3,220 research outputs found

    Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments

    Get PDF
    This paper is concerned with the emergence and development of low-to-medium-grade thermal-energy-conversion systems for distributed power generation based on thermo- dynamic vapor-phase heat-engine cycles undergone by organic working uids, namely organic Rankine cycles (ORCs). ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low/medium-grade heat (at temperatures up to ~300–400°C) to useful work, at an output power scale from a few kilowatts to 10s of megawatts. Thermal ef ciencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability and thus uptake of ORC power systems, by focusing on advanced architectures, working- uid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a signi cant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydrau- lic, or electrical energy. Current elds of use include mainly geothermal and biomass/ biogas, as well as the recovery and conversion of waste heat, leading to improved energy ef ciency, primary energy (i.e., fuel) use and emission minimization, yet the technology is highly transferable to solar-power generation as an affordable alternative to small-to- medium-scale photovoltaic systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward onsite (thermal) energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identi ed as noteworthy directions of future research for the further development of this technology

    A dynamic model for the optimization of oscillatory low grade heat engines

    Get PDF
    The efficiency of a thermodynamic system is a key quantity on which its usefulness and wider application relies. This is especially true for a device that operates with marginal energy sources and close to ambient temperatures. Various definitions of efficiency are available, each of which reveals a certain performance characteristic of a device. Of these, some consider only the thermodynamic cycle undergone by the working fluid, whereas others contain additional information, including relevant internal components of the device that are not part of the thermodynamic cycle. Yet others attempt to factor out the conditions of the surroundings with which the device is interfacing thermally during operation. In this paper we present a simple approach for the modeling of complex oscillatory thermal-fluid systems capable of converting low grade heat into useful work. We apply the approach to the NIFTE, a novel low temperature difference heat utilization technology currently under development. We use the results from the model to calculate various efficiencies and comment on the usefulness of the different definitions in revealing performance characteristics. We show that the approach can be applied to make design optimization decisions, and suggest features for optimal efficiency of the NIFTE

    A Mechanism of Polymer Induced Drag Reduction in Turbulent Pipe

    Get PDF
    Polymer induced drag reduction in turbulent pipe flow was investigated using a non-intrusive laser based diagnostic technique, namely Particle Image Velocimetry (PIV). The drag reduction was measured in a pressure-driven flow facility, in a horizontal pipe of inner diameter 25.3 mm at Reynolds numbers ranging from 35 000 to 210 000. Three high- molecular-weight polymers (polyethylene oxide 2x10^6 – 8x10^6 Da) at concentrations in the range of 5 – 250 wppm were used. The results, obtained from the PIV measurements, show that the drag reduction scales with the magnitude of the normalized streamwise and spanwise rms velocity fluctuations in the flow. This scaling seems to universal, and is independent of the Reynolds number and in some cases also independent of the distance from the wall where the velocity fluctuations are considered. Furthermore, the instantaneous PIV observations indicate that as the level of drag reduction increases, the flow in the pipe is separated into a low-momentum flow region near the pipe wall and a high-momentum flow region in the turbulent core. Based on these findings a new mechanism of polymeric drag reduction is proposed in this paper

    Framework for the energetic assessment of South and South-East Asia fixed chimney bull’s trench kiln

    Get PDF
    One of the major sources of fuel consumption and greenhouse gas emission in South and South-East Asia is brick manufacturing. One of the most commonly implemented technologies for brick manufacturing in this region is the fixed chimney Bull’s trench kiln (FCBTK). This type of technology largely depends on manual labour and is very inefficient when compared to more modern technologies. Because the adoption of more advanced technologies is hindered by the socio-economical background, the much needed innovations in the brick sector are necessarily related to improving/modifying the FCBTK already operational. However, few scientific studies have been conducted on FCBTK probably due to the basic level of technological development. Such studies are however important to systematically and methodologically assess the challenges and solutions in FCBTK. In this study we develop a thermo-energetic model to evaluate the importance of the parameters pertained to FCBTK construction and operation. The prospective of this study is to build an initial thermo-energetic framework that will serve as a basis to investigate possible energetic improvements

    Thermographic Particle Velocimetry (TPV) for Simultaneous Interfacial Temperature and Velocity Measurements

    Get PDF
    AbstractWe present an experimental technique, that we refer to as ‘thermographic particle velocimetry’ (TPV), which is capable of the simultaneous measurement of two-dimensional (2-D) surface temperature and velocity at the interface of multiphase flows. The development of the technique has been motivated by the need to study gravity-driven liquid-film flows over inclined heated substrates, however, the same measurement principle can be applied for the recovery of 2-D temperature- and velocity-field information at the interface of any flow with a sufficient density gradient between two fluid phases. The proposed technique relies on a single infrared (IR) imager and is based on the employment of highly reflective (here, silver-coated) particles which, when suspended near or at the interface, can be distinguished from the surrounding fluid domain due to their different emissivity. Image processing steps used to recover the temperature and velocity distributions include the decomposition of each original raw IR image into separate thermal and particle images, the application of perspective distortion corrections and spatial calibration, and finally the implementation of standard particle velocimetry algorithms. This procedure is demonstrated by application of the technique to a heated and stirred flow in an open container. In addition, two validation experiments are presented, one dedicated to the measurement of interfacial temperature and one to the measurement of interfacial velocity. The deviations between the results generated from TPV and those from accompanying conventional techniques do not exceed the errors associated with the latter

    A simultaneous planar laser-induced fluorescence, particle image velocimetry and particle tracking velocimetry technique for the investigation of thin liquid-film flows

    Get PDF
    AbstractA simultaneous measurement technique based on planar laser-induced fluorescence imaging (PLIF) and particle image/tracking velocimetry (PIV/PTV) is described for the investigation of the hydrodynamic characteristics of harmonically excited liquid thin-film flows. The technique is applied as part of an extensive experimental campaign that covers four different Kapitza (Ka) number liquids, Reynolds (Re) numbers spanning the range 2.3–320, and inlet-forced/wave frequencies in the range 1–10Hz. Film thicknesses (from PLIF) for flat (viscous and unforced) films are compared to micrometer stage measurements and analytical predictions (Nusselt solution), with a resulting mean deviation being lower than the nominal resolution of the imaging setup (around 20μm). Relative deviations are calculated between PTV-derived interfacial and bulk velocities and analytical results, with mean values amounting to no more than 3.2% for both test cases. In addition, flow rates recovered using LIF/PTV (film thickness and velocity profile) data are compared to direct flowmeter readings. The mean relative deviation is found to be 1.6% for a total of six flat and nine wavy flows. The practice of wave/phase-locked flow-field averaging is also implemented, allowing the generation of highly localized velocity profile, bulk velocity and flow rate data along the wave topology. Based on this data, velocity profiles are extracted from 20 locations along the wave topology and compared to analytically derived ones based on local film thickness measurements and the Nusselt solution. Increasing the waviness by modulating the forcing frequency is found to result in lower absolute deviations between experiments and theoretical predictions ahead of the wave crests, and higher deviations behind the wave crests. At the wave crests, experimentally derived interfacial velocities are overestimated by nearly 100%. Finally, locally non-parabolic velocity profiles are identified ahead of the wave crests; a phenomenon potentially linked to the cross-stream velocity field
    corecore