1,431 research outputs found

    Ensemble inequivalence in systems with long-range interactions

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We illustrate our results showing an application to the Blume-Emery-Griffiths model. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 12 pages, no figure

    Ensemble inequivalence: A formal approach

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 4 pages, no figures, given at the NEXT2001 conference on non-extensive thermodynamic

    Spectral correlations in the crossover between GUE and Poisson regularity: on the identification of scales

    Full text link
    Motivated by questions of present interest in nuclear and condensed matter physics we consider the superposition of a diagonal matrix with independent random entries and a GUE. The relative strength of the two contributions is determined by a parameter λ\lambda suitably defined on the unfolded scale. Using results for the spectral two-point correlator of this model obtained in the framework of the supersymmetry method we focus attention on two different regimes. For λ\lambda << 1 the correlations are given by Dawson's integral while for λ\lambda >> 1 we derive a novel analytical formula for the two-point function. In both cases the energy scales, in units of the mean level spacing, at which deviations from pure GUE behavior become noticable can be identified. We also derive an exact expansion of the local level density for finite level number.Comment: 15 pages, Revtex, no figures, to be published in special issue of J. Math. Phys. (1997
    corecore