186 research outputs found

    Modelling time course gene expression data with finite mixtures of linear additive models

    Get PDF
    Summary: A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time

    Variational approximation for mixtures of linear mixed models

    Full text link
    Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the EM algorithm. The conventional approach to determining a suitable number of components is to compare different mixture models using penalized log-likelihood criteria such as BIC.We propose fitting MLMMs with variational methods which can perform parameter estimation and model selection simultaneously. A variational approximation is described where the variational lower bound and parameter updates are in closed form, allowing fast evaluation. A new variational greedy algorithm is developed for model selection and learning of the mixture components. This approach allows an automatic initialization of the algorithm and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparametrize the model and show empirically that there is a gain in efficiency by variational algorithms similar to that in MCMC algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler which suggests that reparametrizations can lead to improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG

    Numerical and Experimental Investigation of Laminar One-Dimensional Counter-Flow Flames Using Product Gas From Pyrolysis and Gasification of Woody Biomass

    Get PDF
    Further advances in the utilization of biomass-based gaseous fuels in combustion systems require a deeper understanding of the combustion chemistry behind, as well as of the coupling of the chemistry with physical phenomena such as turbulence. The former is investigated in the present study combining both experiments with numerical simulations of different types of laminar non-premixed flames (sooting and non-sooting) in a counter-flow setup. The focus is put on synthetic gas mixtures, resembling, to different extents, typical compositions of the product gas obtained in biomass gasification consisting of CH4 (reference) and CH4 mixed with CO2, N2, O2, and/or H2, always. The oxidizer in all cases is air. A wide range of air-fuel ratios is considered. The influence of the product gas composition on the flame behaviour and flame structure with respect to the changes of the species profiles and peak temperatures with changing flow velocities is discussed. Laser-based spectroscopy techniques, in particular laser-induced Rayleigh scattering and laser-induced fluorescence (LIF), are applied as diagnostic tools. The former can provide an accurate understanding of temperature distributions, while the latter helps to identify the flame front through the tracking of intermediate species, such as CH2O (formaldehyde). Additionally, CH* chemiluminescence contributes to localize the flame front. Lastly, the influence of the N2-shroud flow velocities and diameters, as well as resulting buoyancy effects due to a raise in temperature, are taken into account. In correspondence to these experiments, the flames are numerically simulated by an in-house time-dependent implicit Fortran code

    Flight Test Evaluation of the ATD-1 Interval Management Application

    Get PDF
    Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed

    Expression Patterns of TNFα, MAdCAM1, and STAT3 in Intestinal and Skin Manifestations of Inflammatory Bowel Disease.

    Get PDF
    Pathogenesis of cutaneous extraintestinal manifestations [EIM] in inflammatory bowel disease [IBD] remains elusive. Efficacy of anti-TNF agents suggests TNF-dependent mechanisms. The role of other biologics, such as anti-integrins or JAK-inhibitors, is not yet clear. We performed immunohistochemistry for TNFα, NFκB, STAT1/STAT3, MAdCAM1, CD20/68, caspase 3/9, IFNγ, and Hsp-27/70 on 240 intestinal [55 controls, 185 IBD] and 64 skin biopsies [11 controls, 18 erythema nodosum [EN], 13 pyoderma gangenosum [PG], 22 psoriasis]. A semiquantitative score [0-100%] was used for evaluation. TNFα was upregulated in intestinal biopsies from active Crohn`s disease [CD] vs controls [36.2 vs 12.1, p < 0.001], but not ulcerative colitis [UC: 17.9]. NFκB, however, was upregulated in intestinal biopsies from both active CD and UC [43.2 and 34.5 vs 21.8, p < 0.001 and p = 0.017, respectively]. TNFα and NFκB were overexpressed in skin biopsies from EN, PG, and psoriasis. No MAdCAM1 overexpression was seen in skin tissues, whereas it was upregulated in active UC vs controls [57.5 vs 35.4, p = 0.003]. STAT3 was overexpressed in the intestinal mucosa of active and non-active IBD, and a similar upregulation was seen in skin biopsies from EN [84.7 vs 22.3, p < 0.001] and PG [60.5 vs 22.3, p = 0.011], but not in psoriasis. Caspase 3 and CD68 overexpression in skin biopsies distinguished EN/PG from psoriasis and controls. Upregulation of TNFα/NFκB in EN and PG is compatible with the efficacy of anti-TNF in EIM management. Data on overexpressed STAT3, but not MAdCAM1, support a rationale for JAK-inhibitors in EN and PG, while questioning the role of vedolizumab

    The Oxysterol Synthesising Enzyme CH25H Contributes to the Development of Intestinal Fibrosis

    Get PDF
    Intestinal fibrosis and stenosis are common complications of Crohn's disease [CD], frequently requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidised cholesterol derivatives with important roles in various biological processes. The enzyme cholesterol 25-hydroxylase [CH25H] converts cholesterol to 25-hydroxycholesterol [25-HC], which modulates immune responses and oxidative stress. In human intestinal samples from CD patients, we found a strong correlation of CH25H mRNA expression with the expression of fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H enzyme, using the sodium dextran sulphate [DSS]-induced chronic colitis model. Additionally, using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal fibrosis

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release

    Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems

    Get PDF
    Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles. Damage to DNA can include DNA strand breaks, point mutations due to DNA adducts, as well as alterations in methylation patterns leading to activation of oncogenes or inactivation of tumor suppressors. There are a number of significant long-term consequences associated with chronic oxidative stress, most notably cancer. Infiltrating immune cells and stromal components of tissue including fibroblasts contribute to dynamic changes occurring in tissue related to disease development. Immune cells can potentiate oxidative stress, and fibroblasts have the capacity to contribute to advanced growth and proliferation of the epithelium and any resultant cancers. Disease models for GERD, BE, GVHD, and ulcerative colitis based on three-dimensional human cell and tissue culture systems that recapitulate in vivo growth and differentiation in inflammatory-associated microphysiological environments would enhance our understanding of disease progression and improve our ability to test for disease-prevention strategies. The development of physiologically relevant, human cell-based culture systems is therefore a major focus of our research. These novel models will be of enormous value, allowing us to test hypotheses and advance our understanding of these disorders, and will have a translational impact allowing us to more rapidly develop therapeutic and chemopreventive agents. In summary, this work to develop advanced human cell-based models of inflammatory conditions will greatly improve our ability to study, prevent, and treat GERD, BE, GVHD, and inflammatory bowel disease. The work will also foster the development of novel therapeutic and preventive strategies that will improve patient care for these important clinical conditions

    Web Usage Mining in Tourism — A Query Term Analysis and Clustering Approach

    Full text link
    According to current research, one of the most promising applications for web usage mining (WUM) is in identifying homogenous user subgroups (Liu, 2008). This paper presents a prototypical workflow and tools for analyzing user sessions to extract business intelligence hidden in web log data. By considering a leading Swedish destination gateway, we demonstrate how query term analysis in combination with session clustering can be utilized to effectively explore the information needs of website users. The system thus overcomes many of the limitations of typical web site analysis tools that only offer general statistics and ignore the opportunities offered by unsupervised learning techniques

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore