10 research outputs found

    ERIS: revitalising an adaptive optics instrument for the VLT

    Get PDF
    ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine their functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.Comment: 12 pages, Proc SPIE 10702 "Ground-Based and Airborne Instrumentation for Astronomy VII

    The 1356 earthquake: an interdisciplinary revision

    Full text link
    Within historical times one of the most damaging events in intra-plate Europe was the 1356 Basel earthquake. Given its significance for assessing regional seismic hazard in central Europe, an interdisciplinary project was launched in 2005 to re-explore this event. Our effort aimed to incorporate techniques from history, seismology, archaeology, paleoseismology and engineering. New and reinterpreted historical data from Basel and its surroundings plus archaeological findings on buildings that survived the event and still exist enabled this macroseismic assessment. Palaeoseismological studies combined with historical evidence provided additional data. For the surrounding areas, archaeology offers sparse information on some castles and churches, sometimes supported by historical records. A contemporary source allows some reconstruction of the stronger fore- and aftershocks. This expanded information base improves our sense of the event's damage and consequences. For the city of Basel, the relatively abundant archaeological data allowed us to assess statistically the macroseismic intensity at IX, although the pattern of damage was scattered. Data points for the expected area of damage around Basel are not distributed regularly. The absence of historical and archaeological findings for southern Germany might be due to archival problems; future investigation may improve this situation. Our results confirm that the Basel earthquake was the most destructive known for central Europe. Intensities up to VIII are found within a radius of about 30 km. Analysing the macroseismic field confirms our former assessment of the event and shows an epicenter located about 10 km south of Basel. The most probable range for the moment magnitude Mw is between 6.7 and 7.1

    Evolution of cellular metabolism and the rise of a globally productive biosphere

    No full text

    3. Reformanliegen: Demokratisierung und Einsatz der Kirche fĂĽr die Welt

    No full text

    Bibliography

    No full text
    corecore