In this work we study mixed mode oscillations in a model of secretion of GnRH
(Gonadotropin Releasing Hormone). The model is a phantom burster consisting of
two feedforward coupled FitzHugh-Nagumo systems, with three time scales. The
forcing system (Regulator) evolves on the slowest scale and acts by moving the
slow nullcline of the forced system (Secretor). There are three modes of
dynamics: pulsatility (transient relaxation oscillation), surge (quasi steady
state) and small oscillations related to the passage of the slow nullcline
through a fold point of the fast nullcline. We derive a variety of reductions,
taking advantage of the mentioned features of the system. We obtain two
results; one on the local dynamics near the fold in the parameter regime
corresponding to the presence of small oscillations and the other on the global
dynamics, more specifically on the existence of an attracting limit cycle. Our
local result is a rigorous characterization of small canards and sectors of
rotation in the case of folded node with an additional time scale, a feature
allowing for a clear geometric argument. The global result gives the existence
of an attracting unique limit cycle, which, in some parameter regimes, remains
attracting and unique even during passages through a canard explosion.Comment: 38 pages, 16 figure