31,427,176 research outputs found

    The evolution of the galaxy luminosity function in the rest frame blue band up to z=3.5

    Full text link
    We present an estimate of the cosmological evolution of the field galaxy luminosity function (LF) in the rest frame 4400 Angstrom B -band up to redshift z=3.5. To this purpose, we use a composite sample of 1541 I--selected galaxies selected down to I_(AB)=27.2 and 138 galaxies selected down to K_(AB)=25 from ground-based and HST multicolor surveys, most notably the new deep JHK images in the Hubble Deep Field South (HDF-S) taken with the ISAAC instrument at the ESO-VLT telescope. About 21% of the sample has spectroscopic redshifts, and the remaining fraction well calibrated photometric redshifts. The resulting blue LF shows little density evolution at the faint end with respect to the local values, while at the bright end (M_B(AB)<-20) a brightening increasing with redshift is apparent with respect to the local LF. Hierarchical CDM models overpredict the number of faint galaxies by about a factor 3 at z=1. At the bright end the predicted LFs are in reasonable agreement only at low and intermediate redshifts (z=1), but fail to reproduce the pronounced brightening observed in the high redshift (z=2-3) LF. This brightening could mark the epoch where a major star formation activity is present in the galaxy evolution.Comment: 14 pages, 2 figures, Astrophysical Journal Letters, in pres

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Mixed-mode oscillations in a multiple time scale phantom bursting system

    Get PDF
    In this work we study mixed mode oscillations in a model of secretion of GnRH (Gonadotropin Releasing Hormone). The model is a phantom burster consisting of two feedforward coupled FitzHugh-Nagumo systems, with three time scales. The forcing system (Regulator) evolves on the slowest scale and acts by moving the slow nullcline of the forced system (Secretor). There are three modes of dynamics: pulsatility (transient relaxation oscillation), surge (quasi steady state) and small oscillations related to the passage of the slow nullcline through a fold point of the fast nullcline. We derive a variety of reductions, taking advantage of the mentioned features of the system. We obtain two results; one on the local dynamics near the fold in the parameter regime corresponding to the presence of small oscillations and the other on the global dynamics, more specifically on the existence of an attracting limit cycle. Our local result is a rigorous characterization of small canards and sectors of rotation in the case of folded node with an additional time scale, a feature allowing for a clear geometric argument. The global result gives the existence of an attracting unique limit cycle, which, in some parameter regimes, remains attracting and unique even during passages through a canard explosion.Comment: 38 pages, 16 figure

    Relativity in Introductory Physics

    Full text link
    A century after its formulation by Einstein, it is time to incorporate special relativity early in the physics curriculum. The approach advocated here employs a simple algebraic extension of vector formalism that generates Minkowski spacetime, displays covariant symmetries, and enables calculations of boosts and spatial rotations without matrices or tensors. The approach is part of a comprehensive geometric algebra with applications in many areas of physics, but only an intuitive subset is needed at the introductory level. The approach and some of its extensions are given here and illustrated with insights into the geometry of spacetime.Comment: 29 pages, 5 figures, several typos corrected, some discussion polishe

    SLIM : Scalable Linkage of Mobility Data

    Get PDF
    We present a scalable solution to link entities across mobility datasets using their spatio-temporal information. This is a fundamental problem in many applications such as linking user identities for security, understanding privacy limitations of location based services, or producing a unified dataset from multiple sources for urban planning. Such integrated datasets are also essential for service providers to optimise their services and improve business intelligence. In this paper, we first propose a mobility based representation and similarity computation for entities. An efficient matching process is then developed to identify the final linked pairs, with an automated mechanism to decide when to stop the linkage. We scale the process with a locality-sensitive hashing (LSH) based approach that significantly reduces candidate pairs for matching. To realize the effectiveness and efficiency of our techniques in practice, we introduce an algorithm called SLIM. In the experimental evaluation, SLIM outperforms the two existing state-of-the-art approaches in terms of precision and recall. Moreover, the LSH-based approach brings two to four orders of magnitude speedup

    Afterglow upper limits for four short duration, hard spectrum gamma-ray bursts

    Get PDF
    We present interplanetary network localization, spectral, and time history information for four short-duration, hard spectrum gamma-ray bursts, GRB000607, 001025B, 001204, and 010119. All of these events were followed up with sensitive radio and optical observations (the first and only such bursts to be followed up in the radio to date), but no detections were made, demonstrating that the short bursts do not have anomalously intense afterglows. We discuss the upper limits, and show that the lack of observable counterparts is consistent both with the hypothesis that the afterglow behavior of the short bursts is like that of the long duration bursts, many of which similarly have no detectable afterglows, as well as with the hypothesis that the short bursts have no detectable afterglows at all. Small number statistics do not allow a clear choice between these alternatives, but given the present detection rates of various missions, we show that progress can be expected in the near future.Comment: 19 pages, 4 figures; Revised version, accepted by the Astrophysical Journa

    Non-thermal Processes in Black-Hole-Jet Magnetospheres

    Full text link
    The environs of supermassive black holes are among the universe's most extreme phenomena. Understanding the physical processes occurring in the vicinity of black holes may provide the key to answer a number of fundamental astrophysical questions including the detectability of strong gravity effects, the formation and propagation of relativistic jets, the origin of the highest energy gamma-rays and cosmic-rays, and the nature and evolution of the central engine in Active Galactic Nuclei (AGN). As a step towards this direction, this paper reviews some of the progress achieved in the field based on observations in the very high energy domain. It particularly focuses on non-thermal particle acceleration and emission processes that may occur in the rotating magnetospheres originating from accreting, supermassive black hole systems. Topics covered include direct electric field acceleration in the black hole's magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek mechanism, centrifugal acceleration and magnetic reconnection, along with the relevant efficiency constraints imposed by interactions with matter, radiation and fields. By way of application, a detailed discussion of well-known sources (Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49 pages, 15 figures; minor typos corrected to match published versio
    • …
    corecore