366 research outputs found

    Avaliação e monitoramento do teor de etanol em gasolina comum nos postos de gasolina do Município de Amargosa-BA, via teste da proveta e marcador de combustível do tipo [Eu(?-dicetona)3.(H2O)2] / Evaluation and monitoring of the ethanol content of regular gasoline at gas stations in the City of Amargosa-BA, by graduated cylinder test and fuel tracer of the type [Eu(?-diketone)3.(H2O)2]

    Get PDF
    Os marcadores de combustíveis são produtos químicos inertes, presentes em pequenas quantidades, que permitem rastrear e identificar a origem e a qualidade dos combustíveis sem alterar as suas propriedades físico-químicas, associados às técnicas tradicionais como o “teste da proveta”. Os marcadores também não interferem no grau de segurança durante o manuseio e o uso dos combustíveis e podem ser identificados segundo métodos analíticos específicos. Quanto ao teste da proveta, um dado contundente em visita a seis postos de combustíveis do município de Amargosa/BA foi o despreparo dos frentistas e gerentes na realização do teste, desconhecendo a metodologia e o processo de separação do álcool da gasolina. Assim sendo, o presente trabalho combina a ?-dicetona, HBTFA (4,4,4-trifluoro-1-fenil-1,3-butanodiona), ligante com alta absortividade molecular, efetiva ação quelante e estabilidade com o íon lantanídeo (Európio, Eu3+), centro emissor, com a proposta de garantir o efeito “antena”, efeito no qual a emissão do sistema em estudo, [Eu(BTFA)3.(H2O)2] origina-se da absorção de radiação ultravioleta (UV) através dos ligantes; da transferência de energia do estado excitado do ligante para os níveis 4f do íon metálico e da emissão de radiação no visível, a fim de produzir material altamente luminescente com propriedades típicas de marcador de combustíveis

    Diretrizes Brasileiras de Medidas da Pressão Arterial Dentro e Fora do Consultório – 2023

    Get PDF
    Hypertension is one of the primary modifiable risk factors for morbidity and mortality worldwide, being a major risk factor for coronary artery disease, stroke, and kidney failure. Furthermore, it is highly prevalent, affecting more than one-third of the global population. Blood pressure measurement is a MANDATORY procedure in any medical care setting and is carried out by various healthcare professionals. However, it is still commonly performed without the necessary technical care. Since the diagnosis relies on blood pressure measurement, it is clear how important it is to handle the techniques, methods, and equipment used in its execution with care. It should be emphasized that once the diagnosis is made, all short-term, medium-term, and long-term investigations and treatments are based on the results of blood pressure measurement. Therefore, improper techniques and/or equipment can lead to incorrect diagnoses, either underestimating or overestimating values, resulting in inappropriate actions and significant health and economic losses for individuals and nations. Once the correct diagnosis is made, as knowledge of the importance of proper treatment advances, with the adoption of more detailed normal values and careful treatment objectives towards achieving stricter blood pressure goals, the importance of precision in blood pressure measurement is also reinforced. Blood pressure measurement (described below) is usually performed using the traditional method, the so-called casual or office measurement. Over time, alternatives have been added to it, through the use of semi-automatic or automatic devices by the patients themselves, in waiting rooms or outside the office, in their own homes, or in public spaces. A step further was taken with the use of semi-automatic devices equipped with memory that allow sequential measurements outside the office (ABPM; or HBPM) and other automatic devices that allow programmed measurements over longer periods (HBPM). Some aspects of blood pressure measurement can interfere with obtaining reliable results and, consequently, cause harm in decision-making. These include the importance of using average values, the variation in blood pressure during the day, and short-term variability. These aspects have encouraged the performance of a greater number of measurements in various situations, and different guidelines have advocated the use of equipment that promotes these actions. Devices that perform HBPM or ABPM, which, in addition to allowing greater precision, when used together, detect white coat hypertension (WCH), masked hypertension (MH), sleep blood pressure alterations, and resistant hypertension (RHT) (defined in Chapter 2 of this guideline), are gaining more and more importance. Taking these details into account, we must emphasize that information related to diagnosis, classification, and goal setting is still based on office blood pressure measurement, and for this reason, all attention must be given to the proper execution of this procedure.La hipertensión arterial (HTA) es uno de los principales factores de riesgo modificables para la morbilidad y mortalidad en todo el mundo, siendo uno de los mayores factores de riesgo para la enfermedad de las arterias coronarias, el accidente cerebrovascular (ACV) y la insuficiencia renal. Además, es altamente prevalente y afecta a más de un tercio de la población mundial. La medición de la presión arterial (PA) es un procedimiento OBLIGATORIO en cualquier atención médica o realizado por diferentes profesionales de la salud. Sin embargo, todavía se realiza comúnmente sin los cuidados técnicos necesarios. Dado que el diagnóstico se basa en la medición de la PA, es claro el cuidado que debe haber con las técnicas, los métodos y los equipos utilizados en su realización. Debemos enfatizar que una vez realizado el diagnóstico, todas las investigaciones y tratamientos a corto, mediano y largo plazo se basan en los resultados de la medición de la PA. Por lo tanto, las técnicas y/o equipos inadecuados pueden llevar a diagnósticos incorrectos, subestimando o sobreestimando valores y resultando en conductas inadecuadas y pérdidas significativas para la salud y la economía de las personas y las naciones. Una vez realizado el diagnóstico correcto, a medida que avanza el conocimiento sobre la importancia del tratamiento adecuado, con la adopción de valores de normalidad más detallados y objetivos de tratamiento más cuidadosos hacia metas de PA más estrictas, también se refuerza la importancia de la precisión en la medición de la PA. La medición de la PA (descrita a continuación) generalmente se realiza mediante el método tradicional, la llamada medición casual o de consultorio. Con el tiempo, se han agregado alternativas a través del uso de dispositivos semiautomáticos o automáticos por parte del propio paciente, en salas de espera o fuera del consultorio, en su propia residencia o en espacios públicos. Se dio un paso más con el uso de dispositivos semiautomáticos equipados con memoria que permiten mediciones secuenciales fuera del consultorio (AMPA; o MRPA) y otros automáticos que permiten mediciones programadas durante períodos más largos (MAPA). Algunos aspectos en la medición de la PA pueden interferir en la obtención de resultados confiables y, en consecuencia, causar daños en las decisiones a tomar. Estos incluyen la importancia de usar valores promedio, la variación de la PA durante el día y la variabilidad a corto plazo. Estos aspectos han alentado la realización de un mayor número de mediciones en diversas situaciones, y diferentes pautas han abogado por el uso de equipos que promuevan estas acciones. Los dispositivos que realizan MRPA o MAPA, que además de permitir una mayor precisión, cuando se usan juntos, detectan la hipertensión de bata blanca (HBB), la hipertensión enmascarada (HM), las alteraciones de la PA durante el sueño y la hipertensión resistente (HR) (definida en el Capítulo 2 de esta guía), están ganando cada vez más importancia. Teniendo en cuenta estos detalles, debemos enfatizar que la información relacionada con el diagnóstico, la clasificación y el establecimiento de objetivos todavía se basa en la medición de la presión arterial en el consultorio, y por esta razón, se debe prestar toda la atención a la ejecución adecuada de este procedimiento.A hipertensão arterial (HA) é um dos principais fatores de risco modificáveis para morbidade e mortalidade em todo o mundo, sendo um dos maiores fatores de risco para doença arterial coronária, acidente vascular cerebral (AVC) e insuficiência renal. Além disso, é altamente prevalente e atinge mais de um terço da população mundial. A medida da PA é procedimento OBRIGATÓRIO em qualquer atendimento médico ou realizado por diferentes profissionais de saúde. Contudo, ainda é comumente realizada sem os cuidados técnicos necessários. Como o diagnóstico se baseia na medida da PA, fica claro o cuidado que deve haver com as técnicas, os métodos e os equipamentos utilizados na sua realização. Deve-se reforçar que, feito o diagnóstico, toda a investigação e os tratamentos de curto, médio e longo prazos são feitos com base nos resultados da medida da PA. Assim, técnicas e/ou equipamentos inadequados podem levar a diagnósticos incorretos, tanto subestimando quanto superestimando valores e levando a condutas inadequadas e grandes prejuízos à saúde e à economia das pessoas e das nações. Uma vez feito o diagnóstico correto, na medida em que avança o conhecimento da importância do tratamento adequado, com a adoção de valores de normalidade mais detalhados e com objetivos de tratamento mais cuidadosos no sentido do alcance de metas de PA mais rigorosas, fica também reforçada a importância da precisão na medida da PA. A medida da PA (descrita a seguir) é habitualmente feita pelo método tradicional, a assim chamada medida casual ou de consultório. Ao longo do tempo, foram agregadas alternativas a ela, mediante o uso de equipamentos semiautomáticos ou automáticos pelo próprio paciente, nas salas de espera ou fora do consultório, em sua própria residência ou em espaços públicos. Um passo adiante foi dado com o uso de equipamentos semiautomáticos providos de memória que permitem medidas sequenciais fora do consultório (AMPA; ou MRPA) e outros automáticos que permitem medidas programadas por períodos mais prolongados (MAPA). Alguns aspectos na medida da PA podem interferir na obtenção de resultados fidedignos e, consequentemente, causar prejuízo nas condutas a serem tomadas. Entre eles, estão: a importância de serem utilizados valores médios, a variação da PA durante o dia e a variabilidade a curto prazo. Esses aspectos têm estimulado a realização de maior número de medidas em diversas situações, e as diferentes diretrizes têm preconizado o uso de equipamentos que favoreçam essas ações. Ganham cada vez mais espaço os equipamentos que realizam MRPA ou MAPA, que, além de permitirem maior precisão, se empregados em conjunto, detectam a HA do avental branco (HAB), HA mascarada (HM), alterações da PA no sono e HA resistente (HAR) (definidos no Capítulo 2 desta diretriz). Resguardados esses detalhes, devemos ressaltar que as informações relacionadas a diagnóstico, classificação e estabelecimento de metas ainda são baseadas na medida da PA de consultório e, por esse motivo, toda a atenção deve ser dada à realização desse procedimento

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97\ub71 (95% UI 95\ub78-98\ub71) in Iceland, followed by 96\ub76 (94\ub79-97\ub79) in Norway and 96\ub71 (94\ub75-97\ub73) in the Netherlands, to values as low as 18\ub76 (13\ub71-24\ub74) in the Central African Republic, 19\ub70 (14\ub73-23\ub77) in Somalia, and 23\ub74 (20\ub72-26\ub78) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91\ub75 (89\ub71-93\ub76) in Beijing to 48\ub70 (43\ub74-53\ub72) in Tibet (a 43\ub75-point difference), while India saw a 30\ub78-point disparity, from 64\ub78 (59\ub76-68\ub78) in Goa to 34\ub70 (30\ub73-38\ub71) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4\ub78-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20\ub79-point to 17\ub70-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17\ub72-point to 20\ub74-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Copyright © 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Measurement of associated W plus charm production in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    corecore