illness, the likely benefits of various treatment options, signs and symptoms that should prompt re-consultation, and symptomatic treatment advice. It has been designed for use within the consultation and aims to enhance communication through the use of specific prompts. Clinicians randomised to using the interactive booklet will receive online training in its use. Outcomes will be assessed via a telephone interview with the parent two weeks after first consulting. The primary outcome will be the proportion of children who re-consult for the same illness episode. Secondary outcomes include: antibiotic use, parental satisfaction and enablement, and illness costs. Consultation rates for respiratory tract infections for the subsequent year will be assessed by a review of practice notes. Discussion: Previous studies in adults and children have shown that educational interventions can result in reductions in re-consultation rates and use of antibiotics for respiratory tract infections. This will be the first study to determine whether providing parents with a booklet on respiratory tract infections in children, and discussing it with them during the consultation, reduces re-consultations and antibiotic use for the same illness without reducing satisfaction with care. Trial registration: Current Controlled Trials ISRCTN46104365 </p

    An Empirical Contribution to the Debate on Corruption, Democracy and Environmental Policy

    Full text link

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    Get PDF
    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass
    corecore