801 research outputs found
Spin-injection Hall effect in a planar photovoltaic cell
Successful incorporation of the spin degree of freedom in semiconductor
technology requires the development of a new paradigm allowing for a scalable,
non-destructive electrical detection of the spin-polarization of injected
charge carriers as they propagate along the semiconducting channel. In this
paper we report the observation of a spin-injection Hall effect (SIHE) which
exploits the quantum-relativistic nature of spin-charge transport and which
meets all these key requirements on the spin detection. The two-dimensional
electron-hole gas photo-voltaic cell we designed to observe the SIHE allows us
to develop a quantitative microscopic theory of the phenomenon and to
demonstrate its direct application in optoelectronics. We report an
experimental realization of a non-magnetic spin-photovoltaic effect via the
SIHE, rendering our device an electrical polarimeter which directly converts
the degree of circular polarization of light to a voltage signal.Comment: 14 pages, 4 figure
Quantum Acoustics with Surface Acoustic Waves
It has recently been demonstrated that surface acoustic waves (SAWs) can
interact with superconducting qubits at the quantum level. SAW resonators in
the GHz frequency range have also been found to have low loss at temperatures
compatible with superconducting quantum circuits. These advances open up new
possibilities to use the phonon degree of freedom to carry quantum information.
In this paper, we give a description of the basic SAW components needed to
develop quantum circuits, where propagating or localized SAW-phonons are used
both to study basic physics and to manipulate quantum information. Using
phonons instead of photons offers new possibilities which make these quantum
acoustic circuits very interesting. We discuss general considerations for SAW
experiments at the quantum level and describe experiments both with SAW
resonators and with interaction between SAWs and a qubit. We also discuss
several potential future developments.Comment: 14 pages, 12 figure
Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using ImmobilizedRhodobacter sphaeroides
Size-controlled cadmium sulfide nanoparticles were successfully synthesized by immobilizedRhodobacter sphaeroidesin the study. The dynamic process that Cd2+was transported from solution into cell by livingR. sphaeroideswas characterized by transmission electron microscopy (TEM). Culture time, as an important physiological parameter forR. sphaeroidesgrowth, could significantly control the size of cadmium sulfide nanoparticles. TEM demonstrated that the average sizes of spherical cadmium sulfide nanoparticles were 2.3 ± 0.15, 6.8 ± 0.22, and 36.8 ± 0.25 nm at culture times of 36, 42, and 48 h, respectively. Also, the UV–vis and photoluminescence spectral analysis of cadmium sulfide nanoparticles were performed
High Density Microarray Analysis Reveals New Insights into Genetic Footprints of Listeria monocytogenes Strains Involved in Listeriosis Outbreaks
Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism
Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves
The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias-and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET
Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime
Carbon nanotubes are a good realization of one-dimensional crystals where
basic science and potential nanodevice applications merge. Defects are known to
modify the electrical resistance of carbon nanotubes. They can be present in
as-grown carbon nanotubes, but controlling externally their density opens a
path towards the tuning of the nanotube electronic characteristics. In this
work consecutive Ar+ irradiation doses are applied to single-walled nanotubes
(SWNTs) producing a uniform density of defects. After each dose, the room
temperature resistance versus SWNT-length [R(L)] along the nanotube is
measured. Our data show an exponential dependence of R(L) indicating that the
system is within the strong Anderson localization regime. Theoretical
simulations demonstrate that mainly di-vacancies contribute to the resistance
increase induced by irradiation and that just a 0.03% of di-vacancies produces
an increase of three orders of magnitude in the resistance of a 400 nm SWNT
length.Comment: 16 pages, 4 figure
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Estimation of the severity of breathlessness in the emergency department: a dyspnea score
BACKGROUND: Dyspnea is a frequent complaint in emergency departments (ED). It has a significant amount of subjective and affective components, therefore the dyspnea scores, based on the patients' rating, can be ambiguous. Our purpose was to develop and validate a simple scoring system to evaluate the severity of dyspnea in emergency care, based on objectively measured parameters. METHODS: We performed a double center, prospective, observational study including 350 patients who were admitted in EDs with dyspnea. We evaluated the patients' subjective feeling about dyspnea and applied our Dyspnea Severity Score (DSS), rating the dyspnea in 7 Dimensions from 0 to 3 points. The DSS was validated using the deterioration of pH, base-excess and lactate levels in the blood gas samples (Objective Classification Scale (OCS) 9 points and 13 points groups). RESULTS: All of the Dimensions correlated closely with the OCS values and with the subjective feeling of the dyspnea. Using multiple linear regression analysis we were able to decrease the numbers of Dimensions from seven to four without causing a significant change in the determination coefficient in any OCS groups. This reduced DSS values (exercise tolerance, cooperation, cyanosis, SpO2 value) showed high sensitivity and specificity to predict the values of OCS groups (the ranges: AUC 0.77-0.99, sensitivity 65-100%, specificity 64-99%). There was a close correlation between the subjective dyspnea scores and the OCS point values (p /=7 points without correction factors) can be useful at the triage or in pre-hospital care
Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2
The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin.These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia
Activation of FGF Signaling Mediates Proliferative and Osteogenic Differences between Neural Crest Derived Frontal and Mesoderm Parietal Derived Bone
BACKGROUND: As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone. METHODS: BrdU incorporation, immunoblotting and osteogenic differentiation assays were performed to investigate the proliferative rate and osteogenic potential of embryonic and postnatal osteoblasts derived from mouse frontal and parietal bones. Co-culture experiments and treatment with conditioned medium harvested from both types of osteoblasts were performed to investigate potential interactions between the two different tissue origin osteoblasts. Immunoblotting techniques were used to investigate the endogenous level of FGF-2 and the activation of three major FGF signaling pathways. Knockdown of FGF Receptor 1 (FgfR1) was employed to inactivate the FGF signaling. RESULTS: Our results demonstrated that striking differences in cell proliferation and osteogenic differentiation between the frontal and parietal bone can be detected already at embryonic stages. The greater proliferation rate, as well as osteogenic capacity of frontal bone derived osteoblasts, were paralleled by an elevated level of FGF-2 protein synthesis. Moreover, an enhanced activation of FGF-signaling pathways was observed in frontal bone derived osteoblasts. Finally, the greater osteogenic potential of frontal derived osteoblasts was dramatically impaired by knocking down FgfR1. CONCLUSIONS: Osteoblasts from mouse neural crest derived frontal bone displayed a greater proliferative and osteogenic potential and endogenous enhanced activation of FGF signaling compared to osteoblasts from mesoderm derived parietal bone. FGF signaling plays a key role in determining biological differences between the two types of osteoblasts
- …