41 research outputs found

    Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.

    Get PDF
    Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues

    Color filters: When 'optimal' is not optimal

    No full text
    It is well known that many more than three or four spectral measurements are required for accurate measurement of color. Previous work has shown seven to ten measurements can yield accurate results on average, but with significant numbers of errors above the threshold of obvious visual detection. Furthermore, the filters used for these measurements are very difficult to fabricate. We show that such filters are not needed and, in fact, have much poorer performance, in perceptual quality measured in ΔEab, than simple narrow-band filters. This is especially true in the presence of Poisson noise at a level common in current digital cameras. In realistic Poisson noise, our filter sets of up to 12 filters allow average ΔEab values around 0.5, with maximum errors below 3

    Computer-assisted approaches for uterine fibroid segmentation in MRgFUS treatments: Quantitative evaluation and clinical feasibility analysis

    No full text
    Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition approaches. In this contribution, we evaluate two computer-assisted segmentation methods, which we have already developed and validated, for uterine fibroid segmentation in MRgFUS treatments. A quantitative comparison on segmentation accuracy, in terms of area-based and distance-based metrics, was performed. The clinical feasibility of these approaches was assessed from physicians’ perspective, by proposing an integrated solution

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    Non-lethal effects of an invasive species in the marine environment: the importance of early life-history stages

    Get PDF
    Studies examining the effects of invasive species have focussed traditionally on the direct/lethal effects of the invasive on the native community but there is a growing recognition that invasive species may also have non-lethal effects. In terrestrial systems, non-lethal effects of invasive species can disrupt early life-history phases (such as fertilisation, dispersal and subsequent establishment) of native species, but in the marine environment most studies focus on adult rather than early life-history stages. Here, we examine the potential for an introduced sessile marine invertebrate (Styela plicata) to exert both lethal and non-lethal effects on a native species (Microcosmus squamiger) across multiple early life-history stages. We determined whether sperm from the invasive species interfered with the fertilisation of eggs from the native species and found no effect. However, we did find strong effects of the invasive species on the post-fertilisation performance of the native species. The invasive species inhibited the settlement of native larvae and, in the field, the presence of the invasive species was associated with a ten-fold increase in the post-settlement mortality of the native species, as well as an initial reduction of growth in the native. Our results suggest that larvae of the native species avoid settling near the invasive species due to reduced post-settlement survival in its presence. Overall, we found that invasive species can have complex and pervasive effects (both lethal and non-lethal) across the early life-history stages of the native species, which are likely to result in its displacement and to facilitate further invasion
    corecore