9 research outputs found

    Developing the conditions for education for citizenship in higher education (CiCe network report)

    Get PDF
    The key questions surrounding education for citizenship in higher education are what is education for, what are universities for, and what values should education systems aim to develop in young people? These raise complex issues. As these are such challenging questions and asthere is little agreement about them, this raises for the public,students, academics and educationists, as many issues as definitiveanswers. Nearly all of us who chose education as a career did so tomake a difference; not just degree results, but to the lives andaspirations of young people and society as a whole. Thus, althoughwe champion the development of critical abilities, the skills ofenquiry and questioning, activity based approaches to learning andthe notion of rights as something to be cherished, this is not in itselfmerely a chronicle. It is to suggest that a mixture of creativecontent, ethos and a participatory, consultative, democratic approachin the framework of macro and micro improvements can lead tobetter, deeper learning and crucially a fairer and more just society

    Science-teacher education advanced methods national workshop for Scotland report

    Get PDF
    The first phase of the S-TEAM project at the University of Strathclyde - evaluating the state of the art of inquiry-based science teaching and education in teacher education institutions and schools in Scotland - is now well advanced. Phase one identifies the opportunities for and the constraints facing either the implementation or increase of inquiry-based science teaching activity in schools, in the process investigating impressions from current practice in classrooms, from teacher education courses, the policymaking context, as well as the implications for the S-TEAM project itself. All teacher education institutions within Scotland were invited to take part in a one-day workshop at the University of Strathclyde in Glasgow; representatives from the Scottish Government, Her Majesty's Inspectorate of education, a leading science centre, the Early Professional Learning project, and of course the teaching profession itself were also in attendance, giving a total of 19 participants. Key Findings The curriculum and assessment background to promoting advanced methods in science education in Scotland comprises the Curriculum for Excellence (CfE) initiative. The conference participants generally framed their contributions with this in mind. The findings suggested that the CfE, while still in its infancy, is generally supportive and encouraging of investigative science lessons, the range of possible activities that could count as investigative, and in the diversity of the ways in which scientists work. There was however some concern about the relationship between the CfE and Scotland's portfolio of upper-secondary school examinations, as yet unspecified in policy, and thus leaving open to question the degree to which the new curriculum will continue to support investigations as it currently is. Over emphasis on summative assessment through grading and examinations tend to work against the spirit of investigative activity in the science classroom, a practice that depends on a more sophisticated formative approach. There is the associated danger that schools may continue to garner exam success with more traditional teaching methods with the consequence that CfE, though clear enough in its intention to promote investigation / inquiry and creativity, could 'crystallise' into typical assessment styles. Teaching would then be guided by this and genuine investigative activity would be unlikely to develop in the face of the relative certainty (for teachers) of more 'direct' methods. The experience of the workshop delegates suggests that there are current examples of investigative science work in schools, and that these tend to be enjoyable for learners - exciting, good fun, etc. This affective dimension of learning is important and points to the need for S-TEAM to develop indicators that can accommodate affective engagement. Other 'harder' indicators could also be developed as discussion revealed that examination results and pupil uptake of science (girls in this case, helping to change possible preconceptions) could benefit from inquiry based activity. The efficacy of investigative activity in the classroom, however, is unlikely to be fully caught by the strictly quantitative. A further consideration is that S-TEAM could develop indicators that go beyond an immediate research function to operate in such a way as to contribute to the learning of teachers in the classroom through the capacity for practitioner self-evaluation. For example, the critical evaluation of investigative activity that a cohort of initial science-teacher education students have already completed for the project, as part of their professional portfolios, has since been commended by teacher educators as being an effective intervention in its own right. The early results from this indicator confirm the existence of a number of implicit components of developing confidence in undertaking investigative activity - for example, knowledge of the subject curriculum, class, resources, and so on - and teaching methods, from structured additions to the more opportunistic and ad hoc, that practitioners employ. While arguing that teachers could and ought to accommodate a degree of inquiry in their teaching, a critical caveat is that beginners benefit from protected exploratory practice prior to their full teaching post and need space themselves to investigate and explore; it is reasonable for them to exercise restraint in their first year until their confidence is fairly secure. Implications 1. Promote inquiry in teaching by using examples of existing good practice and by working with experienced teachers in order to take lessons back from them to beginners. 2. Develop purpose specific indicators of inquiry and reflection that go beyond an immediate research function to contribute to the learning of (new) teachers through a capacity for the self-evaluation of the use of innovative methods in the classroom. 3. Collate video examples of inquiry as it happens in the classrooms of student and practising teachers, as well as stories and reflective discussion about how it happened, so as to learn how teachers solve the problems of introducing more investigative approaches into lessons. 4. For the development of teachers' knowledge base in science, create a typology of investigative knowledge and experience, upon which the project's activities might draw, of the following levels of scientific perspective: The socio-historical nature of science. Contemporary research activity in science. Initial teacher education in science. Experienced teaching of science. Beginning teaching of science. The child's classroom experience of science. 5. For the ongoing practical application of inquiry-based research, S-TEAM will continue to pursue, interrogate and engage with existing examples of inquiry and resources in the months ahead

    Ex post evaluation of the management and implementation of cohesion policy 2000-06 (ERDF)

    Get PDF
    This report has been drafted by the European Policies Research Centre (University of Strathclyde) as part of an ex post evaluation of the management and implementation systems for Cohesion policy, 2000-06, which has been commissioned by DG REGIO and which is being managed by EPRC and Metis (Vienna) under European Commission contract no: 2007.CE.16.0.AT.034. The report provides an overview of the main features of management and implementation systems across the EU25 in the 2000-06 period (2004-06 for the EU10) and has been drafted by Professor John Bachtler, Laura Polverari and Frederike Gross, with assistance from Dr Sara Davies and Ruth Downes. The research is based on studies of individual countries undertaken by EPRC together with national experts from each of the EU25 Member States. The authors are grateful for helpful comments from the DG REGIO Evaluation Unit and Geographical Units, in particular Anna Burylo, Veronica Gaffey and Kai Stryczynski. Any errors or omissions remain the responsibility of the authors

    Using active contours for semi-automated tracking of UV and EUV solar flare ribbons

    No full text
    Solar-flare UV and EUV images show elongated bright "ribbons" that move over time. If these ribbons are assumed to locate the footpoints of magnetic-field lines reconnecting in the corona, then it is clear that studying their evolution can provide important insight into the reconnection process. An image-processing method based on active contours (commonly referred to as "snakes") is proposed as a method for tracking UV and EUV flare ribbons and is tested on images from the Transition Region and Coronal Explorer (TRACE). This paper introduces the basic concepts of such an approach with a brief overview of the history and theory behind active contours. It then details the specifics of the snake algorithm developed for this work and shows the results of running the algorithm on test images. The results from the application of the developed algorithm are reported for six different TRACE flares (five in UV and one in EUV). The discussion of these results uses the output from an expert tracking the same ribbons by eye as a benchmark, and against these the snake algorithm is shown to compare favourably in certain conditions, but less so in others. The applicability of the automated snake algorithm to the general problem of ribbon tracking is discussed and suggestions for ways to improve the snake algorithm are proposed

    Bibliography

    No full text
    corecore