356 research outputs found

    Tumor infiltrating lymphocytes in ovarian cancer.

    Get PDF
    Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker

    Signal pathways underlying homocysteine-induced production of MCP-1 and IL-8 in cultured human whole blood

    Full text link
    Aim : To elucidate the mechanisms underlying homocysteine (Hcy)-induced chemokine production. Methods : Human whole blood was pretreated with inhibitors of calmodulin (CaM), protein kinase C (PKC), protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK), and NF-ΚB and activators of PPARΓ for 60 min followed by incubation with Hcy 100 Μmol/L for 32 h. The levels of mitogen chemokine protein (MCP)-1 and interleukin-8 (IL-8) were determined by enzyme-linked immunosorbant assay (ELISA). Results : Inhibitors of PKC (calphostin C, 50-500 nmol/L and RO-31-8220, 10–100 nmol/L), CaM (W7, 28–280 Μmol/L), ERK1/2 MAPK (PD 98059, 2–20 Μmol/L), p38 MAPK (SB 203580, 0.6–6 Μmol/L), JNK MAPK (curcumin, 2–10 Μmol/L), and NF-ΚB (PDTC, 10-100 nmol/L) markedly reduced Hcy 100 Μmol/L-induced production of MCP-1 and IL-8 in human cultured whole blood, but the inhibitors of PTK (genistein, 2.6–26 Μmol/L and tyrphostin, 0.5-5 Μmol/L) had no obvious effect on MCP-1 and IL-8 production. PPARΓ activators (ciglitazone 30 Μmol/L and troglitazone 10 Μmol/L) depressed the Hcy-induced MCP-1 production but not IL-8 production in the cultured whole blood. Conclusion : Hcy-induced MCP-1 and IL-8 production is mediated by activated signaling pathways such as PKC, CaM, MAPK, and NF-ΚB. Our results not only provide clues for the signal transduction pathways mediating Hcy-induced chemokine production, but also offer a plausible explanation for a pathogenic role of hyperhomocysteinemia in these diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75644/1/j.1745-7254.2005.00005.x.pd

    Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a g-quadruplex-binding small molecule

    Get PDF
    Human pancreatic ductal adenocarcinoma (PDAC) involves the dysregulation of multiple signaling pathways. A novel approach to the treatment of PDAC is described, involving the targeting of cancer genes in PDAC pathways having over-representation of G-quadruplexes, using the trisubstituted naphthalene diimide quadruplex-binding compound 2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (CM03). This compound has been designed by computer modeling, is a potent inhibitor of cell growth in PDAC cell lines, and has anticancer activity in PDAC models, with a superior profile compared to gemcitabine, a commonly used therapy. Whole-transcriptome RNA-seq methodology has been used to analyze the effects of this quadruplex-binding small molecule on global gene expression. This has revealed the down-regulation of a large number of genes, rich in putative quadruplex elements and involved in essential pathways of PDAC survival, metastasis, and drug resistance. The changes produced by CM03 represent a global response to the complexity of human PDAC and may be applicable to other currently hard-to-treat cancers

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing

    Get PDF
    BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.This work was supported by grants from Spanish Health Ministry (FIS) network RIRAAF (RD 07/0064).Ye

    Diversity of Protein and mRNA Forms of Mammalian Methionine Sulfoxide Reductase B1 Due to Intronization and Protein Processing

    Get PDF
    Background: Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney. Principal Findings: Here, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3′-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms. Conclusions: This study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1

    Effects of Hepatitis B Virus S Protein Exposure on Sperm Membrane Integrity and Functions

    Get PDF
    Background: Hepatitis B is a public health problem worldwide. Viral infection can affect a man’s fertility, but only scant information about the influence of hepatitis B virus (HBV) infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs) on human sperm membrane integrity and functions. Methods/Principal Findings: Reactive oxygen species (ROS), lipid peroxidation (LP), total antioxidant capacity (TAC) and phosphatidylserine (PS) externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and flow cytometric analyses were performed. (1) After 3 h incubation with 25 mg/ml of HBs, the average rates of ROS positive cells, annexin V–positive/propidium iodide (PI)-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA) in the sperm cells exposed to 50 mg/ml of HBs for 3 h was significantly higher than that in the control (P,0.05–0.01). (2) HBs increased the MDA levels and the numbers of ROS positive cells, annexin V–positive/PI-negative cells, caspases-3,-8,-9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3) HBs monoclonal antibody (MAb) and N-Acetylcysteine (NAC) reduced the number of ROS-positive sperm cells. (4) HBs decreased the TAC levels in sperm cells in a dose-dependent manner. Conclusion: HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation o

    High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial growth factor receptor (<it>EGFR</it>) and <it>KRAS </it>mutation status have been reported as predictive markers of tumour response to <it>EGFR </it>inhibitors. High resolution melting (HRM) analysis is an attractive screening method for the detection of both known and unknown mutations as it is rapid to set up and inexpensive to operate. However, up to now it has not been fully validated for clinical samples when formalin-fixed paraffin-embedded (FFPE) sections are the only material available for analysis as is often the case.</p> <p>Methods</p> <p>We developed HRM assays, optimised for the analysis of FFPE tissues, to detect somatic mutations in <it>EGFR </it>exons 18 to 21. We performed HRM analysis for <it>EGFR </it>and <it>KRAS </it>on DNA isolated from a panel of 200 non-small cell lung cancer (NSCLC) samples derived from FFPE tissues.</p> <p>Results</p> <p>All 73 samples that harboured <it>EGFR </it>mutations previously identified by sequencing were correctly identified by HRM, giving 100% sensitivity with 90% specificity. Twenty five samples were positive by HRM for <it>KRAS </it>exon 2 mutations. Sequencing of these 25 samples confirmed the presence of codon 12 or 13 mutations. <it>EGFR </it>and <it>KRAS </it>mutations were mutually exclusive.</p> <p>Conclusion</p> <p>This is the first extensive validation of HRM on FFPE samples using the detection of <it>EGFR </it>exons 18 to 21 mutations and <it>KRAS </it>exon 2 mutations. Our results demonstrate the utility of HRM analysis for the detection of somatic <it>EGFR </it>and <it>KRAS </it>mutations in clinical samples and for screening of samples prior to sequencing. We estimate that by using HRM as a screening method, the number of sequencing reactions needed for <it>EGFR </it>and <it>KRAS </it>mutation detection can be reduced by up to 80% and thus result in substantial time and cost savings.</p
    corecore