14 research outputs found

    Measurement of W± and Z-boson production cross sections in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors - 17 pages plus author list + cover pages (34 pages total), 5 figures, 3 tables, submitted to Phys. Lett. B, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-03/International audienceMeasurements of the W±±νW^{\pm} \rightarrow \ell^{\pm} \nu and Z+Z \rightarrow \ell^+ \ell^- production cross sections (where ±=e±,μ±\ell^{\pm}=e^{\pm},\mu^{\pm}) in proton-proton collisions at s=13\sqrt{s}=13 TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb1^{-1}. The total inclusive W±W^{\pm}-boson production cross sections times the single-lepton-flavour branching ratios are σW+tot=11.78±0.02(stat)±0.32(sys)±0.59(lumi)\sigma_{W^+}^{tot}= 11.78 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.59 (lumi) nb and σWtot=8.75±0.02(stat)±0.24(sys)±0.44(lumi)\sigma_{W^-}^{tot} = 8.75 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.44 (lumi) nb for W+W^+ and WW^-, respectively. The total inclusive ZZ-boson production cross section times leptonic branching ratio, within the invariant mass window 66<m<11666 < m_{\ell\ell} < 116 GeV, is σZtot=1.97±0.01(stat)±0.04(sys)±0.10(lumi)\sigma_{Z}^{tot} = 1.97 \pm 0.01 (stat) \pm 0.04 (sys) \pm 0.10 (lumi) nb. The W+W^+, WW^-, and ZZ-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in σW+fid/σWfid=1.295±0.003(stat)±0.010(sys)\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys) and σW±fid/σZfid=10.31±0.04(stat)±0.20(sys)\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys). Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements

    Measurement of the charge asymmetry in highly boosted top-quark pair production in √s=8 TeV pp collision data collected by the ATLAS experiment

    Get PDF
    In the pp→tt process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb-1 of pp collision data at √s=8TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mtt>0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within -2<|yt|-|yt|<2 is measured to be 4.2±3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three tt- mass bins is also presented

    Search for new phenomena in final states with large jet multiplicities and missing transverse momentum with ATLAS using root s=13 TeV proton-proton collisions

    Get PDF
    Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton-proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton-proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb(-1). The search selected events with various jet multiplicities from >= 7 to >= 10 jets, and with various b-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits. (C) 2016 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3)

    Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    Get PDF
    Peer reviewe

    A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis

    No full text
    Objective: Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep learning (DL) system for classifying DME using images from three common commercially available optical coherence tomography (OCT) devices. Research design and methods: We trained and validated two versions of a multitask convolution neural network (CNN) to classify DME (center-involved DME [CI-DME], non-CI-DME, or absence of DME) using three-dimensional (3D) volume scans and 2D B-scans, respectively. For both 3D and 2D CNNs, we used the residual network (ResNet) as the backbone. For the 3D CNN, we used a 3D version of ResNet-34 with the last fully connected layer removed as the feature extraction module. A total of 73,746 OCT images were used for training and primary validation. External testing was performed using 26,981 images across seven independent data sets from Singapore, Hong Kong, the U.S., China, and Australia. Results: In classifying the presence or absence of DME, the DL system achieved area under the receiver operating characteristic curves (AUROCs) of 0.937 (95% CI 0.920-0.954), 0.958 (0.930-0.977), and 0.965 (0.948-0.977) for the primary data set obtained from CIRRUS, SPECTRALIS, and Triton OCTs, respectively, in addition to AUROCs >0.906 for the external data sets. For further classification of the CI-DME and non-CI-DME subgroups, the AUROCs were 0.968 (0.940-0.995), 0.951 (0.898-0.982), and 0.975 (0.947-0.991) for the primary data set and >0.894 for the external data sets. Conclusions: We demonstrated excellent performance with a DL system for the automated classification of DME, highlighting its potential as a promising second-line screening tool for patients with DM, which may potentially create a more effective triaging mechanism to eye clinics

    Recent progress in mass spectrometry proteomics for biomedical research

    No full text

    Tourism Statistics 2009, February

    Get PDF
    Suomen virallinen tilasto (SVT
    corecore