83 research outputs found

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Molecular Origin and Taxonomy of Mucinous Ovarian Carcinoma

    Get PDF
    Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain etiology, including whether it genuinely arises at the ovary or is metastatic disease from other organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic disease are poorly defined. We perform genetic analysis of MOC across all histological grades, including benign and borderline mucinous ovarian tumors, and compare these to tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct from tumors from other sites and supports a progressive model of evolution from borderline precursors to high-grade invasive MOC. Key drivers of progression identified are TP53 mutation and copy number aberrations, including a notable amplicon on 9p13. High copy number aberration burden is associated with worse prognosis in MOC. Our data conclusively demonstrate that MOC arise from benign and borderline precursors at the ovary and are not extra-ovarian metastases

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Field assessment of the risk posed by Diorhabda elongata, a biocontrol agent for control of saltcedar (Tamarix spp.), to a nontarget plant, Frankenia salina

    Get PDF
    The biological control program for saltcedar (Tamarix spp.) has led to open releases of a specialist beetle (Chrysomelidae: Diorhabda elongata) in several research locations, but the controversy over potential impacts to native, nontarget plants of the genus Frankenia remains unresolved. To assess the potential for nontarget impacts under Weld conditions, we installed cultivated Frankenia spp. (primarily two forms of Frankenia salina but also including Frankenia jamesii) at locations in Nevada and Wyoming where D. elongata densities and saltcedar defoliation were expected to be very high, so insects would be near starvation with high probability of attacking nontargets if these were suitable hosts. Subsequent insect abundance was high, and only minor impact (\u3c4% foliar damage) was observed on both forms of F. salina under these ‘worst case’ conditions; there was no impact to F. jamesii. No oviposition nor larval development were observed on any plants, there was no dieback of damaged F. salina stems, and plants continued growing once insect populations subsided. These results under ‘natural’ Weld conditions contrast with caged host-range tests in which feeding, development and minor oviposition occurred on the nontarget plant. Other ecological factors, such as distance from target plants to natural Frankenia spp. populations, inhospitable conditions for agent survival in such sites, and intrinsic insect behavior that makes colonization and/or genetic adaptation highly unlikely, lead us to conclude that nontarget impacts following program implementation will be insignificant or absent. Host range testing of new agents, while necessary to ensure safety, must put greater attention on assessing the ecological context where agents will be establishing, and on balancing speculated risks against potential benefits of biological control

    Open field host selection and behavior by tamarisk beetles (Diorhabda spp.) (Coleoptera: Chrysomelidae) in biological control of exotic saltcedars (Tamarix spp.) and risks to non-target athel (T. aphylla) and native Frankenia spp.

    Get PDF
    Biological control of invasive saltcedars (Tamarix spp.) in the western U.S. by exotic tamarisk leaf beetles, Diorhabda spp., first released in 2001 after 15 years of development, has been successful. In Texas, beetles from Crete, Greece were first released in 2004 and are providing control. However, adults alight, feed and oviposit on athel (Tamarix aphylla), an evergreen tree used for shade and as a windbreak in the southwestern U.S. and México, and occasionally feed on native Frankenia spp. plants. The ability of tamarisk beetles to establish on these potential field hosts was investigated in the field. In no-choice tests in bagged branches, beetle species from Crete and Sfax, Tunisia produced 30–45% as many egg masses and 40–60% as many larvae on athel as on saltcedar. In uncaged choice tests in south Texas, adult, egg mass and larval densities were 10-fold higher on saltcedar than on adjacent athel trees after 2 weeks, and damage by the beetles was 2- to 10-fold greater on saltcedar. At a site near Big Spring, in west-central Texas, adults, egg masses and 1st and 2nd instar larvae were 2- to 8-fold more abundant on saltcedar than on athel planted within a mature saltcedar stand being defoliated by Crete beetles, and beetles were 200-fold or less abundant or not found at all on Frankenia. At a site near Lovelock, Nevada, damage by beetles of a species collected from Fukang, China was 12–78% higher on saltcedar than on athel planted among mature saltcedar trees undergoing defoliation. The results demonstrate that 50–90% reduced oviposition on athel and beetle dispersal patterns within resident saltcedar limit the ability of Diorhabda spp. to establish populations and have impact on athel in the field

    Data from: Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.)

    No full text
    In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on post release evolution of beneficial life history traits. In this study we measure evolution of critical day length for diapause induction, (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America seven years after introduction and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control
    corecore