587 research outputs found

    A History of Human Rights in Hartford

    Get PDF

    Melanoma of Unknown Primary Presenting as a Single Back Mass

    Get PDF
    In this report, we present a case involving the discovery of metastatic melanoma within a mid-right back mass with the clinical presentation of an epidermoid cyst, but the histological qualities of a lymph node. A 43-year-old male presented with a 5 cm x 5 cm cyst-like mass on his mid-right back that had become painful over the last year and consequently underwent three surgical procedures. First, initial excision of the back mass and histological examination resulted in a diagnosis of metastatic melanoma without epidermal involvement. This was followed by re-excision of the back mass site and sentinel node excision, and finally, lymph node dissection of the right axilla. Of the lymph nodes examined, the sentinel node in the right axilla alone showed evidence of melanoma. The absence of a primary lesion or any histological evidence of regression in a presumed primary site resulted in a diagnosis of melanoma of unknown primary, or occult primary melanoma. To our knowledge, this is the first documented case of an occult primary melanoma presenting as a single mass representing a lymph node in the back

    Implications of Epithelial–Mesenchymal Plasticity for Heterogeneity in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is a genetically heterogeneous disease that develops and progresses through several distinct pathways characterized by genomic instability. In recent years, it has emerged that inherent plasticity in some populations of CRC cells can contribute to heterogeneity in differentiation state, metastatic potential, therapeutic response, and disease relapse. Such plasticity is thought to arise through interactions between aberrant signaling events, including persistent activation of the APC/β-catenin and KRAS/BRAF/ERK pathways, and the tumor microenvironment. Here, we highlight key concepts and evidence relating to the role of epithelial-mesenchymal plasticity as a driver of CRC progression and stratification of the disease into distinct molecular and clinicopathological subsets

    Implications of epithelial–mesenchymal plasticity for heterogeneity in colorectal cancer

    No full text
    Colorectal cancer (CRC) is a genetically heterogeneous disease that develops and progresses through several distinct pathways characterized by genomic instability. In recent years, it has emerged that inherent plasticity in some populations of CRC cells can contribute to heterogeneity in differentiation state, metastatic potential, therapeutic response, and disease relapse. Such plasticity is thought to arise through interactions between aberrant signaling events, including persistent activation of the APC/β-catenin and KRAS/BRAF/ERK pathways, and the tumor microenvironment. Here, we highlight key concepts and evidence relating to the role of epithelial-mesenchymal plasticity as a driver of CRC progression and stratification of the disease into distinct molecular and clinicopathological subsets.This work was supported by grants from the National Health and Medical Research Council of Australia (to Amardeep Singh Dhillon)

    β-catenin negatively regulates expression of the prostaglandin transporter PGT in the normal intestinal epithelium and colorectal tumour cells: A role in the chemopreventive efficacy of aspirin

    Get PDF
    Background: Levels of the pro-tumorigenic prostaglandin PGE 2 are increased in colorectal cancer, previously attributed to increased synthesis through COX-2 upregulation and, more recently, to decreased catabolism. The functionally linked genes 15-prostaglandin dehydrogenase (15-PGDH) and the prostaglandin transporter PGT co-operate in prostaglandin degradation and are downregulated in colorectal cancer. We previously reported repression of 15-PGDH expression by the Wnt/β-catenin pathway, commonly deregulated during early colorectal neoplasia. Here we asked whether β-catenin also regulates PGT expression. Methods: The effect of β-catenin deletion in vivo was addressed by PGT immunostaining of β-catenin/lox-villin-cre-ERT2 mouse tissue. The effect of siRNA-mediated β-catenin knockdown and dnTCF4 induction in vitro was addressed by semi-quantitative and quantitative real-time RT-PCR and immunoblotting. Results: This study shows for the first time that deletion of β-catenin in murine intestinal epithelium in vivo upregulates PGT protein, especially in the crypt epithelium. Furthermore, β-catenin knockdown in vitro increases PGT expression in both colorectal adenoma-and carcinoma-derived cell lines, as does dnTCF4 induction in LS174T cells.Conclusions:These data suggest that β-catenin employs a two-pronged approach to inhibiting prostaglandin turnover during colorectal neoplasia by repressing PGT expression in addition to 15-PGDH. Furthermore, our data highlight a potential mechanism that may contribute to the non-selective NSAID aspirins chemopreventive efficacy. © 2012 Cancer Research UK All rights reserved

    Identification of ZBTB18 as a novel colorectal tumor suppressor gene through genome-wide promoter hypermethylation analysis

    Get PDF
    Background Cancer initiation and progression are driven by genetic and epigenetic changes. Although genome/exome sequencing has significantly contributed to the characterization of the genetic driver alterations, further investigation is required to systematically identify cancer driver genes regulated by promoter hypermethylation. Results Using genome-wide analysis of promoter methylation in 45 colorectal cancer cell lines, we found that higher overall methylation levels were associated with microsatellite instability (MSI), faster proliferation and absence of APC mutations. Because epigenetically silenced genes could represent important oncogenic drivers, we used mRNA expression profiling of colorectal cancer cell lines and primary tumors to identify a subset of 382 (3.9%) genes for which promoter methylation was negatively associated with gene expression. Remarkably, a significant enrichment in zinc finger proteins was observed, including the transcriptional repressor ZBTB18. Re-introduction of ZBTB18 in colon cancer cells significantly reduced proliferation in vitro and in a subcutaneous xenograft mouse model. Moreover, immunohistochemical analysis revealed that ZBTB18 is frequently lost or reduced in colorectal tumors, and reduced ZBTB18 expression was found to be associated with lymph node metastasis and shorter survival of patients with locally advanced colorectal cancer. Conclusions We identified a set of 382 genes putatively silenced by promoter methylation in colorectal cancer that could significantly contribute to the oncogenic process. Moreover, as a proof of concept, we demonstrate that the epigenetically silenced gene ZBTB18 has tumor suppressor activity and is a novel prognostic marker for patients with locally advanced colorectal cancer.Peer reviewe

    Regulation of E-cadherin and Î’-catenin by Ca 2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function

    Full text link
    An siRNA directed against the extracellular calcium-sensing receptor (CaSR) was used to down-regulate this protein in CBS colon carcinoma cells. In additional studies, we utilized a variant of the parental CBS line that demonstrates CaSR expression but does not upregulate this protein in response to extracellular Ca 2+ . In neither the siRNA-transfected cells nor the Ca 2+ -nonresponsive variant cells did inclusion of Ca 2+ in the culture medium inhibit proliferation or induce morphological alterations. Extracellular Ca 2+ also failed to induce E-cadherin production or a shift in Β-catenin from the cytoplasm to the cell membrane. In mock-transfected cells and in a Ca 2+ -responsive variant line derived from the same parental CBS cells, Ca 2+ treatment resulted in growth-reduction. This was accompanied by increased E-cadherin production and a shift in Β-catenin distribution from the cytoplasm to the cell membrane. Additionally, down-regulation of c-myc and cyclin D1 expression was observed in mock-transfected cells and in the Ca 2+ -responsive variant line (along with reduced T cell factor transcriptional activation). Neither c-myc nor cyclin D1 was significantly down-regulated in the siRNA-transfected cells or in the Ca 2+ -nonresponsive variant cells upon Ca 2+ stimulation. In histological sections of human colon carcinoma CaSR was significantly reduced as compared to the level in normal colonic crypt epithelial cells. Where CaSR expression was high, strong surface staining for E-cadherin and Β-catenin was observed. Where CaSR expression was reduced, Β-catenin surface expression was likewise reduced. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56113/1/22858_ftp.pd

    Widespread FRA1-Dependent Control of Mesenchymal Transdifferentiation Programs in Colorectal Cancer Cells

    No full text
    Tumor invasion and metastasis involves complex remodeling of gene expression programs governing epithelial homeostasis. Mutational activation of the RAS-ERK is a frequent occurrence in many cancers and has been shown to drive overexpression of the AP-1 family transcription factor FRA1, a potent regulator of migration and invasion in a variety of tumor cell types. However, the nature of FRA1 transcriptional targets and the molecular pathways through which they promote tumor progression remain poorly understood. We found that FRA1 was strongly expressed in tumor cells at the invasive front of human colorectal cancers (CRCs), and that its depletion suppressed mesenchymal-like features in CRC cells in vitro. Genome-wide analysis of FRA1 chromatin occupancy and transcriptional regulation identified epithelial-mesenchymal transition (EMT)-related genes as a major class of direct FRA1 targets in CRC cells. Expression of the pro-mesenchymal subset of these genes predicted adverse outcomes in CRC patients, and involved FRA-1-dependent regulation and cooperation with TGFβ signaling pathway. Our findings reveal an unexpectedly widespread and direct role for FRA1 in control of epithelial-mesenchymal plasticity in CRC cells, and suggest that FRA1 plays an important role in mediating cross talk between oncogenic RAS-ERK and TGFβ signaling networks during tumor progression.This work was supported by project grants 1026228 and 1044168 (to A.S.D.) and Senior Research Fellowships (to R.D.H., R.B.P. and J.M.M.) from the National Health and Medical Research Council of Australia
    • …
    corecore