49 research outputs found

    Irisin treatment improves healing of dystrophic skeletal muscle

    Get PDF
    Background: Irisin is an exercise induced myokine that is shown to promote browning of adipose tissue and hence, increase energy expenditure. Furthermore, our unpublished results indicate that Irisin improves myogenic differentiation and induces skeletal muscle hypertrophy. Since exercise induced skeletal muscle hypertrophy improves muscle strength, we wanted to investigate if ectopic injection of Irisin peptide improves skeletal muscle function in a mouse model of muscular dystrophy. This utility of Irisin peptide is yet to be studied in animal models. Methods: In order to test this hypothesis, we expressed and purified recombinant murine Irisin peptide from E. coli. Three- to six-week-old male mdx mice were injected IP with either vehicle (dialysis buffer) or Irisin recombinant peptide for two or four weeks, three times-a-week. Results: Irisin injection increased muscle weights and enhanced grip strength in mdx mice. Improved muscle strength can be attributed to the significant hypertrophy observed in the Irisin injected mdx mice. Moreover, Irisin treatment resulted in reduced accumulation of fibrotic tissue and myofiber necrosis in mdx mice. In addition, Irisin improved sarcolemmal stability, which is severely compromised in mdx mice. Conclusion: Irisin injection induced skeletal muscle hypertrophy, improved muscle strength and reduced necrosis and fibrotic tissue in a murine dystrophy model. These results demonstrate the potential therapeutic value of Irisin in muscular dystrophy

    Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy

    Get PDF
    Exercise induces expression of the myokine irisin, which is known to promote browning of white adipose tissue and has been shown to mediate beneficial effects following exercise. Here we show that irisin induces expression of a number of pro-myogenic and exercise response genes in myotubes. Irisin increases myogenic differentiation and myoblast fusion via activation of IL6 signaling. Injection of irisin in mice induces significant hypertrophy and enhances grip strength of uninjured muscle. Following skeletal muscle injury, irisin injection improves regeneration and induces hypertrophy. The effects of irisin on hypertrophy are due to activation of satellite cells and enhanced protein synthesis. In addition, irisin injection rescues loss of skeletal muscle mass following denervation by enhancing satellite cell activation and reducing protein degradation. These data suggest that irisin functions as a pro-myogenic factor in mice

    Human pharyngeal microbiota in age-related macular degeneration.

    Get PDF
    BACKGROUND: While the aetiology of age-related macular degeneration (AMD)-a major blinding disease-remains unknown, the disease is strongly associated with variants in the complement factor H (CFH) gene. CFH variants also confer susceptibility to invasive infection with several bacterial colonizers of the nasopharyngeal mucosa. This shared susceptibility locus implicates complement deregulation as a common disease mechanism, and suggests the possibility that microbial interactions with host complement may trigger AMD. In this study, we address this possibility by testing the hypothesis that AMD is associated with specific microbial colonization of the human nasopharynx. RESULTS: High-throughput Illumina sequencing of the V3-V6 region of the microbial 16S ribosomal RNA gene was used to comprehensively and accurately describe the human pharyngeal microbiome, at genus level, in 245 AMD patients and 386 controls. Based on mean and differential microbial abundance analyses, we determined an overview of the pharyngeal microbiota, as well as candidate genera (Prevotella and Gemella) suggesting an association towards AMD health and disease conditions. CONCLUSIONS: Utilizing an extensive study population from Singapore, our results provided an accurate description of the pharyngeal microbiota profiles in AMD health and disease conditions. Through identification of candidate genera that are different between conditions, we provide preliminary evidence for the existence of microbial triggers for AMD. Ethical approval for this study was obtained through the Singapore Health Clinical Institutional Review Board, reference numbers R799/63/2010 and 2010/585/A

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index

    Get PDF
    Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∌2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488–47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10−13), ALDH2/MYL2 (rs671, P = 3.40 × 10−11; rs12229654, P = 4.56 × 10−9), ITIH4 (rs2535633, P = 1.77 × 10−10) and NT5C2 (rs11191580, P = 3.83 × 10−8) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10−8) and an additional 14 at P < 1.0 × 10−3 with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Initial viral load and the outcomes of SARS

    No full text
    BACKGROUND: Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus. It may progress to respiratory failure, and a significant proportion of patients die. Preliminary data suggest that a high viral load of the SARS coronavirus is associated with adverse outcomes in the intensive care unit, but the relation of viral load to survival is unclear. METHODS: We prospectively studied an inception cohort of 133 patients with virologically confirmed SARS who were admitted to 2 general acute care hospitals in Hong Kong from Mar. 24 to May 4, 2003. The patients were followed until death or for a minimum of 90 days. We used Cox proportional hazard modelling to analyze potential predictors of survival recorded at the time of presentation, including viral load from nasopharyngeal specimens (measured by quantitative reverse transcriptase polymerase chain reaction [PCR] of the SARS-associated coronavirus). RESULTS: Thirty-two patients (24.1%) met the criteria for acute respiratory distress syndrome, and 24 patients (18.0%) died. The following baseline factors were independently associated with worse survival: older age (61–80 years) (adjusted hazard ratio [HR] 5.24, 95% confidence interval [CI] 2.03–13.53), presence of an active comorbid condition (adjusted HR 3.36, 95% CI 1.44–7.82) and higher initial viral load of SARS coronavirus, according to quantitative PCR of nasopharyngeal specimens (adjusted HR 1.21 per log(10) increase in number of RNA copies per millilitre, 95% CI 1.06–1.39). INTERPRETATION: We found preliminary evidence that higher initial viral load is independently associated with worse prognosis in SARS. Mortality data for patients with SARS should be interpreted in light of age, comorbidity and viral load. These considerations will be important in future studies of SARS
    corecore