265 research outputs found

    Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case

    Get PDF
    We consider a possibly degenerate porous media type equation over all of Rd\R^d with d=1d = 1, with monotone discontinuous coefficients with linear growth and prove a probabilistic representation of its solution in terms of an associated microscopic diffusion. This equation is motivated by some singular behaviour arising in complex self-organized critical systems. The main idea consists in approximating the equation by equations with monotone non-degenerate coefficients and deriving some new analytical properties of the solution

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73MM_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table

    Reanalysis of two eclipsing binaries: EE Aqr and Z Vul

    Full text link
    We study the radial-velocity and light curves of the two eclipsing binaries EE Aqr and Z Vul. Using the latest version of the Wilson & Van Hamme (2003) model, absolute parameters for the systems are determined. We find that EE Aqr and Z Vul are near-contact and semi-detached systems, respectively. The primary component of EE Aqr fills about 96% of its 'Roche lobe', while its secondary one appears close to completely filling this limiting volume. In a similar way, we find fill-out proportions of about 72 and 100% of these volumes for the primary and secondary components of Z Vul respectively. We compare our results with those of previous authors.Comment: 13 pages, 8 figures, 10 table

    Kinetic Monte Carlo Simulation of Strained Heteroepitaxial Growth with Intermixing

    Get PDF
    An efficient method for the simulation of strained heteroepitaxial growth with intermixing using kinetic Monte Carlo is presented. The model used is based on a solid-on-solid bond counting formulation in which elastic effects are incorporated using a ball and spring model. While idealized, this model nevertheless captures many aspects of heteroepitaxial growth, including nucleation, surface diffusion, and long range effects due elastic interaction. The algorithm combines a fast evaluation of the elastic displacement field with an efficient implementation of a rejection-reduced kinetic Monte Carlo based on using upper bounds for the rates. The former is achieved by using a multigrid method for global updates of the displacement field and an expanding box method for local updates. The simulations show the importance of intermixing on the growth of a strained film. Further the method is used to simulate the growth of self-assembled stacked quantum dots

    On the Singularity Structure and Stability of Plane Waves

    Get PDF
    We describe various aspects of plane wave backgrounds. In particular, we make explicit a simple criterion for singularity by establishing a relation between Brinkmann metric entries and diffeomorphism-invariant curvature information. We also address the stability of plane wave backgrounds by analyzing the fluctuations of generic scalar modes. We focus our attention on cases where after fixing the light-cone gauge the resulting world sheet fields appear to have negative "mass terms". We nevertheless argue that these backgrounds may be stable.Comment: 21 pages, 1 figur

    Charge Deficiency, Charge Transport and Comparison of Dimensions

    Get PDF
    We study the relative index of two orthogonal infinite dimensional projections which, in the finite dimensional case, is the difference in their dimensions. We relate the relative index to the Fredholm index of appropriate operators, discuss its basic properties, and obtain various formulas for it. We apply the relative index to counting the change in the number of electrons below the Fermi energy of certain quantum systems and interpret it as the charge deficiency. We study the relation of the charge deficiency with the notion of adiabatic charge transport that arises from the consideration of the adiabatic curvature. It is shown that, under a certain covariance, (homogeneity), condition the two are related. The relative index is related to Bellissard's theory of the Integer Hall effect. For Landau Hamiltonians the relative index is computed explicitly for all Landau levels.Comment: 23 pages, no figure

    Multiplicity Studies and Effective Energy in ALICE at the LHC

    Full text link
    In this work we explore the possibility to perform ``effective energy'' studies in very high energy collisions at the CERN Large Hadron Collider (LHC). In particular, we focus on the possibility to measure in pppp collisions the average charged multiplicity as a function of the effective energy with the ALICE experiment, using its capability to measure the energy of the leading baryons with the Zero Degree Calorimeters. Analyses of this kind have been done at lower centre--of--mass energies and have shown that, once the appropriate kinematic variables are chosen, particle production is characterized by universal properties: no matter the nature of the interacting particles, the final states have identical features. Assuming that this universality picture can be extended to {\it ion--ion} collisions, as suggested by recent results from RHIC experiments, a novel approach based on the scaling hypothesis for limiting fragmentation has been used to derive the expected charged event multiplicity in AAAA interactions at LHC. This leads to scenarios where the multiplicity is significantly lower compared to most of the predictions from the models currently used to describe high energy AAAA collisions. A mean charged multiplicity of about 1000-2000 per rapidity unit (at η0\eta \sim 0) is expected for the most central PbPbPb-Pb collisions at sNN=5.5TeV\sqrt{s_{NN}} = 5.5 TeV.Comment: 12 pages, 19 figures. In memory of A. Smirnitski

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore