1,167 research outputs found

    The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity

    Full text link
    Some key results obtained in joint research projects with Alex M\"uller are summarized, concentrating on the invention of the barocaloric effect and its application for cooling as well as on important findings in the field of high-temperature superconductivity resulting from neutron scattering experiments.Comment: 26 pages, 9 figure

    PCB pollution continues to impact populations of orcas and other dolphins in European waters

    Get PDF
    Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB "hotspots" for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas

    Comparative evaluation of four mosquitoes sampling methods in rice irrigation schemes of lower Moshi, northern Tanzania

    Get PDF
    Adult malaria vector sampling is the most important parameter for setting up an intervention and understanding disease dynamics in malaria endemic areas. The intervention will ideally be species-specific according to sampling output. It was the objective of this study to evaluate four sampling techniques, namely human landing catch, pit shelter, indoor resting collection and odour-baited entry trap. These four sampling methods were evaluated simultaneously for thirty days during October 2008, a season of low mosquitoes density and malaria transmission. These trapping methods were performed in one village for maximizing homogeneity in mosquito density. The cattle and man used in odour-baited entry trap were rotated between the chambers to avoid bias. A total of 3,074 mosquitoes were collected. Among these 1,780 (57.9%) were Anopheles arabiensis and 1,294 (42.1%) were Culex quinquefasciatus. Each trap sampled different number of mosquitoes, Indoor resting collection collected 335 (10.9%), Odour-baited entry trap-cow 1,404 (45.7%), Odour-baited entry trap-human 378 (12.3%), Pit shelter 562 (18.3%) and HLC 395 (12.8%). General linear model univariate analysis method was used, position of the trapping method had no effect on mosquito density catch (DF = 4, F = 35.596, P = 0.78). Days variation had no effect on the collected density too (DF = 29, F = 4.789, P = 0.09). The sampling techniques had significant impact on the caught mosquito densities (DF = 4, F = 34.636, P < 0.0001). The Wilcoxon pair-wise comparison between mosquitoes collected in human landing catch and pit shelter was significant (Z = -3.849, P < 0.0001), human landing catch versus Indoor resting collection was not significant (Z = -0.502, P = 0.615), human landing catch versus odour-baited entry trap-man was significant (Z = -2.687, P = 0.007), human landing catch versus odour-baited entry trap-cow was significant (Z = -3.127, P = 0.002). Odour-baited traps with different baits and pit shelter have shown high productivity in collecting higher densities of mosquitoes than human landing catch. These abilities are the possibilities of replacing the human landing catch practices for sampling malaria vectors in areas with An. arabiensis as malaria vectors. Further evaluations of these sampling methods need to be investigated is other areas with different species

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.</p> <p>Methods</p> <p>Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.</p> <p>Results</p> <p>Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell <it>in vitro </it>and attenuated active force development of intact tissue <it>ex vivo</it>.</p> <p>Conclusions</p> <p>This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.</p

    Nf2/Merlin controls spinal cord neural progenitor function in a Rac1/ErbB2-dependent manner

    Get PDF
    Objective: Individuals with the neurofibromatosis type 2 (NF2) cancer predisposition syndrome develop spinal cord glial tumors (ependymomas) that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC) neural progenitor cells (NPCs). Methods: To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells. Results: We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane. Significance: Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma

    Modeling the evolution of a classic genetic switch

    Get PDF
    Abstract Background The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis- regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored. Results We develop a modeling framework to examine the evolution of the GAL regulatory network. This enables us to translate molecular changes in the regulatory network to changes in quantitative network function. We computationally reconstruct an inferred ancestral version of the network and trace the evolutionary paths in the lineage leading to S. cerevisiae. We explore the evolutionary landscape of possible regulatory networks and find that the operation of intermediate networks leading to S. cerevisiae differs substantially depending on the order in which evolutionary changes accumulate; in particular, we systematically explore evolutionary paths and find that some network features cannot be optimized simultaneously. Conclusions We find that a computational modeling approach can be used to analyze the evolution of a well-studied regulatory network. Our results are consistent with several experimental studies of the evolutionary of the GAL regulatory network, including increased fitness in Saccharomyces due to duplication and adaptive regulatory divergence. The conceptual and computational tools that we have developed may be applicable in further studies of regulatory network evolution
    corecore