451 research outputs found

    Selective breeding and selection mapping using a novel wild-derived heterogeneous stock of mice revealed two closely-linked loci for tameness

    Get PDF
    Tameness is a major behavioral factor for domestication, and can be divided into two potential components: motivation to approach humans (active tameness) and reluctance to avoid humans (passive tameness). We identified genetic loci for active tameness through selective breeding, selection mapping, and association analysis. In previous work using laboratory and wild mouse strains, we found that laboratory strains were predominantly selected for passive tameness but not active tameness during their domestication. To identify genetic regions associated with active tameness, we applied selective breeding over 9 generations for contacting, a behavioural parameter strongly associated with active tameness. The prerequisite for successful selective breeding is high genetic variation in the target population, so we established and used a novel resource, wild-derived heterogeneous stock (WHS) mice from eight wild strains. The mice had genetic variations not present in other outbred mouse populations. Selective breeding of the WHS mice increased the contacting level through the generations. Selection mapping was applied to the selected population using a simulation based on a non-selection model and inferred haplotype data derived from single-nucleotide polymorphisms. We found a genomic signature for selection on chromosome 11 containing two closely linked loci

    New femoral remains of Nacholapithecus kerioi: Implications for intraspecific variation and Miocene hominoid evolution

    Get PDF
    The middle Miocene stem kenyapithecine Nacholapithecus kerioi (16–15 Ma; Nachola, Kenya) is represented by a large number of isolated fossil remains and one of the most complete skeletons in the hominoid fossil record (KNM-BG 35250). Multiple fieldwork seasons performed by Japanese–Kenyan teams during the last part of the 20th century resulted in the discovery of a large sample of Nacholapithecus fossils. Here, we describe the new femoral remains of Nacholapithecus. In well-preserved specimens, we evaluate sex differences and within-species variation using both qualitative and quantitative traits. We use these data to determine whether these specimens are morphologically similar to the species holotype KNM-BG 35250 (which shows some plastic deformation) and to compare Nacholapithecus with other Miocene hominoids and extant anthropoids to evaluate the distinctiveness of its femur. The new fossil evidence reaffirms previously reported descriptions of some distal femoral traits, namely the morphology of the patellar groove. However, results also show that relative femoral head size in Nacholapithecus is smaller, relative neck length is longer, and neck–shaft angle is lower than previously reported for KNM-BG 35250. These traits have a strong functional signal related to the hip joint kinematics, suggesting that the morphology of the proximal femur in Nacholapithecus might be functionally related to quadrupedal-like behaviors instead of more derived antipronograde locomotor modes. Results further demonstrate that other African Miocene apes (with the exception of Turkanapithecus kalakolensis) generally fall within the Nacholapithecus range of variation, whose overall femoral shape resembles that of Ekembo spp. and Equatorius africanus. Our results accord with the previously inferred locomotor repertoire of Nacholapithecus, indicating a combination of generalized arboreal quadrupedalism combined with other antipronograde behaviors (e.g., vertical climbing)

    Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis

    Get PDF
    National Institutes of Health grants GM-38765 and P50-DE016191 (C.N.S.), Welcome Trust Programme grant 086867/Z/08/Z (R.J.F. and M.P.) and Project grant 085903/Z/08 (R.J.F.) and Arthritis Research Campaign UK fellowships 18445 and 18103 (to L.V.N. and D.C., respectively). M.S. received a National Research Service Award from the NHLBI (HL087526)

    FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer

    Get PDF
    Pancreatic cancer has one of the highest mortalities among all malignancies and there is an urgent need for new therapy. This might be achieved by resolving the detailed biological mechanism, and in this study we examined how pancreatic cancer cells develop aggressive properties by focusing on signalling through the fibroblast growth factor (FGF)10 and FGF receptor (FGFR)2, which play important roles in pancreatic organogenesis. Immunostaining of pancreatic cancer tissues showed that FGFR2 was expressed in cancer cells, whereas FGF10 was expressed in stromal cells surrounding the cancer cells. Patients with high FGFR2 expression in cancer cells had a shorter survival time compared to those with low FGFR2 expression. Fibroblast growth factor 10 induced cell migration and invasion of CFPAC-1 and AsPC-1 pancreatic cancer cells through interaction with FGFR2-IIIb, a specific isoform of FGFR2. Fibroblast growth factor 10 also induced expression of mRNA for membrane type 1-matrix metalloproteinase (MT1-MMP) and transforming growth factor (TGF)-β1, and increased secretion of TGF-β1 protein from these cell lines. These data indicate that stromal FGF10 induces migration and invasion in pancreatic cancer cells through interaction with FGFR2, resulting in a poor prognosis. This suggests that FGF10/FGFR2 signalling is a promising target for new molecular therapy against pancreatic cancer

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Ancestral Inference and the Study of Codon Bias Evolution: Implications for Molecular Evolutionary Analyses of the Drosophila melanogaster Subgroup

    Get PDF
    Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest
    • …
    corecore