45 research outputs found

    Assembly of the Complex between Archaeal RNase P Proteins RPP30 and Pop5

    Get PDF
    RNase P is a highly conserved ribonucleoprotein enzyme that represents a model complex for understanding macromolecular RNA-protein interactions. Archaeal RNase P consists of one RNA and up to five proteins (Pop5, RPP30, RPP21, RPP29, and RPP38/L7Ae). Four of these proteins function in pairs (Pop5-RPP30 and RPP21–RPP29). We have used nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to characterize the interaction between Pop5 and RPP30 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu). NMR backbone resonance assignments of free RPP30 (25 kDa) indicate that the protein is well structured in solution, with a secondary structure matching that observed in a closely related crystal structure. Chemical shift perturbations upon the addition of Pop5 (14 kDa) reveal its binding surface on RPP30. ITC experiments confirm a net 1 : 1 stoichiometry for this tight protein-protein interaction and exhibit complex isotherms, indicative of higher-order binding. Indeed, light scattering and size exclusion chromatography data reveal the complex to exist as a 78 kDa heterotetramer with two copies each of Pop5 and RPP30. These results will inform future efforts to elucidate the functional role of the Pop5-RPP30 complex in RNase P assembly and catalysis

    Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model

    Get PDF
    The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradually in the slowly expanding oxygen deficient zones. Counterintuitively, nitrogen deposition near oxygen deficient zones causes a net loss of marine nitrogen due to the stoichiometry of denitrification. In our idealized atmospheric deposition simulations that only account for nitrogen cycle perturbations, these combined stabilizing feedbacks largely compensate deposition and suppress the increase in global marine productivity to 15%. Our study emphasizes including the dynamic response of nitrogen fixation and denitrification to atmospheric nitrogen deposition to predict future changes of the marine nitrogen cycle and productivity

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
    corecore