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Abstract
Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies

have identified few genetic risk factors. Epidemiological studies suggest associations

between BMD and several traits and diseases, but the nature of the suggestive comorbidity

is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery

Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with

BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic

traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 dia-

betes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipo-

protein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel

independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at condi-

tional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes

validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt

signaling pathway and bone metabolism. The results provide new insight into genetic mech-

anisms of variability in BMD, and a better understanding of the genetic underpinnings of

clinical comorbidity.
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Introduction
Low bone mineral density (BMD) is an important human phenotype predisposing for bone
fractures [1]. Primary and secondary osteoporosis, (defined as BMD less than 2.5 SD of young
controls) occur frequently in all populations and lead to high risk for fractures and lasting func-
tional impairment, resulting in long term personal suffering and high social costs [2]. Several
lines of evidence suggest an overlap between BMD/osteoporosis and several traits related to
metabolism and cardiovascular disease (CVD): -presence of osteoporosis is associated with a
~4-fold increase in risk for an acute cardiovascular event [3].—BMD loss is associated with
increased mortality from coronary heart disease and pulmonary diseases [4]- an inverse rela-
tionship is found between high-density lipoprotein (HDL) cholesterol and BMD [5–9]. The
relationship between low-density lipoprotein (LDL) cholesterol and BMD appears to be less
profound, but a positive association has been found in some studies [5,10]. While not all stud-
ies have identified a relationship between Triglycerides (TG) and BMD, a few larger studies
have shown an inverse relationship [7,8,10]. Furthermore, statins are widely used as choles-
terol-lowering drugs, and a recent meta-analysis indicates that statins may help improve and
maintain BMD at the lumbar spine, hip and femoral neck, especially in Caucasians and Asians
[11].

Blood pressure and anthropometric measures have also been found to be associated with
BMD in epidemiological studies. Lee et al. [12]. found that both high systolic blood pressure
(SBP) and high diastolic blood pressure (DBP) were associated with low femoral BMD, but not
with lumbar BMD in a total study sample consisting of 8439 men and postmenopausal women
aged 50 years and older. A study of 586 postmenopausal Turkish women also showed a signifi-
cant correlation between SBP and femur BMD [13]. It should be noted that several studies also
failed to find a link between blood pressure and osteoporosis, e.g. [14].

There is also clinical and epidemiological evidence for association between BMD and meta-
bolic traits. As reviewed [15–17], it is well documented that Type 1 Diabetes (T1D) and Type 2
Diabetes (T2D) increase risk of fracture. Also, it is well established that a major part of the
increased fracture risk in T1D is caused by reduced BMD, due to defects in osteoblast differen-
tiation and activity as well as contributing factors including accumulation of advanced glyca-
tion end products (AGEs)[18]. Thus, it is plausible that the microenvironment in which B cells
develop, the bone marrow including osteoblasts, is influenced by genetic factors that affect
both an autoimmune disease like T1D and osteoporosis.

The relationship between T2D and BMD or fracture is more complicated, since the effect
on bone microstructure appears to be more important. However, Sayers et al. [19] found an
inverse association between insulin and both periosteal circumference and cortical BMD in
adolescents after adjusting for all body composition variables, indicating that insulin levels and
diabetes have effects on bone metabolism. In adults T2D has been associated with high BMD
[16,17] and Billings et al. [20] identified Integrin, Alpha 1 (ITGA1) as a new locus candidate,
capable of influencing both fasting glucose and BMD, thus pointing to a possible explanation
for the epidemiological observations linking T2D diabetes and BMD/osteoporosis. The previ-
ous concept, that obesity is protective for osteoporosis is weakened since several studies have
shown a negative correlation between WHR and BMD [21–23]. Many of the previous studies
did not take into consideration that DXA measurements are falsely elevated by increased body
fat and that the associated increase in bone marrow adiposity occurs at the expense of bone
[23].

The co-morbidity between BMD and CVD risk factors or metabolic traits have been postu-
lated to be, at least partly, caused by overlapping genes (pleiotropy) [24]. GWAS have identified
several genes and single nucleotide polymorphisms (SNPs) associated with BMD [25], and
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CVD risk factors or metabolic traits, including HDL [26], LDL [26], TG [26], T1D [27], T2D
[28], SBP [29], DBP [29] and WHR [29]. Despite the strong heritable component of BMD, the
genes identified in GWAS so far explain only a small proportion of the variance (‘missing heri-
tability‘) [25]. Due to the polygenic architecture of BMD, a large number of SNPs have associa-
tions too weak to be identified in the currently available cohorts. Thus, pleiotropic enrichment
together with cost-effective analytical methods may identify a larger proportion of SNPs associ-
ated with BMD.

Standard methods to assess genetic pleiotropy have not taken full advantage of the existing
GWAS data and the majority of these studies have focused on the subset of SNPs exceeding a
Bonferroni-corrected threshold of significance for each trait or disorder [30,31]. However, this
Bonferroni–based approach cannot detect SNPs that only reach genome-wide significance in
the combined analysis but do not meet significance cutoffs in the individual phenotype. In the
current study, we applied a recently developed genetic pleiotropy-informed approach for
GWAS to leverage the power of multiple large GWAS of CVD risk factors blood lipids (HDL,
LDL, TG), metabolic disorders (T1D, T2D), blood pressure (SBP, DBP), and waist-hip ratio
(WHR) to identify susceptibility SNPs, and capture more of the polygenic effects in BMD [32–
34]. This novel genetic epidemiological approach is able to take advantage of polygenic pleiot-
ropy among several types of diseases to identify genetic variants with smaller effect sizes, and
thus elucidate the mechanism of variability in BMD. We used summary statistics (p-values and
allele frequencies) from the analysis data (up to 32,961 individuals) in the primary study of
BMD [25] for both femoral neck (FN) and lumbar spine (LS) BMD phenotypes.

Materials and Methods

Participant Samples and Statistical Strategy
The study was approved by the Norwegian Regional Ethical Committee (REK no: 2010/2539)
and conducted according to the Declaration of Helsinki (2000). Written informed consent was
given by participants for their clinical records to be used in this study. We obtained complete
stage 1 GWAS results in the form of summary statistics p-values from public access websites or
through collaboration with investigators (T1D cases and controls from The Type 1 Diabetes
Genetics Consortium, BMD cases and controls from the GEFOS Consortium). There was
some overlap among several of the participants in the anthropometric GWAS and the BMD
GWAS sample (for further details, see S1 Table).

Statistical Analyses
Overall Approach. After applying genomic inflation control, we compute the stratified

empirical cumulative distribution functions (cdfs) of the nominal p-values. Strata are deter-
mined by relative enrichment of pleiotropic SNPs in BMD as a function of increased nominal
p-values in the different associated traits and disorders. Using this stratified methodology, we
construct two-dimensional FDR “look-up” tables (S1 and S2 Figs), with FDR in BMD SNPs
computed conditional on nominal associated phenotypes p-values (conditional FDR). Using
this table we identify loci that are significantly associated with BMD at a conditional FDR level
of 0.01. All p-values were corrected for inflation using the genomic control procedure [35], and
for overlap in samples [36] as previously described [37]. Finally, the SNP gene associations
were validated using information from global transcriptional mapping of bone biopsies from
postmenopausal women [38,39].

Genomic Control. The empirical null distribution in GWAS is affected by global variance
inflation due to population stratification and cryptic relatedness and deflation due to over-cor-
rection of test statistics for polygenic traits by standard genomic control methods. We used the
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same formulism as in Schork et al. [35]. The genomic inflation factor λGC for each phenotype
were estimated based on intergenic SNPs as the median z-score squared divided by the
expected median of a chi-square distribution with one degree of freedom and divided all test
statistics by λGC. We have previously reported that intergenic SNPs, as defined in our annota-
tion protocol (Schork et al, 2013) are deplete of association with>30 complex traits/diseases,
and it seems that this is a generic feature for SNPs in this category. Furthermore, intergenic
SNPs do not show skewed distribution towards small minor allele frequency (MAF) based on
the 1000 Genomes Project (1KGP) [32,33,37].

Conditional Q-Q Plots for Pleiotropic Enrichment. To assess pleiotropic enrichment,
we used Q-Q plot conditional by ‘pleiotropic’ effects as described in detail earlier (Fig 1)
[33,34,37]. For a given associated phenotype, enrichment for pleiotropic signals is present if
the degree of deflection from the expected null line is dependent on SNP associations with the
second phenotype. Specifically, we computed the empirical cumulative distribution of nominal
p-values for a given phenotype for all SNPs and for SNPs with significance levels below the
indicated cut-offs for the other phenotype (–log10(p)� 0,–log10(p)� 1,–log10(p)�2,–log10(p)
�3 corresponding to p< 1, p< 0.1, p< 0.01, p< 0.001, respectively). The nominal p-values
(–log10(p)) are plotted on the y-axis, and the empirical quantiles (–log10(q), where q = 1-cdf
(p)) are plotted on the x-axis. To assess for polygenic effects below the standard GWAS signifi-
cance threshold, we focused the conditional Q-Q plots on SNPs with nominal–log10(p)< 7.3
(corresponding to p> 5x10-8).

Conditional Statistics–Test of Association with BMD. To improve detection of SNPs
associated with BMD, we used a conditional False discovery rate (FDR) approach, leveraging
pleiotropic phenotypes [32–34,37]. Specifically, the conditional FDR of a trait (e.g. BMD) for a
SNP with p-value P1 on a second pleiotropic trait with p-value P2, is computed as the posterior
probability that the SNP is null for the first trait given that the p-values for both phenotypes

Fig 1. Genetic enrichment. Conditional Q-Q plot of nominal versus empirical -log10 p-values (corrected for
inflation) in bone mineral density (BMD, femoral neck) below the standard GWAS threshold of p < 5x10-8 as a
function of significance of association with CVD risk factors, including systolic blood pressure (SBP), diastolic
blood pressure (DBP), high density lipoproteins (HDL) and triglycerides (TG) at the level of -log10(p)� 0 (all
SNPs),–log10(p)� 1,–log10(p)� 2,–log10(p)� 3 corresponding to p� 1, p� 0.1, p� 0.01, p� 0.001,
respectively. Dotted lines indicate the null-hypothesis.

doi:10.1371/journal.pone.0144531.g001
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are as small as or smaller than the observed p-values, FDR(P1jP2) = π0(P2)P1/F(P1jP2), where F
(P1jP2)is the conditional cdf and π0(P2)the conditional proportional of null SNPs for the first
phenotype given that p-value for the second phenotype are P2 or smaller. The values of FDR
(P1jP2) were conservatively estimated by setting π0(P2) equal one and replacing F(P1jP2) by
empirical conditional cdf. The conditional FDR values for BMD on second pleiotropic traits
(denoted by FDRBMD, where the dot denotes a second phenotype) were assigned, based on the
combination of p-value for the SNP correlated to BMD and the associated trait, by interpola-
tion into a 2-D look-up table (S1 and S2 Figs). All SNPs with FDR< 0.01 (-log10(FDR)> 2) in
BMD given the different associated phenotypes were identified. A significance threshold of
FDR< 0.01 corresponds to 1 false positive per 100 reported associations.

Annotation of Novel Loci. Based on 1KGP linkage disequilibrium (LD) structure, signifi-
cant SNPs identified by conditional FDR were clustered into LD blocks at the LD-r2 > 0.2
level. This threshold was chosen since it has been used in a large number of reported GWAS,
thus making our result comparable to previous studies, e.g.[25,39,40]. The blocks were num-
bered as loci # in Table 1 and S2, S3 and S4 Tables and any one block may contain more than
one SNPs. Genes close to each SNPs were obtained from NCBI gene database. Blocks that do
not contain SNPs or close-by genes to SNPs from primary study were deemed as novel loci in
current study (Table 1 and S3 Table). And, loci that contain SNPs or genes from primary study
were considered as replication of primary findings (S2 and S4 Tables for FN and LS BMD,
respectively). The same procedure was applied to both FN BMD and LS BMD phenotypes. To
identify non-overlapping loci between FN BMD and LS BMD, the SNP rs-numbers and gene
symbols for these two phenotypes were compared. Loci containing SNPs with same rs-number
or same genes were considered overlapping.

Conditional FDRManhattan Plots. To illustrate the localization of the genetic markers
associated with BMD given the CVD risk factor effect, we used a ‘Conditional FDR Manhattan
plot’, plotting all SNPs within an LD block in relation to their chromosomal location. As illus-
trated in Fig 2 and S3 Fig, the large points represent the SNPs with FDR< 0.01, whereas the
small points represent the non-significant SNPs. All SNPs without ‘pruning’ (removing all
SNPs with LD-r2 > 0.2 based on 1KGP LD structure) are shown. The strongest signal in each
LD block is marked by larger points with black edges. This was identified by ranking all SNPs
in increasing order, based on the conditional FDR value for BMD, and then removing SNPs in
LD-r2 > 0.2 with any higher ranked SNP. Thus, the selected locus was the most significantly
associated with BMD in each LD block (Fig 2 and S3 Fig).

Validation by Expression Genetics. We looked for expressional association between the
SNP associated genes and BMD in bone biopsies from postmenopausal women (n = 84)
[38,39]. The Iliac biopsies were analyzed with Affymetrix microchips and log2 transformed sig-
nal values were correlated to BMD levels (Table 1, S2 Table). The primary data have been sub-
mitted to the European Bioinformatics Institute (EMBL-EBI; ID: E-MEXP-1618).

Results

Pleiotropic Enrichment-Polygenic Overlap
Conditional Q-Q plots for FN BMD conditioned on nominal p-values of association with T1D,
T2D, SBP, DBP, HDL, LDL, TG andWHR showed enrichment across different levels of signifi-
cance (Fig 1 and S5 Fig). Similar plots for LS BMD are shown in S4 Fig. The earlier departure from
the null line (leftward shift) suggests a greater proportion of true associations for a given nominal
FN BMD p-value (See S1 File for detailed explanation). Successive leftward shifts for decreasing
nominal p-values of a second phenotype indicate that the proportion of non-null effects varies con-
siderably across different levels of association with the comorbidity trait or disease.
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Loci Associated with BMD
To identify SNPs associated with FN BMD, we constructed a “conditional FDR”Manhattan
plot showing the FDR conditional on each of the risk factors (Fig 2). We identified significant
loci associated with FN BMD leveraging the reduced FDR obtained by the associated pheno-
type. To estimate the number of independent loci, we pruned the associated SNPs (removed

Table 1. Novel femoral neck BMD associated genes at conditional FDR <0.01.

Expressed QTL
(Age and BMI adj.)

Loci # SNP Gene symbol Map Loc. BMD
pvalue

BMD
FDR

Min cond
FDR

Waldstats Drivingphenotype Affymetrix ID r

1 rs10779702 RERE 1p36.23 7,78E-08 3,06E-04 1,60E-04 -5.26 HDL 200940_s_at -0.23

6 rs12137389 TESK2 1p32 1,88E-06 4,15E-03 4,01E-03 4.67 HDL 206758_at -0.11

9 rs11809524 COL11A1 1p21 8,21E-07 2,03E-03 1,34E-03 -4.83 SBP 37892_at 0.25

11 rs9309664 PPP1CB 2p23 7,55E-06 1,20E-02 8,22E-03 4.39 HDL 228222_at -0.30

15 rs11675051 TMEM194B 2q32.2 1,46E-06 3,47E-03 1,56E-03 -4.72 SBP 238014_at 0.09

15 rs13005335 NAB1 2q32.3-q33 1,54E-06 3,47E-03 1,56E-03 -4.71 SBP 209272_at 0.05

16 rs12995369 CDK15 2q33.2 1,07E-07 3,69E-04 2,80E-04 -5.2 SBP 1552559_a_at 0.16

17 rs7594560 METTL21A 2q33.3 3,42E-06 5,91E-03 3,74E-03 4.55 HDL 1553743_at -0.11

23 rs4957742 RAB9BP1 5q21.2 2,98E-06 5,91E-03 6,27E-03 -4.58 DBP NA NA

27 rs6583337 FAM20C 7p22.3 3,30E-06 5,91E-03 3,38E-03 4.56 LDL 229438_at 0.18

29 rs2282930 GRB10 7p12.2 5,20E-06 8,40E-03 7,20E-03 4.46 TG 210999_s_at -0.35

32 rs10953178 C7orf76 7q21.3 3,75E-11 6,36E-07 3,53E-07 -6.48 HDL NA NA

32 rs10464592 SHFM1 7q21.3 4,28E-10 2,35E-06 4,07E-06 6.11 SBP 202276_at -0.05

35 rs1670346 PTPRN2/
MIR595

7q36 1,73E-06 3,47E-03 1,80E-03 -4.68 SBP 203030_s_at 0.16

37 rs980299 EYA1 8q13.3 1,18E-07 4,45E-04 3,39E-04 5.19 HDL 214608_s_at -0.03

38 rs13272568 PKIA 8q21.11 1,29E-06 2,90E-03 2,52E-03 4.74 SBP 204612_at -0.35

40 rs665556 KLF4 9q31 6,68E-06 1,00E-02 5,84E-03 4.41 DBP 220266_s_at -0.34

49 rs600231 MALAT1 11q13.1 7,75E-06 1,20E-02 7,60E-03 -4.38 SBP 231735_s_at 0.29

51 rs258415 KLHL42 12p11.22 3,55E-08 1,69E-04 1,43E-04 -5.4 SBP NA NA

53 rs11614913 MIR196A2 12q13.13 4,20E-08 1,69E-04 1,25E-04 5.37 SBP NA NA

54 rs10746070 RIC8B 12q23.3 2,14E-06 4,15E-03 3,13E-03 -4.64 HDL 229637_at 0.04

58 rs7175531 CYP19A1 15q21 2,30E-06 4,96E-03 4,82E-03 -4.63 HDL 240705_at 0.25

58 rs10851498 MIR4713 15q21 2,73E-06 4,96E-03 4,45E-03 -4.59 TG NA NA

61 rs3198697 PDXDC1 16p13.11 1,01E-05 1,44E-02 5,00E-03 4.32 HDL 212053_at 0.08

67 rs199529 NSF 17q21 2,39E-06 4,96E-03 2,55E-03 4.62 SBP 202395_at -0.13

71 rs8090312 NFATC1 18q23 4,54E-06 8,40E-03 6,40E-03 -4.49 T1D 211105_s_at -0.15

74 rs756632 RTDR1/GNAZ 22q11.2 3,39E-06 5,91E-03 4,75E-03 -4.55 HDL 220105_at -0.01

74 rs4820539 RAB36 22q11.2 3,06E-06 5,91E-03 7,44E-03 4.57 HDL 211471_s_at 0.14

Independent complex or single gene loci (LD-r2 < 0.2) with SNP(s) with a conditional FDR (condFDR) < 0.01 in bone mineral density (BMD, Femoral neck)

given the association in other phenotype. We defined the most significant BMD SNP in each LD block based on the minimum condFDR (min condFDR)

for each phenotype. The most significant SNPs in each gene of the LD block are listed and the second phenotype which provides the minimal FDR signal

(Driving phenotype). All loci with SNPs with condFDR < 0.01 were used to define the number of the loci. The following abbreviations were used: Type 1

diabetes (T1D), type 2 diabetes (T2D), systolic blood pressure (SBP), diastolic blood pressure (DBP), low-density lipoproteins (LDL) cholesterol and high-

density lipoproteins (HDL) cholesterol, chromosome location (Map Loc.). BMD FDR values < 0.01 are in bold. Bold r values represent nominally significant

(p<0.05) Pearson correlations. Gene titles and ontology function terms are presented in S5 Table. Wald stats: z-score transformed from p values NA: not

applicable (undetected)

doi:10.1371/journal.pone.0144531.t001
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SNP with LD-r2 > 0.2), and identified a total of 74 independent loci with a conditional
FDR< 0.01 of which 15 were complex loci and 59 single gene loci (marked in Fig 2 by points
with black edges). The 74 loci encompassed 84 different genes. Using the FDR method in FN
BMD alone, 70 loci were identified (bold values in the “BMD-FDR” column, Table 1 and S2
Table). The remaining 4 loci would not have been identified in the current sample without
using the conditional FDR method. Similarly, the 95 independent loci for LS BMD encom-
passes 107 different genes, and the extra number of loci identified with our conditional FDR
compared with FDR method is 21 (bold value in the “BMD-FDR” column, S3 and S4 Tables,
marked by points with black edges in S3 Fig). Since there are overlaps in loci between the two
phenotypes, we identified a total of 122 independent loci for FN BMD and/or LS BMD, repre-
senting 155 different genes in all.

SNP Detection and Verification
The previous study of BMD related SNPs by Estrada et al. [25] identified a total of 56 loci asso-
ciated with FN BMD and/or LS BMD (49 loci with FN BMD and 48 loci with LS BMD). This
was based on two-stage analysis (consisting up to 83,894 and 77,508 individuals), whereas in
the stage-1 sample analysis (consisting 32,961 and 31,800 individuals), 20 and 26 loci were

Fig 2. ‘Conditional FDRManhattan plot’ of conditional–log10 (FDR) values for bonemineral density (BMD, femoral neck) alone (small black dots)
and BMD given the associated phenotypes type 1 diabetes (T1D; BMD|T1D), type 2 diabetes (T2D; BMD|T2D), waist hip ratio (WHR, BMD|WHR),
systolic blood pressure (SBP, BMD|SBP), diastolic blood pressure (DBP, BMD|DBP), high density lipoproteins (HDL, BMD|HDL), low density
lipoproteins (LDL, BMD|LDL) and triglycerides (TG, BMD|TG). SNPs with conditional–log10 FDR > 2 (i.e. FDR < 0.01) are shown with large points. A
black line around the large points indicates the most significant SNP in each LD block and this SNP was annotated with the closest gene which is listed above
the symbols in each locus, except for the HLA region on chromosome 6. Gene symbols were obtained from NCBI gene databases and colored in line with the
second phenotype which gives the minimal conditional FDR value. Details for the novel loci with–log10 FDR > 2 (i.e. FDR < 0.01) are shown in Table 1 and S1
Table. Genes previously reported by other studies were marked by stars (*).

doi:10.1371/journal.pone.0144531.g002
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associated with FN BMD and LS BMD, respectively. Our analysis re-identified all (20 FN and
26 LS) loci reported in the primary study stage-1 analysis by Estrada et al. [25]. Also in the
cross stage (I and II) analyses, all but 5 loci for FN BMD and 8 loci for LS were successfully re-
identified (S2 and S4 Tables).

The FDR method identified 26 novel loci associated with FN BMD and 47 novel loci associ-
ated with LS BMD, not reported in the previous BMD GWAS [25].

Gene Expression Analysis
Global gene expression profiling in iliac bone biopsies from 84 postmenopausal women [38]
permitted us to calculate the correlation values between BMD and the mRNA levels of all genes
associated with the identified loci, as shown in the rightmost columns of Table 1 (novel genes)
and S2 Table (genes identified also by Estrada et al. [25]). We found a similar fraction of tran-
scripts that were significantly correlated with FN BMD among the novel BMD associated genes
(8 out of 26 reaching detection level), very similar to the Estrada study [25], 31% vs. 30%,
respectively.

Functional Enrichment Analysis
The 155 genes encompassed by all loci at FDR< 0.01 for FN and LS BMD were analyzed with
Ingenuity Pathway Analysis (IPA). The top-most significantly affected canonical pathway was
“Role of Osteoblasts and Chondrocyte in Rheumatoid Arthritis” (p = 4.1x10-12), which
includes Wnt signaling, and the function and interaction of many of the identified genes in
bone related cells (Table 2).

Out of all the loci at FDR< 0.01 (LS and FN BMD), 48 associated gene transcripts were sig-
nificantly correlated to BMD in bone biopsies from postmenopausal women. This subset of
genes was also analyzed by IPA, and a network of interacting genes including NFATC1, RELA,
NFKB and SMAD3 as central nuclear hubs were generated (Fig 3).

All genes associated with FN or LS SNPs were analyzed for over-representation in KEGG
pathways using Gene Codis (http://genecodis2.dacya.ucm.es/). “Wnt signaling pathway”
ranked 1st with 9 genes and corrected chi square p = 8.4x10-21. Other highly ranked pathways
included “Hedgehog signaling pathway”, “Osteoclast differentiation”, “Focal adhesion” and
“Endocrine and other factor-regulated calcium reabsorption”. Interestingly, the pathway “Vas-
cular Smooth Muscle Contraction” also emerged as significant (corrected chi square
p = 3.9x10-3).

Discussion
The current analyses of combined GWAS data from more than 250,000 individuals demon-
strated genetic overlap between BMD and associated CVD risk factor phenotypes. This indi-
cated that some of the co-morbidity observed in epidemiological and clinical studies may be
due to shared risk gene variants. Based on the polygenic enrichment we identified 65 novel
BMD loci (26 for FN BMD and 47 for LS BMD) not previously reported. Many of these loci are
associated with genes that were validated in our expression assay. The high confirmation rate
of the current FDR approach and the association to gene expression assay suggest these loci for
follow-up analysis.

By comparing GWAS and gene expression profiling of bone, we can suggest which tran-
scriptional regulators drive the expression of the suggested genes identified in this study. Bone
remodeling continues throughout life and involves the fine balance between bone building
osteoblasts and resorbing osteoclasts. The complexes NFATc1 and NFkB (including p65/RelA)
can function as heterodimers and DNA binding transcriptional activators [41] and are central
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Table 2. Top Canonical pathways and Top diseases and Bio Functions from Ingenuity Pathway Analysis

Canonical Pathways Ratio(p-value) Molecules

Role of Osteoblasts, Osteoclasts and Chondrocytes
in Rheumatoid Arthritis

16/231 (4.10E-12) SFRP4,RELA,LRP5,TNFSF11,SPP1,AXIN1,
WNT2B,WNT16,SP7, TNFRSF11A, NFATC1,
WNT4, BMP7, SOST, CTNNB1, TNFRSF11B

Role of Macrophages, Fibroblasts and Endothelial
Cells in Rheumatoid Arthritis

12/329 (1.86E-6) SFRP4, RELA, TNFSF11, LRP5, AXIN1, WNT2B,
WNT16, WNT4, SOST,CTNNB1, NFATC1,
TNFRSF11B

Wnt/Î2-catenin Signaling 9/174 (3.69E-6) SFRP4, LRP5, SOX6, AXIN1, WNT2B, WNT16,
WNT4, SOX9, CTNNB1

Basal Cell Carcinoma Signaling 6/75 (1.32E-5) AXIN1, WNT2B, WNT16, WNT4, BMP7, CTNNB1

Role of NANOG in Mammalian Embryonic Stem
Cell Pluripotency

7/117 (1.52E-5) AXIN1, WNT2B, WNT16, WNT4, BMP7,
CTNNB1, ZFP42

Human Embryonic Stem Cell Pluripotency 7/153 (5.06E-5) AXIN1, SMAD3, WNT2B, WNT16, WNT4, BMP7,
CTNNB1

Colorectal Cancer Metastasis Signaling 9/254 (5.87E-5) RELA, LRP5, AXIN1, SMAD3, WNT2B, ADCY6,
WNT16, WNT4,CTNNB1

Protein Kinase A Signaling 11/389 (9.02E-5) DHH, RELA, PTPRD, SMAD3, ADCY6, PPP1CB,
CTNNB1, EYA1,ANAPC1, NFATC1, AKAP11

Role of Wnt/GSK-3Î2 Signaling in the Pathogenesis
of Influenza

5/82 (2.48E-4) AXIN1, WNT2B, WNT16, WNT4, CTNNB1

Regulation of the Epithelial-Mesenchymal
Transition Pathway

7/190 (3.13E-4) RELA, AXIN1, SMAD3, WNT2B, WNT16, WNT4,
JAG1

Categories in Top Diseases and Bio Functions Diseases
orFunctionsAnnotation

# Molecules
(p-Value)

Molecules

Connective Tissue Development and Function,
Embryonic Development, Organ Development,
Organ Morphology, Organismal Development,
Skeletal and Muscular System Development and
Function, Tissue Development

abnormalmorphology ofbone 27 (1,86E-15) ARHGAP1, BMP7, CYP19A1, ESR1, EYA1,
FAM20C, GALNT3,HOXC4, HOXC5, HOXC6,
IBSP, IDUA, LRP5, MEOX1, MEPE,NAB1,
PKDCC, SALL1, SMAD3, SOST, SOX6, SOX9,
SPP1,TNFRSF11A, TNFRSF11B, TNFSF11,
ULK4

Organismal Development, Skeletal and Muscular
System Development and Function

abnormalmorphology of limb 18 (2,48E-13) BMP7, ESR1, EYA1, FAM20C, GALNT3, IBSP,
IDUA, LRP4,LRP5, PKDCC, SALL1, SMAD3,
SOST, SOX9, TNFRSF11A,TNFRSF11B,
TNFSF11, WNT4

Skeletal and Muscular System Development and
Function

abnormalmorphology
ofskeleton

19 (1,16E-12) ARHGAP1, BMP7, ESR1, EYA1, FAM20C,
GALNT3, HOXC4,HOXC5, HOXC6, IBSP, IDUA,
LRP5, MEOX1, PKDCC, SMAD3,SOST, SOX9,
TNFRSF11B, TNFSF11

Connective Tissue Development and Function,
Skeletal and Muscular System Development and
Function

bone mineraldensity 15 (4,51E-12) ARHGAP1, CYP19A1, ERCC1, ESR1, FAM20C,
GALNT3, IBSP,LRP5, NAB1, SMAD3, SOST,
SPP1, TNFRSF11A, TNFRSF11B,TNFSF11

Connective Tissue Development and Function,
Embryonic Development, Organ Development,
Organ Morphology, Organismal Development,
Skeletal and Muscular System Development and
Function, Tissue Development

morphology oflimb bone 13 (1,36E-11) BMP7, ESR1, FAM20C, GALNT3, IBSP, IDUA,
LRP5, PKDCC,SMAD3, SOST, SOX9,
TNFRSF11B, TNFSF11

Connective Tissue Development and Function,
Embryonic Development, Organ Development,
Organismal Development, Skeletal and Muscular
System Development and Function, Tissue
Development

mineralization ofbone 13 (4,78E-11) BMP7, ESR1, FAM20C, IBSP, LRP5, MEPE, PK
DCC, SMAD3,SOST, SOX9, SPP1, TNFRSF11B,
WNT4

Skeletal and Muscular System Development and
Function

abnormalmorphology
ofappendicularskeleton

13 (5,66E-11) BMP7, ESR1, FAM20C, GALNT3, IBSP, IDUA,
LRP5, PKDCC,SMAD3, SOST, SOX9,
TNFRSF11B, TNFSF11

(Continued)
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to osteoclast development and differentiation. They do, however, also have an important func-
tion in osteoblasts. Strontium ranelate was shown to increase NFATc1 transactivation in osteo-
blasts promoting increased expression ofWNT3A andWNT5A as well as beta-catenin
transcription in osteoblasts [42,43]. This positions NFATc1 activation upstream of canonical
and non-canonical Wnt signaling pathways, networks whose interactions and strong associa-
tions to bone and metabolism are clearly underscored in the present work. NFATc1 activation
is also pathogenetically associated with blood pressure via binding to promoter elements on
endothelin-1 (ET-1) thereby regulating its expression [44]. ET-1 regulates salt excretion in the
kidney collecting duct [45]. Through regulation of salt excretion, NFATc1 also has a role in
mineral metabolism, and thus possibly also affecting the body’s Ca++ balance and metabolism.
NFATc1 blockade has been shown to completely prevent oxidized LDL-induced osteogenic
transformation of human coronary artery smooth muscle cells as well as oxidized LDL-induced
stimulation of osteoblast differentiation [46]. NFATc1 may therefore be a master regulator
contributing to predisposition in several of these conditions. Interestingly, the application of
this approach has uncovered a uniquely rich and coherent gene network which fully reflects
the biological relationship between NFATc1 and the Wnt signaling pathways governing osteo-
clast/osteoblast activity and engagement in metabolism. Future work should focus on the iden-
tification of surrogate markers (transcripts and proteins) of aberrant NFATc1 activation,
which in combination with genotyping could provide more accurate risk predictors for the
range of conditions affected by this important transcription factor. Vascular smooth muscle

Table 2. (Continued)

Cellular Development differentiation ofconnective
tissuecells

23 (1,94E-10) AREG/AREGB, AXIN1, BMP7, CTNNB1,
FAM20C, JAG1, KLF4,LGR4, LRP5, MEF2C,
NFATC1, PKDCC, RELA, SFRP4, SMAD3,SOST,
SOX9, SP7, SPP1, TNFRSF11A, TNFRSF11B,
TNFSF11,WNT4

Organismal Injury and Abnormalities calcinosis 9 (3,26E-10) BMP7, CTNNB1, GALNT3, IBSP, LRP5, SOX9,
SPP1,TNFRSF11B, TNFSF11

Cardiovascular Disease degenerativemitral
valvedisease

5 (3,48E-10) CTNNB1, IBSP, LRP5, SOX9, SPP1

The genes associated with all identified loci (min Cond FDR < 0.01) were subjected to Ingenuity Pathway Analysis. The topmost significantly affected

canonical pathways (upper panel) and Categories in Top Diseases and Bio Functions (lower panel) from the analysis are shown.

doi:10.1371/journal.pone.0144531.t002

Fig 3. Network analysis IPA-generated network illustrating molecular interactions among the genes
correlating inversely (green) or positively (red) to FN or LS BMD.

doi:10.1371/journal.pone.0144531.g003
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contraction was identified as significantly affected among the BMD associated genes. This pro-
cess is relevant to bone because the contractile elements used in muscle are also a characteristic
feature of the osteocytes which constitute 90–95% of bone cells [47], and are dynamic star shaped
cells with stretching and contracting protrusions [48]. It is not known if the mechanisms for oste-
ocyte motility are more characteristic to smooth or striated muscle. However, both smooth and
striated muscle share common features with osteocytes[49], and muscle-related gene expression
in bone has been shown to be affected in postmenopausal osteoporotic women [39] as well as in
human iliac bone with reduced BMD due to primary hyperparathyroidism [50].

T1D and T2D are complex metabolic disorders with multiple possible interactions with
BMD. However, our results are only to a minor degree influenced by these disorders, since
only one of the 26 novel FN BMD associated SNPs has diabetes (T1D) as the driving phenotype
(Table 1 and Fig 2) and only 9 (~10%) of the novel the LS BMD associated SNPs has T1D or
T2D as the driving phenotype (S3 Table and S3 Fig).

Our results confirm the feasibility of using a genetic epidemiology framework that leverages
overlap in genetic signal from independent GWAS of correlated phenotypes for revealing
genetic basis of complex phenotypes/diseases. The increased power provided by additional
GWAS of associated phenotypes together with the FDR method, roughly doubled the previous
number of BMD associated loci [25]. Using the same methods for functional validation of the
current findings obtained with our statistical approach, we report a similar rate of significantly
expressed genes as in the original BMD report [25]. Furthermore, “Role of Osteoblasts and
Chondrocyte in Rheumatoid Arthritis” was the top-most significantly affected canonical path-
way when subjecting the 155 genes encompassed by all loci at FDR< 0.01 for FN and LS BMD
to IPA. This pathway was also among the most significantly affected in a study by Gupta et al.
[51], using a Bayesian block-clustering algorithm to analyze GWAS of multiple phenotypes
related to bone, thus supporting our results. It should be noted that, when analyzing BMD
associated genes by IPA and similar methods, intergenic, and also intragenic SNPs, not neces-
sarily affects transcription of the closest gene. Gene polymorphisms have been shown to affect
more distant genes located several Mbp away [52,53]. More detailed experimental validation of
the current findings is warranted. Our method for correction of the overlap in some of the
GWAS cohorts examined, should exclude contribution from environmental factors. We also
controlled for inflation using genomic control correction of each primary single phenotype
GWAS. Further, the overlapping loci were spread over all autosomes in the different pheno-
types. If a single control group used in several samples were driving the findings, it would be
expected that the same region would have been significant across different phenotypes. This is
particularly evident in the GWAS of blood lipids, where the same sample was used to discover
new genes for three different phenotypes [26], but the pattern of loci was quite different across
the different traits. This suggests that the findings are not due to common genetic variation in
potentially overlapping control groups.

In conclusion, we identified 26 and 47 novel genomic loci associated with BMD in FN and
LS, respectively, by leveraging genetic pleiotropy with several CVD-related traits, including
T1D, T2D, SBP, DBP, LDL, TG, WHR and HDL. Association analyses point to genes involved
in metabolism and activated immunological pathways. The results warrant further experimen-
tal investigations to clarify the clinical implications, and could lead to improved screening pro-
grams and prevention strategies.

Supporting Information
S1 Fig. Conditional FDR 2-D lookup table for femoral neck BMD. Based on the combina-
tion of p-value for the SNPs in femoral neck BMD (PBMD) and that of the pleiotropic trait: A.
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type 1 diabetes (T1D), B. type 2 diabetes (T2D), C. systolic blood pressure (SBP), D. diastolic
blood pressure (DBP), E. high density lipoprotein (HDL), F. low density lipoprotein (LDL), G.
triglycerides (TG), and H. waist hip ratio (WHR) we assigned a conditional FDR value to each
SNP associated with femoral neck BMD, by interpolation into a 2-D look-up table. Color scale
refers to the conditional FDR values.
(TIF)

S2 Fig. Conditional FDR 2-D lookup table for Lumbar Spine BMD. Based on the combina-
tion of p-value for the SNPs in lumbar spine BMD (PBMD) and that of the pleiotropic trait: A.
type 1 diabetes (T1D), B. type 2 diabetes (T2D), C. systolic blood pressure (SBP), D. diastolic
blood pressure (DBP), E. high density lipoprotein (HDL), F. low density lipoprotein (LDL), G.
triglycerides (TG), and H. waist hip ratio (WHR), we assigned a conditional FDR value to each
SNP associated with lumbar spine BMD, by interpolation into a 2-D look-up table. Color scale
refers to the conditional FDR values.
(TIF)

S3 Fig. Conditional FDRManhattan plots for lumbar spine BMD. ‘Conditional Manhattan
plot’ of conditional–log10 (FDR) values for bone mineral density (BMD, lumbar spine) alone
(small black dots) and BMD given the associated phenotypes type 1 diabetes (T1D; BMD|
T1D), type 2 diabetes (T2D; BMD|T2D), systolic blood pressure (SBP; BMD|SBP), diastolic
blood pressure (DBP; BMD|DBP), high density lipoprotein (HDL; BMD|HDL), low density
lipoprotein (LDL; BMD|LDL), triglycerides (TG; BMD|TG), and waist hip ratio (WHR; BMD|
WHR). SNPs with conditional–log10 FDR> 2 (i.e. FDR< 0.01) are shown with large points.
A black line around the large points indicates the most significant SNP in each LD block and
this SNP was annotated with the closest gene, which is listed above the symbols in each locus.
Gene symbols were obtained from HGNC gene databases and colored in line with the second
phenotype, which gives the minimal conditional FDR value. Genes previously reported by
other studies were marked by stars (�).
(TIF)

S4 Fig. Genetic pleiotropy enrichment. Conditional Q-Q plot of nominal versus empirical
-log10 p-values (corrected for inflation) in bone mineral density (BMD, femoral neck) below
the standard GWAS threshold of p< 5x10-8 as a function of significance of association with
CVD risk factors, including type 1 diabetes (T1D), type 2 diabetes (T2D), low density lipopro-
tein (LDL) and waist hip ratio (WHR) at the level of -log10(p)� 0 (all SNPs),–log10(p)� 1,–
log10(p)� 2,–log10(p)� 3 corresponding to p� 1, p� 0.1, p� 0.01, p� 0.001, respectively.
Dotted lines indicate the null-hypothesis.
(TIF)

S5 Fig. QQ plots for Lumbar Spine-BMD. Conditional Q-Q plot of nominal versus empirical
-log10 p-values (corrected for inflation) in bone mineral density (BMD, lumbar spine) below
the standard GWAS threshold of p< 5x10-8 as a function of significance of association with A.
type 1 diabetes (T1D), B. type 2 diabetes (T2D), C. systolic blood pressure (SBP), D. diastolic
blood pressure (DBP), E. high density lipoprotein (HDL), F. low density lipoprotein (LDL), G.
triglycerides (TG), and H. waist hip ratio (WHR) at the level of -log10(p)� 0 (all SNPs),–
log10(p)� 1,–log10(p)� 2,–log10(p)� 3 corresponding to p� 1, p� 0.1, p� 0.01, p� 0.001,
respectively. Dotted lines indicate the null-hypothesis.
(TIF)

S6 Fig. Conditional QQ plot for Femoral neck BMD on CAD. Conditional Q-Q plot of nom-
inal versus empirical -log10 p-values (corrected for inflation) in bone mineral density (BMD,
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femoral neck) below the standard GWAS threshold of p< 5x10-8 as a function of significance
of association with Coronary Artery Disease (CAD) at the level of -log10(p)� 0 (all SNPs),–
log10(p)� 1,–log10(p)� 2,–log10(p)� 3 corresponding to p� 1, p� 0.1, p� 0.01, p� 0.001,
respectively. Dotted lines indicate the null-hypothesis.
(TIF)

S7 Fig. Conditional QQ plot for lumbar spine BMD on CAD. Conditional Q-Q plot of nom-
inal versus empirical -log10 p-values (corrected for inflation) in bone mineral density (BMD,
lumbar spine) below the standard GWAS threshold of p< 5x10-8 as a function of significance
of association with Coronary Artery Disease (CAD) at the level of -log10(p)� 0 (all SNPs),–
log10(p)� 1,–log10(p)� 2,–log10(p)� 3 corresponding to p� 1, p� 0.1, p� 0.01, p� 0.001,
respectively. Dotted lines indicate the null-hypothesis.
(TIF)

S1 File. Details of Statistical Analysis
(DOC)

S1 Table. Summary data from all GWAS used in the current study
(DOCX)

S2 Table. All identified loci associated with femoral neck BMD
(DOCX)

S3 Table. Identified loci containing novel SNPs or genes associated with lumbar spine
BMD
(DOCX)

S4 Table. Identified loci containing known SNPs or genes associated with lumbar spine
BMD
(DOCX)

S5 Table. Gene titles and gene ontology function terms of genes associated with LS an FN
BMD loci at FDR<0.01
(DOCX)
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