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ARTICLE

The molecular origin and taxonomy of mucinous
ovarian carcinoma
Dane Cheasley et al.#

Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain

etiology, including whether it genuinely arises at the ovary or is metastatic disease from other

organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic

disease are poorly defined. We perform genetic analysis of MOC across all histological

grades, including benign and borderline mucinous ovarian tumors, and compare these to

tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct

from tumors from other sites and supports a progressive model of evolution from borderline

precursors to high-grade invasive MOC. Key drivers of progression identified are TP53

mutation and copy number aberrations, including a notable amplicon on 9p13. High copy

number aberration burden is associated with worse prognosis in MOC. Our data conclusively

demonstrate that MOC arise from benign and borderline precursors at the ovary and are not

extra-ovarian metastases.
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The origin of mucinous ovarian carcinoma (MOC) has long
been controversial. It is now recognized that in the past,
many mucinous tumors involving the ovary were in fact

misdiagnosed metastases from diverse extra-ovarian sites, such as
the colon, stomach, pancreas and uterus1. After revisions to the
diagnostic criteria, the rate of mucinous tumors appearing to arise
from the ovary fell from ~10% to only 3–5% of all epithelial
ovarian cancers2. Nonetheless, it remains contentious if even
these cancers represent occult extra-ovarian metastases3. Accu-
rate diagnosis of primary MOC remains challenging, with a
metastatic tumor from the lower gastrointestinal tract the most
common alternative4. Knowing primary versus metastatic status
strongly influences therapy selection, since most international
guidelines indicate that first line therapy should be based on the
tissue of origin5–7. Ovarian platinum-based therapies have low
response rates for MOC8 and because of the morphological
similarities with colorectal mucinous tumors, a colorectal treat-
ment regimen was proposed9. The difficulties in diagnosis alter-
natively led to the suggestion that all mucinous tumors could be
treated with similar targeted therapies, regardless of origin10,11.
However, both approaches assume molecular similarities across
mucinous tumors, which is currently unknown.

Our current understanding of tumorigenesis incorporates a
model of progression whereby the acquisition of cancer hallmarks is
driven by the step-wise accumulation of genetic events12. The cell of
origin for MOC remains unknown, however, mucinous benign
cystadenomas and mucinous borderline ovarian tumors (MBT), the
latter characterized by proliferative and atypical epithelial cells
lacking stromal invasion, have been suggested as putative precursor
lesions to MOC. These benign and MBT tumors can be cured by
surgery alone13 suggesting that they are ovarian in origin and an
occult primary tumor at a distant site is unlikely.

Under a tumor progression model, we expect that if benign and
borderline lesions are precursors to MOC they will share com-
mon initiating genetic events, and that development of a more
aggressive phenotype, such as metastasis or higher tumor grade,
will be accompanied by additional genetic aberrations. In support
of this, previous work has found that MOC share genetic events
such as KRAS mutations with benign and borderline mucinous
ovarian tumors14–16. However, the contamination of earlier
molecular data with metastatic tumors masquerading as MOC
and the low sample size of more contemporary studies mean that
the genetic events that drive invasive progression and metastasis
of primary MOC remain largely unknown. In particular, due to
its rarity and high probability of confusion with metastatic
tumors from other sites, it is unclear whether MOC of high grade
can develop from low grade MOC or other precursors.

In this study we ask two key questions: are MOC distinct from
extra-ovarian metastases and primary mucinous tumors from
other sites? What are the relationships between benign, border-
line, invasive low-grade and high-grade mucinous tumors? To
address these questions comprehensive genetic analyses are per-
formed in a large multicenter, multinational cohort of these rare
tumors. We find that MOC is distinct from tumors from other
sites and identify a progressive model of evolution from border-
line precursors to high-grade invasive MOC.

Results
Genetic analysis of mucinous ovarian tumors and other tumor
sites. We amassed over 500 potential mucinous ovarian tumors,
including putative precursors, and undertook extensive patholo-
gical and clinical review to define a cohort of 255 primary MOC
(Supplementary Data 1). Cases were ascertained from partici-
pating tissue banks and hospital databases as ovarian tumors with
mucinous histology, and were reviewed with current diagnostic

criteria to exclude mixed mucinous and non-mucinous ovarian
tumors, and ovarian metastases from non-ovarian primaries (see
Methods and Supplementary Fig. 1 for details of exclusions).
Cases where the tumor was deemed likely to be metastatic but
without a known primary site were also excluded. Whole exome
sequencing was performed on primary MOC (n= 48), mucinous
benign cystadenomas (n= 5) and mucinous borderline ovarian
tumors (MBT, n= 9), including 24 sequenced in a previous
publication17. Whole genome sequencing (WGS) was also per-
formed for a subset of primary high-grade MOC (n= 5).
Recurrently mutated genes identified in these 53 MOC were
further investigated using a targeted sequencing panel in a cohort
comprising MBT (n= 20), MOC (n= 134) and extra-ovarian
metastases (n= 23) (Supplementary Data 2). The most frequent
genetic event in MOC was copy number loss or mutation in
CDKN2A (76% of cases), followed by mutations in KRAS and
TP53 (both 64%). Amplification of ERBB2 (26% of cases) and
mutations in RNF43, BRAF, PIK3CA and ARID1A (8–12% of
cases) were the next most frequent (Fig. 1a).

It has been argued that even with current diagnostic practices
most MOC, in particular high-grade cases, are metastatic tumors
from other tissue sites3. Therefore, we compared our
mucinous ovarian tumor sequencing data with that from TCGA
and other available exome sequencing data. This comparison
showed that MOC were clearly genetically distinct from high-grade
serous ovarian, endometrial, gastric and colorectal tumors, includ-
ing mucinous colorectal carcinomas and appendiceal neoplasms
(Fig. 1b). Pancreatic adenocarcinomas were the most genetically
similar to MOC, sharing the common combination of CDKN2A
inactivation, KRAS and TP53 mutations. However, other events
distinguish the two tumor types, with primary MOC carrying
ERBB2 amplifications and RNF43 mutations, whereas pancreatic
tumors show frequent SMAD4 alterations. Making it further
improbable that MOC derive from pancreatic precursors, MOC
5-year survival rates - 82% (Grade 1) and 42% (Grade 3) -
are significantly better than for metastatic pancreatic carcinoma
(~1%) or for known extra-ovarian metastatic tumors in
our cohort (Supplementary Note 1, Supplementary Tables 1–4,
Supplementary Figs. 2–5).

Progression of MOC from precursor tumors: mutation analysis.
Since our genetic data indicate that MOC are unlikely to be
metastases from extra-ovarian sites, but rather bona fide ovarian
carcinomas, we next assessed the genetic relationship between
MOC and putative benign and borderline ovarian precursors. If
MOC evolve from these non-invasive lesions, we expect them to
share initiating events (those present at allele frequencies indicating
they are present in all tumor subclones). Notably, the majority of
MOC carried at least one initiating genetic event that was also
present in most MBT cases. For example, a mutation in KRAS,
BRAF and/or CDKN2A was observed in 95% of grade 1 (83/87),
88.6% of grade 2 (70/79) and 83% of grade 3 (20/24) MOC and was
also present in 95% of MBT (Supplementary Tables 5 and 6).

Under a model of progression, we expect to observe evidence of
additional genetic events driving invasion, increasing tumor grade
and metastasis. We first evaluated whether the point mutational
profile drove invasive progression. TP53 was the only gene to
show enrichment of mutations in MOC (64%) compared to MBT
(18%) (Fisher’s exact test, two-sided, p < 0.0001, OR 0.12, 95% CI
0.045–0.31, Supplementary Table 5). Globally, MOC did not have
a significantly higher point mutation burden than observed in the
non-invasive lesions, nor did the number of variants differ with
grade (Fig. 1c). Mutation signature detection revealed that most
MOC had an age-related signature (COSMIC Sig118), either as
the major (73%) or a minor (22%) component (Fig. 1d). This
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spectrum was similar to benign tumors (100% Sig1 as the major
component) and MBT (71% major, 29% minor Sig1). A similar
signature pattern for MOC was also obtained through de novo
mutation signature detection on five grade 3 MOC cases with
WGS data. We found three identified signatures present in
varying degrees in these cases – S1 (COSMIC Sig1; Age), S2
(COSMIC Sig2 and 13; APOBEC), and S3, resembling COSMIC
Sig8 (Supplementary Fig. 6). This result indicates that MOC,
including even high-grade MOC, share similar mutational
profiles to benign and borderline precursors.

Progression of MOC from precursors: chromosome aberra-
tions. As the point mutation spectrum was similar between MOC
and the precursor lesions, we evaluated chromosome copy number
aberrations as another genetic mechanism of progression. Data for
over 250 cases (22 benign, 39 MBT and 195 MOC) show that MOC
cases have more copy number alterations than pre-invasive disease
(Fig. 2a). The fraction of the genome altered by copy number also
increases significantly with grade (Fig. 2b), and is associated with
patient outcome (Fig. 2c). Specific copy number alterations asso-
ciated with progression from MBT to grade 1 MOC were losses at
9pter-p21.2 and 17p (Fig. 2a, Supplementary Dataset 3). Increased
17p loss is likely to reflect the increased prevalence of TP53
mutations in MOC, as has been shown in other cancer types19,20. In

contrast, loss of the most obvious tumor suppressor gene on 9p,
CDKN2A (9p21.3), is an early event in mucinous ovarian carci-
nogenesis, commonly seen in benign mucinous and MBT pre-
cursors. Indeed, loss of the CDKN2A locus was not itself
significantly associated with progression (56.4% MBT, 69.7%
MOC), but an expanded area of deletion encompassing most of the
chromosomal arm was enriched in MOC. This result suggests that
other tumor suppressor genes may be located on chromosome 9
that are important for invasive progression.

Interestingly, we observed that MOC with CDKN2A loss
combined with TP53 mutation were significantly more likely to
have copy number amplification at 9p13.3 (Fisher’s exact test, two-
sided, p < 0.0001, OR 0.05, 95% CI 0.001–0.34, Fig. 3). This
combination could be synergistic in driving MOC development, as
the amplicon was not seen in MBT or benign tumors. A similar, but
independent, association was observed between TP53 mutation and
ERBB2 amplification, with this combination rarely observed in
MBT (Supplementary Fig. 7). We evaluated the effect of 9p13.3
amplification on the transcriptome and found significantly
increased expression of genes associated with chromosome
condensation and kinetochores (p= 4 × 10−9, STRING Hypergeo-
metric test, Supplementary Fig. 8). We speculate that 9p13.3
amplification could lead to enhanced genomic instability, as the
fraction of the genome altered by copy number was higher in
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9p13.3-amplified samples than non-amplified samples. In contrast,
cases with ERBB2 amplification did not have a significantly
increased copy number burden than ERBB2 non-amplified cases
(Supplementary Fig. 8, Supplementary Table 7).

Global copy number profiles fell into distinct types: simple
(23% of MOC, compared to 82% of MBT), simple with one high-
level amplification (9% MOC, 2.6% MBT), complex (23% MOC,
13% MBT), complex-whole chromosome (5% MOC, 2.6% MBT)
and complex with multiple amplifications (40% MOC, 0% MBT).
Grade 3 cases were significantly more likely than grade 1 to have a
complex profile (p= 0.03, χ2= 14.1, Chi-squared test; Supple-
mentary Table 6), or amplifications on multiple chromosomes
(p= 0.03 χ2= 10.5, Chi-squared test). The mechanisms under-
lying these structural variants varied between cases as illustrated
by four such grade 3 cases with WGS data (Fig. 4e,
Supplementary Note 1, Supplementary Tables 8 and 9). For
example, case 5950 (Fig. 4e, G3-B) had a majority of small intra-
chromosomal aberrations (64.5% of breakpoints) including fold-
back inversions (14%), whereas most structural changes in
case 6987 (Fig. 4e, G3-C) were unbalanced rearrangements > 1
Mb in size (63.7%) including inter-chromosomal translocations
(38.5%). There were no striking differences in specific regions
between grade 1 and grade 2 cases or between grade 2 and grade
3, but many regions were markedly increased in frequency of
aberration between grade 1 and grade 3, suggesting that grade 2
cases represent an intermediate molecular stage. The copy
number alterations most strongly enriched in grade 3 MOC were
gains of 1p and 19p, affecting multiple oncogenes including JUN,
JAK1, MYCL and BRD4 (Supplementary Data 3).

Molecular evolution of Grade 3 MOC and metastatic disease.
We investigated the evolutionary process from MBT to high-grade
metastatic MOC in a unique case of a patient who consented to the
collection of her primary tumor tissue at initial diagnosis and,
following recurrence with rapid deterioration in her condition, to
the donation of multiple metastatic tissue samples (n= 16) col-
lected via a rapid autopsy program (Fig. 4a, b)21. The patient was
initially diagnosed with a Stage IA tumor, mostly MBT with small
areas of invasive carcinoma (Fig. 4, Supplementary Note 1). She did
not have any chemotherapy. At 26 months after diagnosis, she
presented with widespread recurrence of infiltrative grade 3 disease
and died shortly afterwards. WGS was performed on two
histologically-distinct areas of the primary tumor (with MBT and
grade 3 invasive morphology respectively) in addition to four
regionally distinct metastatic sites (M1-4, Fig. 4b). Mutation ana-
lyses showed that the primary and recurrent tumors were clearly
clonally related, sharing driver events including TP53 and KRAS
mutations, and CDKN2A homozygous deletion. However, genetic
variants not observed in the primary tumor were found present
across the metastatic sites with high concordance. Targeted
sequencing for metastasis-specific variants indicated that 12/13
tested variants were present in at least 12 of the 15 metastatic sites
assayed (Supplementary Note 1, Supplementary Table 10), sug-
gesting that metastatic sites were all descended from a common
ancestor that developed prior to rapid dissemination.

Copy number analysis showed similar concordance for
chromosomal rearrangements among the four metastatic sites
evaluated by WGS, but a dramatic difference was seen between
the primary and recurrent tumors. The primary tumor had a
relatively stable copy number profile, with 14% of the genome
affected. Recurrent disease was associated with a near doubling of
copy number alterations (24–26% fraction genome altered), and
also a near doubling in overall ploidy (estimated at 1.9 for the
primary tumor and 3.6–3.7 for the metastases). High-level
amplifications were notably increased, from 1 to >10 events.

These amplification events encompassed 15 COSMIC oncogenes
or fusion partners, including MYC, ETV1, HMGA1, and CCND3.
While all structural variant types were increased in recurrent
samples, large intra-chromosomal and fold-back inversions were
present in greater proportions (Supplementary Note 1, Supple-
mentary Tables 8 and 9). The increase in fold-back inversions
from 4–6 (7–9%) in the primary tumor to 16–20 (12–13%) in the
metastases is consistent with the increase in high-level amplifica-
tions. Thus, we propose that disease progression in MOC is
characterized by an increase in copy number aberrations.

Consistent with the data from the rapid autopsy case, MOC
diagnosed at Stage III or IV carried a higher fraction of the genome
altered by copy number than Stage I carcinomas, even when grade
was taken into account (p= 0.007, ANOVA with Tukey post-test,
difference= 0.089, 95% CI= 0.02–0.16). Since copy number
alterations were the most striking feature of metastatic progression,
we evaluated whether they were related to patient outcome. In
MOC, high structural genomic complexity (measured as copy
number profile type (e.g. “simple”, “complex” etc.) or the fraction of
the genome altered) was significantly associated with worse overall
disease-specific and progression-free survival (Fig. 2c, Supplemen-
tary Note 1, Supplementary Figs. 4 and 5). Copy number loss/LOH
of 9p and amplification of 9p13 were also associated with poorer
clinical outcomes, but TP53 mutation, KRAS mutation or ERBB2
amplification were not. In a multivariate model selection analysis22,
the fraction of the genome altered and 9p loss were significant
factors, along with grade, ERBB2 amplification and FIGO stage
(Supplementary Note 1). The association of 9p loss with poorer
clinical outcomes cannot be due to CDKN2A loss, as the latter is an
initiating event in benign and MBT tumors where the outcomes are
favorable. Therefore, other possibly haploinsufficient tumor sup-
pressors on 9p as well as 9q may be responsible, as loss of these
chromosome arms was more frequent in tumors with disease-
specific mortality (Supplementary Fig. 9).

Discussion
We have generated a model of progression from benign to MBT
to localized low-grade MOC and progressively through to high-
grade and/or metastatic MOC. Benign tumors initiate with either
a KRAS or CDKN2A event. MBT are significantly more likely to
have both events and may have additional copy number altera-
tions. Grade 1 MOC have yet more copy number alterations, and
are more likely to have a TP53 mutation. Copy number altera-
tions are key drivers associated with increasing grade and meta-
static progression, and are potential prognostic markers.

Our data showing that MBT precursors can beget high-grade
MOC contrasts with high-grade serous ovarian carcinoma that
hardly ever derive from borderline or low-grade disease. Indeed,
the majority of grade 3 MOC had associated benign and/or
borderline components (20/23, 86%), which is rare in high-grade
serous ovarian carcinoma23. Data from epidemiological and
genome-wide association studies support a common origin for
MOC and MBT tumors, as the risk factors and SNPs are shared
between the two conditions24–26. It is therefore crucial that this
risk of progression is taken into consideration in the surgical
management of women with MBT. It remains to be determined
whether any of the genetic aberrations we have identified as
important for progression could also be prognostic markers for
MBT, for example TP53 mutation or copy number burden.

Mutation in KRAS is a key early event for ovarian mucinous
tumors. Oncogenic RAS has been linked to genomic instability
through a number of mechanisms, including replication stress
and shortened G227–29, but we did not see an association of KRAS
mutations with genomic instability overall (Supplementary
Table 7). However, survival of cells after events such as
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cytokinesis failure and genome tetraploidisation may require
aberrant p5330, and indeed TP53 mutation was strongly asso-
ciated with genomic instability measures in our cohort. The
combination of TP53 mutation and KRAS mutation in the rapid
autopsy case may explain the survival of a tumor cell after a
tetraploidisation event. This event may have enabled the increase
in copy number amplifications in this case, as tetraploidisation
has been shown to lead to increased structural variation from
elevated replication stress31. Recently, a copy number signature
that was associated with RAS pathway aberrations was identified

in high-grade serous ovarian cancer (in the context of near-
ubiquitous TP53 mutations)32. The presence of amplifications
and fold-back inversions with relatively few other breakpoints in
this signature is consistent with the type of copy number profiles
observed in the rapid autopsy case as well as many other MOC,
particularly those of high grade and/or TP53 mutated.

In conclusion, our data do not support a non-gynecological
origin for MOC as previously postulated3, but it remains unclear
whether the ovarian surface epithelium is the cell of origin for
MOC. Other “ovarian” tumor histotypes arise from non-ovarian
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cells, such as high-grade serous carcinoma (fallopian tube) and
endometriosis-associated carcinomas (endometrioid and clear cell
subtypes); MOC could be similar. This uncertainty suggests that a
personalized molecular therapeutic approach could be more effec-
tive than a standardized protocol based on the tissue of origin.
Indeed, our analysis identified several potential targets such as
RNF43 (Wnt-pathway inhibitors), ERBB2 (HER2 targeted thera-
pies), and potentially new dual RAS/RAF inhibitors targeting KRAS.
Assessing the efficacy of targeted therapies specifically for this
tumor type will be challenging given its rarity, such that basket trials
assessing specific targets may be more practical and will be crucial
to improve outcomes for women with advanced or recurrent MOC.

Methods
Cohort and pathology review. We evaluated collections of mucinous tumors from
11 different sources in four countries (Supplementary Data 1): Australia: Royal
Women’s Hospital, the Victorian Cancer Biobank, The Hudson Institute of
Medical Research (all Victoria); Garvan Institute, Westmead Gynaecological Bio-
bank (New South Wales); Queensland Institute for Medical Research-Berghoffer
(Queensland); Australian Ovarian Cancer Study (AOCS) and CASCADE (Aus-
tralia-wide); United Kingdom: Edinburgh Cancer Research Centre; United States:
the Mayo Clinic (MN); Canadian Ovarian Experimental Unified Resource
(COEUR, Quebec, Canada33) and OVCARE (British Columbia, Canada). The 527
tumors assessed included 36 benign, 136 MBT, 318 invasive primary and 37 known
extra-ovarian metastases (Supplementary Fig. 1).

The review process involved identifying frozen tissue with tumor (n= 137), and
full pathology review when diagnostic slides were available. Cases that only had
FFPE tissue available (used for targeted sequencing) underwent various levels of
pathology review, mostly of 1–2 slides. Factors assessed were based on Lee and
Young34 and included: primary tumor size ( < or ≥10 cm), unilaterality vs
bilaterality, presence of benign/borderline components, intact/smooth capsule/
surface involvement, any evidence of an extra-ovarian primary concurrently or
historically, expansile vs infiltrative invasion, presence/absence of signet ring cells,
microscopic cysts, complex papillae, necrotic debris, small glands/tubules, single
cells, nodular growth, hilar involvement. Immunohistochemistry data was also
reviewed if available. All these factors were considered collectively to reach a
decision. Review was conducted by MC, JP, PEA, CBG, MK, RS and more detail on
exclusions are provided in Supplementary Fig. 1. Grade was assessed considering
the architectural pattern (glandular < papillary < solid), nuclear anaplasia (mild <
moderate < severe), and mitoses/mm2 (≤3, 4–7, ≥8).

DNA and RNA extraction. Tumor genomic DNA was isolated from cells obtained
by needle-point microdissection of areas with >80% neoplastic cellularity from
10 μm hematoxylin and eosin (H&E)-stained tumor sections. For the discovery
cohort (frozen tissues), DNA was extracted using the DNeasy Blood and Tissue Kit
(Qiagen). Matched germline DNA was extracted from whole blood (36 cases) or
uninvolved ovarian stroma (18 cases). For the validation cohort (FFPE tissues),
microdissected tumor tissue was added to 180 μl Buffer ATL (Qiagen) with 20 μl
proteinase K solution (>600 mAU/ml, Qiagen), and incubated at 56 °C overnight to
completely lyse tissue. The following day tissue was incubated at 90 °C for 1 h to
reverse formaldehyde modification of nucleic acids. Following incubation, 2 μl
RNaseA (100 mg/ml, Qiagen) was added to sample and incubated for 2 min at
room temperature. DNA Extraction and purification of DNA was then performed
using the DNeasy Blood & Tissue Kit (Qiagen) spin-column procedure. For tumor
RNA extraction, 10 μm sections were stained with 1% cresyl violet acetate followed
by needle microdissection and RNA extraction using the miRNeasy Kit (Qiagen).

Library construction and massively parallel sequencing. Whole genome
libraries (10 tumor, 5 germline) were constructed by the Ramiaciotti Centre for
Genomics (UNSW, Sydney, Australia) from 500 ng of DNA with the Illumina
TruSeq DNA Sample Preparation protocol (Illumina, San Diego, CA, USA). Each
resulting paired-end library was sequenced on an Illumina HiSeqX. Whole exome
libraries were constructed from 200 to 500 ng of DNA. Exome capturing was
performed using the SureSelect Human All Exon kit V6 (Agilent Technologies,
Santa Clara, CA) and massively parallel sequencing performed using the Illumina
Hi-Seq2000 with 150 bp reads. Targeted sequencing of FFPE tumor DNA was
performed using a custom SureSelect XT Custom Panel (Agilent, Supplementary
Data 2). This panel targets 462 genes found to be recurrently mutated in our
discovery exome analysis, including an additional 7 actionable genes, 25 genes
associated with EOM sites, three MOC GWAS SNPs, one LGSC associated gene,
and two additional RAS/RAF driver genes. Library preparation was performed
using the KAPA Hyper Prep Kit (Kapa Biosystems). Sequencing of target-enriched
DNA libraries was performed using the Illumina Next Seq 500 generating 75 bp
paired-end sequence reads. Sequencing QC measures are provided in Supple-
mentary Data 4.

In total 200 ng of RNA was used to generate libraries using the TruSeq Stranded
Total RNA LT Sample Prep Kit with Ribo-Zero Gold (Illumina). Libraries were

pooled and single-end sequenced to 50 bp on an Illumina Hi-Seq2000 to achieve a
minimum of 30 × 106 reads per sample.

Mutation analysis. Whole-genome sequencing data was processed using Seqliner
WGS pipeline (v0.4; seqliner.org). Reads were aligned to GRCh37/hg19 using
BWA-MEM (v0.7.10). Picard (v1.119) was employed to sort and index the align-
ment BAM files, and to mark duplicate reads. Genome Analysis Toolkit (GATK;
v3.2) performed local realignment around indels and was used to recalibrate base
quality scores. Somatic variants were called from whole genomes using VarDict
(v1.4.6) and MuTect2 (v3.5). Germline variants were called using GATK Haplo-
typeCaller (v3.2).

Exome sequence variants were called using matched normal DNA when
available, with a pipeline that included subtracting variants found in the normal
DNA. Variants were called using GATK UnifiedGenotyper35, Platypus36 and
VarScan237. Called variants were annotated using the Ensembl Variant Effect
Predictor Release 7838.

Variants were filtered to identify high confidence somatic variants as follows: 1)
excluded if present in ExAc (minus TCGA samples), ExAc non-Finnish European
or EVS at an allele frequency of ≤0.0001, unless listed in ClinVar as pathogenic or
potentially pathogenic. The QUAL score had to be ≥30, read depth ≥ 10, alternative
base read depth ≥ 2, and allele frequency of >0.05. For samples with a matching
normal sample, the frequency of the alternative allele had to be ≤0.05 in the normal
DNA. Variants were excluded if the gene was blacklisted in Scheinen et al.39; if the
variant was present in more than one of our in-house collection of germline
exomes ( >300 cases); or if present in >20% of the cohort except for known hotspot
mutations (e.g. KRAS codon 12). These measures helped to reduce common
technical artefacts. Variants were excluded if called only by VarScan, and for
unpaired samples if also only called by UnifiedGenotyper. Variants also had to pass
default caller filters. For targeted sequencing analysis, all cases lacked a matching
normal, so the same filters were applied as for unpaired exomes, except the read
depth had to be ≥20 and the variant had to be supported by ≥10 reads. In addition,
variant had to be absent from three normal samples run on the same panel. Filtered
variants are in Supplementary Data 5.

Tumors with exome data lacking a normal control DNA had more variants and
were excluded from statistical analyses of mutation number and spectrum. In
performing analyses comparing the number of variants from tumors of various
types, only filtered variants in the validation panel genes were selected from exome
and WGS data to minimize the effect of the sequencing platform. The number of
variants was calculated using all coding sequence and splice-site variants and were
converted to variants per Mb by dividing by the amount of target sequence in the
capture (2.07 Mb). An ANOVA was performed using either Grade or Classification
and sequencing type (exome paired, exome unpaired, WGS, validation) as factors.
Tukey multiple testing correction was performed. Statistical analysis was
performed in R (v3.3.0) and all tests were two-sided.

Signature detection. DeconstructSigs (v1.8.0) was performed on variants filtered
as above. For de novo discovery of signatures on the WGS cases, variants were
additionally filtered against Encode blacklist, RepeatMasker, presence in dbSNP,
presence in Exome variant server (EVS). These high confidence variants were used
in NMF signature discovery (R package SomaticSignatures40) with the number of
signatures set to three.

Copy number analysis. Existing SNP array data was used when available. Copy
number data was otherwise obtained from exome sequencing using ADTEx41 using
matching normal germline DNA as a baseline when available. For whole genome
sequencing data, structural variations were predicted using MANTA (v1.0.3)42

(Supplementary Data 6) and copy number aberrations and LOH were detected
using FACETs (v0.5.6, cval 1500)43. For the targeted sequencing panel Copy-
writeR44 was used for copy number with 50 kb bins, utilising a normal lymphocyte
DNA control run in the same sequencing batch for the normalisation baseline
(NA12878, Coriell Institute). Data was then imported into Nexus Copy NumberTM

(software v8.0, BioDiscovery Inc), segmented using a FASST2 segmentation algo-
rithm and visualized (Supplementary Data 3). Thresholds were log2 ratios of ±0.2
for gains and losses, >0.6 for high level gains and <−1 for homozygous deletions.

Comparisons between groups were performed using Nexus Copy Number using
a p value threshold of <0.002 (selected by dividing a p value of 0.05 by 23 (number
of chromosomes), since segments within chromosomes are not independent). A
requirement for a percentage difference of at least 15% was also applied. Additional
filtering was performed to exclude segments that were statistically significantly
different between platforms i.e. to account for differential detection of artefactual
segments by exome analysis compared to the targeted sequencing panel. Segments
that overlapped with a copy number polymorphism (as determined by Nexus) by
>90% were also excluded.

For classifying WGS structural variants, deletions and duplications were
considered small if less than 1Mb. Inversions were also considered small if <1Mb,
but called as fold-back inversions if <30 kb, following Wang et al.45. Deletions,
duplications and inversions were called intra-chromosomal, all other translocations
(denoted “BND” in MANTA annotation) were considered to be inter-
chromosomal translocations.
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Fraction of the genome altered was the number of bases affected by copy
number change divided by the total size of each chromosome and then averaged
across all chromosomes46.

Sanger sequencing. Key variants identified by massively parallel sequencing were
validated by Sanger sequencing. Normal DNA where available was also subjected to
Sanger sequencing alongside matched tumor samples. Sanger sequencing primers
(Supplementary Table 11) were designed using the Primer 3 tool47 and target
sequences amplified. The BigDye Terminator system (Applied Biosystems) was
used for sequencing on a 3730 DNA Analyzer (Applied Biosystems). The sequencer
output was viewed using Geneious 8.1.9 software (Biomatters, Auckland, New
Zealand).

Comparison to other tumor types. Data were downloaded from cBio (April 2018)
from provisional TCGA studies of ovarian, pancreatic colorectal, endometrial and
gastric studies48–52. Results shown are in part based upon data generated by the
TCGA Research Network (http://cancergenome.nih.gov/). Additional pancreatic
data were obtained from53,54. Appendiceal exome information was derived from
two studies in the literature55,56. Only high-level amplifications and homozygous
deletions were considered for copy number changes. All mutations were included
for the majority of genes, apart from those where more information is available
regarding oncogenicity of specific mutation types such as KRAS (missense only)
and CDKN2A (inactivating mutations only). The percentage of each genetic event
in each tumor type was calculated and hierarchical clustering was performed in R
using heatmap.2 defaults in gplot v 3.0.157.

RNAseq. Differential gene expression analysis was performed using Degust58 with
a false discovery rate threshold of p < 0.05. Significantly expressed genes were
evaluated using STRING (v10.5)59, and the heatmap created using normalized gene
expression values and heatmap in R with default settings.

Statistical analyses. Statistical tests were performed in R (v3.3.0) as indicated in the
main text and figure legends and in Supplementary Note 1. A two-tailed p-value of <
0.05 was considered as statistically significant except as otherwise indicated.

Ethics statement. MacCallum Cancer Centre Human/cThis study was approved
by the Peter MacCallum Cancer Centre Human Research Ethics Committee, ID
#14/76 and #01/38 and the Melbourne Health Human Research Ethics Committee
#2011.248. Informed consent was obtained for all patients in the study. All relevant
ethical regulations have been complied with.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The exome and RNA sequencing data have been deposited in the European Genome-
phenome database under the accession code EGAS00001003545. Other datasets
referenced during the study are available from GSE39076 and as Supplementary Data in
Ryland et al.17 [https://doi.org/10.1186/s13073-015-0210-y]. All the other data
supporting the findings of this study are available within the article and its
supplementary information files (Source Data) and from the corresponding author upon
reasonable request. A reporting summary for this article is available as a Supplementary
Information file.
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