55 research outputs found

    The Influence of Scale Preferences on the Design of a Water Innovation: A Case in Dutch River Management

    Get PDF
    The debate on scale use in river management focuses primarily on the (lack of) fit between the bio-geophysical and institutional systems. However, in this article we focus on the ‘subjective’ aspect of scale preferences in water governance. We apply an adapted version of the Integrated Scale Hierarchy for Rivers to determine the degree of fit between the scale preferences of the actors involved in a Dutch case study and the scale requirements of the innovative river management concept. This allows us to understand which riverine processes and characteristics are regarded as important by the different actors and to identify mismatches in scale perspectives as they manifest themselves in water management practice. We discover that inflexibility in scale use on the part of the involved actors places bounds on the design and quality of interventions and demonstrate that a more flexible use of scales in the design phase of a river management intervention has the potential to lead to more effective solutions

    The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

    Get PDF
    BACKGROUND: The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. CONCLUSIONS/SIGNIFICANCE: These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands

    Adrenal suppression: A practical guide to the screening and management of this under-recognized complication of inhaled corticosteroid therapy

    Get PDF
    Inhaled corticosteroids (ICSs) are the most effective anti-inflammatory agents available for the treatment of asthma and represent the mainstay of therapy for most patients with the disease. Although these medications are considered safe at low-to-moderate doses, safety concerns with prolonged use of high ICS doses remain; among these concerns is the risk of adrenal suppression (AS). AS is a condition characterized by the inability to produce adequate amounts of the glucocorticoid, cortisol, which is critical during periods of physiological stress. It is a proven, yet under-recognized, complication of most forms of glucocorticoid therapy that can persist for up to 1 year after cessation of corticosteroid treatment. If left unnoticed, AS can lead to significant morbidity and even mortality. More than 60 recent cases of AS have been described in the literature and almost all cases have involved children being treated with ≥500 μg/day of fluticasone

    The impact of submersed aquatic vegetation on the development of river mouth bars

    No full text
    This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore