8 research outputs found

    Functional network analyses and dynamical modeling of proprioceptive updating of the body schema

    Full text link
    Proprioception is an ability to perceive the position and speed of body parts that is important for construction of the body schema in the brain. Proper updating of the body schema is necessary for appropriate voluntary movement. However, the mechanisms mediating such an updating are not well understood. To study these mechanisms when the body part was at rest, electroencephalography (EEG) and evoked potentials studies were employed, and when the body was in motion, kinematic studies were performed. An experimental approach to elicit proprioceptive P300 evoked potentials was developed providing evidence that processing of novel passive movements is similar to processing of novel visual and auditory stimuli. The latencies of the proprioceptive P300 potentials were found to be greater than those elicited by auditory, but not different from those elicited by the visual stimuli. The features of the functional networks that generated the P300s were analyzed for each modality. Cross-correlation networks showed both common features, e.g. connections between frontal and parietal areas, and the stimulus-specific features, e.g. increases of the connectivity for temporal electrodes in the visual and auditory networks, but not in the proprioceptive ones. The magnitude of coherency networks showed a reduction in alpha band connectivity for most of the electrodes groupings for all stimuli modalities, but did not demonstrate modality-specific features. Kinematic study compared performances of 19 models previously proposed in the literature for movements at the shoulder and elbow joints in terms of their ability to reconstruct the speed profiles of the wrist pointing movements. It was found that lognormal and beta function models are most suitable for wrist speed profile modeling. In addition, an investigation of the blinking rates during the P300 potentials recordings revealed significantly lower rates in left-handed participants, compared to the right-handed ones. Future work will include expanding the experimental and analytical methodologies to different kinds of proprioceptive stimuli (displacements and speeds) and experimental paradigms (error-related negativity potentials), and comparing the models of the speed profiles produced by the feet to those of the wrists, as well as replicating the observations made on the blinking rates in a larger scale study

    A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy

    Get PDF
    Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal–plantar and inversion–eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different “human” hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots

    ESPEN Guideline: Clinical Nutrition in inflammatory bowel disease

    Get PDF
    Introduction: The ESPEN guideline presents a multidisciplinary focus on clinical nutrition in inflammatory bowel disease (IBD). Methodology: The guideline is based on extensive systematic review of the literature, but relies on expert opinion when objective data were lacking or inconclusive. The conclusions and 64 recommendations have been subject to full peer review and a Delphi process in which uniformly positive responses (agree or strongly agree) were required. Results: IBD is increasingly common and potential dietary factors in its aetiology are briefly reviewed. Malnutrition is highly prevalent in IBD – especially in Crohn's disease. Increased energy and protein requirements are observed in some patients. The management of malnu-trition in IBD is considered within the general context of support for malnourished patients. Treatment of iron deficiency (parenterally if necessary) is strongly recommended. Routine provision of a special diet in IBD is not however supported. Parenteral nutrition is indicated only when enteral nutrition has failed or is impossible. The recommended perioperative man-agement of patients with IBD undergoing surgery accords with general ESPEN guidance for patients having abdominal surgery. Probiotics may be helpful in UC but not Crohn's disease. Primary therapy using nutrition to treat IBD is not supported in ulcerative colitis, but is mod-erately well supported in Crohn's disease, especially in children where the adverse conse-quences of steroid therapy are proportionally greater. However, exclusion diets are generally not recommended and there is little evidence to support any particular formula feed when nutritional regimens are constructed. Conclusions: Available objective data to guide nutritional support and primary nutritional therapy in IBD are presented as 64 recommendations, of which 9 are very strong recom-mendations (grade A), 22 are strong recommendations (grade B) and 12 are based only on sparse evidence (grade 0); 21 recommendations are good practice points (GPP)

    Application of Singular Spectrum-based Change-point Analysis to EMG Event Detection

    No full text
    Electromyogram (EMG) is an established tool to study operation of neuromuscular systems. In analysing EMG signals, accurate detection of the movement-related events in the signal is frequently necessary. I explored the application of change-point detection algorithm proposed by Moskvina et. al., 2003 to EMG event detection, and evaluated the technique’s performance comparing it to two common threshold-based event detection methods and to the visual estimates of the EMG events performed by trained practitioners in the field. The algorithm was implemented in MATLAB and applied to EMG segments recorded from wrist and trunk muscles. The quality and frequency of successful detection were assessed for all methods, using the average visual estimate as the baseline, against which techniques were evaluated. The application showed that the change-point detection can successfully locate multiple changes in the EMG signal, but the maximum value of the detection statistic did not always identify the muscle activation onset.MAS

    Molecular mechanisms of drug resistance

    No full text

    DNA-binding agents

    No full text
    corecore