3,657 research outputs found

    PSF and non-uniformity in a monolithic, fully depleted, 4T CMOS image sensor

    Get PDF
    Lateral charge diffusion is one of the main contributors to the Point Spread Function (PSF) in CMOS image sensors, due to the small depth to which they can be depleted. This can have an adverse effect on the spatial resolution of the sensor and the measured shape of the observed object. In this paper, PSF measurements are made on a novel CMOS detector capable of reverse bias and full depletion. The PSF is measured with the Virtual Knife Edge (VKE) technique at five wavelengths, from 470 nm to 940 nm, to ascertain wavelength dependence. The inter- and intra-pixel non-uniformity is examined to determine the difference between pixels as well as within the pixels themselves. Finally, the pixel structure is also evaluated using a 1 µm spot of light to examine the effect of the internal layout of a pixel on the sensitivity to light. These factors all impact precision astronomical measurements and so need to be understood before use in science missions

    A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space.

    Get PDF
    Three-dimensional (3D) spatial cells in the mammalian hippocampal formation are believed to support the existence of 3D cognitive maps. Modeling studies are crucial to comprehend the neural principles governing the formation of these maps, yet to date very few have addressed this topic in 3D space. Here we present a hierarchical network model for the formation of 3D spatial cells using anti-Hebbian network. Built on empirical data, the model accounts for the natural emergence of 3D place, border, and grid cells, as well as a new type of previously undescribed spatial cell type which we call plane cells. It further explains the plausible reason behind the place and grid-cell anisotropic coding that has been observed in rodents and the potential discrepancy with the predicted periodic coding during 3D volumetric navigation. Lastly, it provides evidence for the importance of unsupervised learning rules in guiding the formation of higher-dimensional cognitive maps

    A complete factorization of paraunitary matrices with pairwise mirror-image symmetry in the frequency domain

    Get PDF
    The problem of designing orthonormal (paraunitary) filter banks has been addressed in the past. Several structures have been reported for implementing such systems. One of the structures reported imposes a pairwise mirror-image symmetry constraint on the frequency responses of the analysis (and synthesis) filters around π/2. This structure requires fewer multipliers, and the design time is correspondingly less than most other structures. The filters designed also have much better attenuation. In this correspondence, we characterize the polyphase matrix of the above filters in terms of a matrix equation. We then prove that the structure reported in a paper by Nguyen and Vaidyanathan, with minor modifications, is complete. This means that every polyphase matrix whose filters satisfy the mirror-image property can be factorized in terms of the proposed structure

    Coding gain in paraunitary analysis/synthesis systems

    Get PDF
    A formal proof that bit allocation results hold for the entire class of paraunitary subband coders is presented. The problem of finding an optimal paraunitary subband coder, so as to maximize the coding gain of the system, is discussed. The bit allocation problem is analyzed for the case of the paraunitary tree-structured filter banks, such as those used for generating orthonormal wavelets. The even more general case of nonuniform filter banks is also considered. In all cases it is shown that under optimal bit allocation, the variances of the errors introduced by each of the quantizers have to be equal. Expressions for coding gains for these systems are derived

    Generalized polyphase representation and application to coding gain enhancement

    Get PDF
    Generalized polyphase representations (GPP) have been mentioned in literature in the context of several applications. In this paper, we provide a characterization for what constitutes a valid GPP. Then, we study an application of GPP, namely in improving the coding gains of transform coding systems. We also prove several properties of the GPP
    corecore