626 research outputs found

    Massive star formation in 100,000 years from turbulent and pressurized molecular clouds

    Get PDF
    Massive stars (with mass m_* > 8 solar masses) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t_*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t_*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t_*f is determined by conditions in the star's natal cloud, and is typically ~10^5 yr. The corresponding mass accretion rate depends on the pressure within the cloud - which we relate to the gas surface density - and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from ~100 solar mass protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t_*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.Comment: 9 pages plus 2 figures, Nature, 416, 59 (7th March 2002

    GLAST: Understanding the High Energy Gamma-Ray Sky

    Full text link
    We discuss the ability of the GLAST Large Area Telescope (LAT) to identify, resolve, and study the high energy gamma-ray sky. Compared to previous instruments the telescope will have greatly improved sensitivity and ability to localize gamma-ray point sources. The ability to resolve the location and identity of EGRET unidentified sources is described. We summarize the current knowledge of the high energy gamma-ray sky and discuss the astrophysics of known and some prospective classes of gamma-ray emitters. In addition, we also describe the potential of GLAST to resolve old puzzles and to discover new classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by K.S. Cheng and G.E. Romer

    Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO<sub>2 </sub>by stimulating the vegetation productivity and accumulation of carbon in biomass.</p> <p>Results</p> <p>This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62–2.33 PgC in the 1980s and 0.75–2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13–41% of carbon emitted by fossil fuel burning.</p> <p>Conclusion</p> <p>Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO<sub>2 </sub>concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.</p

    Longitudinal study on birthweight and the incidence of endometrial cancer

    Get PDF
    From 1976 to 2004, we followed 71 751 participants of the Nurses' Health Study and identified 676 invasive endometrial cancer cases. Birthweight, assessed in 1992, was not associated with the incidence of endometrial cancer. No effect modification by menopausal status was observed, but statistical power to detect an interaction was limited

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment

    Get PDF
    There continues to be a significant clinical need for rapid and reliable intraoperative margin assessment during cancer surgery. Here we describe a portable, quantitative, optical fiber probe-based, spectroscopic tissue scanner designed for intraoperative diagnostic imaging of surgical margins, which we tested in a proof of concept study in human tissue for breast cancer diagnosis. The tissue scanner combines both diffuse reflectance spectroscopy (DRS) and intrinsic fluorescence spectroscopy (IFS), and has hyperspectral imaging capability, acquiring full DRS and IFS spectra for each scanned image pixel. Modeling of the DRS and IFS spectra yields quantitative parameters that reflect the metabolic, biochemical and morphological state of tissue, which are translated into disease diagnosis. The tissue scanner has high spatial resolution (0.25 mm) over a wide field of view (10 cm×10 cm), and both high spectral resolution (2 nm) and high spectral contrast, readily distinguishing tissues with widely varying optical properties (bone, skeletal muscle, fat and connective tissue). Tissue-simulating phantom experiments confirm that the tissue scanner can quantitatively measure spectral parameters, such as hemoglobin concentration, in a physiologically relevant range with a high degree of accuracy (<5% error). Finally, studies using human breast tissues showed that the tissue scanner can detect small foci of breast cancer in a background of normal breast tissue. This tissue scanner is simpler in design, images a larger field of view at higher resolution and provides a more physically meaningful tissue diagnosis than other spectroscopic imaging systems currently reported in literatures. We believe this spectroscopic tissue scanner can provide real-time, comprehensive diagnostic imaging of surgical margins in excised tissues, overcoming the sampling limitation in current histopathology margin assessment. As such it is a significant step in the development of a platform technology for intraoperative management of cancer, a clinical problem that has been inadequately addressed to date.Case Comprehensive Cancer Center. Tissue Procurement, Histology and Immunohistochemistry Core Facility (P30 CA43703)National Cancer Institute (U.S.) (R01-CA140288)National Cancer Institute (U.S.) (R01-CA97966)National Center for Research Resources (U.S.) (S10-RR031845)National Center for Research Resources (U.S.) (P41-RR02594

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore