294 research outputs found

    Energy-efficient location estimation using variable range beacons in wireless sensor networks

    Get PDF
    In a randomly deployed wireless sensor network, sensor nodes must determine their own geographic position coordinates so that the collected data can be ascribed to the location from where it was gathered. We propose a localization algorithm which uses variable range beacon signals generated by varying the transmission power of beacon nodes. The algorithm does not use any additional hardware resources for ranging and estimates position using only radio connectivity by passively listening to the beacon signals. The algorithm is distributed, so each sensor node determines its own position and communication overhead is avoided. As the beacon nodes do not always transmit at maximum power and no transmission power is used by unknown sensor nodes for localization, the algorithm is also energy efficient. It also provides control over localization granularity. Simulation results show that the algorithm provides good accuracy under varying radio conditions

    Output Tracking via Adaptive Backstepping Higher Order Integral Sliding Mode for Uncertain Nonlinear Systems

    Get PDF
    The authors propose a new tracking control design strategy for uncertain non-linear systems which are convertible to Semi-Strict Feedback Form (SSFF). The system in SSFF is first converted into new variables via existing adaptive backstepping control techniques. The control law is obtained by combining adaptive backstepping procedure and higher order integral sliding mode. The component of control law designed via backstepping is continuous which shows robustness against parametric uncertainties where as the discontinuous control component provides robustness against unmodeled dynamics and external disturbances. Since, this strategy relies on an integral manifold of the adaptively developed variables, therefore, the reaching phase is eliminated in this approach, which is an advantage in term of robustness. Furthermore, the parameters update law correctly provides the estimation of parameters which is again results in enhanced robustness of the strategy. The stability of proposed method is analysed theoretically and validated through a numerical example

    Interference Avoidance in Cognitive Radio Networks Using Cooperative Localization

    Get PDF
    In the recent years, there has been a tremendous increase in the use of wireless medium and radio frequency spectrum due to the development of new types of wireless networks, applications, and enabling technologies. Consequently, the radio frequency spectrum is getting overcrowded due to this increasing demand. Traditionally, frequency bands are allocated to licensed users for their specific use. Cognitive radio allows secondary users to communicate using these frequency bands. However, this may result in interference to the primary users. Information of the relative positions of the primary and secondary users and the distance between them can be exploited to avoid this interference. In our work, we use cooperative localization strategy to determine the distance between the secondary and primary users. This distance information is then utilized to adjust the transmission power of the secondary nodes so that the interference threshold of the primary users is not exceeded. The proposed methodology is evaluated using simulation experiments. Different aspects of the proposed algorithm including location and distance estimation, channel availability, and channel capacity against transmission power and path loss are evaluated. The results show that the proposed scheme is able to achieve considerable gains as a consequence of interference avoidance

    Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation

    Get PDF
    Background: Chemotherapy-induced reduction in tumor load is a function of apoptotic cell death, orchestrated by intracellular caspases. However, the effectiveness of these therapies is compromised by mutations affecting specific genes, controlling and/or regulating apoptotic signaling. Therefore, it is desirable to identify novel pathways of cell death, which could function in tandem with or in the absence of efficient apoptotic machinery. In this regard, recent evidence supports the existence of a novel cell death pathway termed autophagy, which is activated upon growth factor deprivation or exposure to genotoxic compounds. The functional relevance of this pathway in terms of its ability to serve as a stress response or a truly death effector mechanism is still in question; however, reports indicate that autophagy is a specialized form of cell death under certain conditions. Methodology/Principal Findings: We report here the simultaneous induction of non-canonical autophagy and apoptosis in human cancer cells upon exposure to a small molecule compound that triggers intracellular hydrogen peroxide (H2O2) production. Whereas, silencing of beclin1 neither inhibited the hallmarks of autophagy nor the induction of cell death, Atg 7 or Ulk1 knockdown significantly abrogated drug-induced H2O2-mediated autophagy. Furthermore, we provide evidence that activated extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) are upstream effectors controlling both autophagy and apoptosis in response to elevated intracellular H2O2. Interestingly, inhibition of JNK activity reversed the increase in Atg7 expression in this system, thus indicating that JNK may regulate autophagy by activating Atg7. Of note, the small molecule compound triggered autophagy and apoptosis in primary cells derived from patients with lymphoma, but not in non-transformed cells. Conclusions/Significance: Considering that loss of tumor suppressor beclin 1 is associated with neoplasia, the ability of this small molecule compound to engage both autophagic and apoptotic machineries via ROS production and subsequent activation of ERK and JNK could have potential translational implications.Singapore. Biomedical Research CouncilSingapore. Ministry of Educatio

    Validated RP-HPLC method for the simultaneous determination of glucosamine sulphate and curcumin in cream formulation: A novel stability-indicating study

    Get PDF
    Purpose: To develop and validate a stability-indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for the simultaneous determination of glucosamine sulphate (GS) and curcumin (Cur) in drug solution and formulation.Methods: The optimized chromatographic conditions were achieved by passing various compositions of mobile phases over  different reverse phase chromatographic columns. Various validation parameters, including linearity, range, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, specificity and system suitability were performed and evaluated. Stability studies under stressed conditions were done to evaluate the effects of acid, alkali, oxidation, heat and degradation by UV light.Results: The validated method was linear over the concentration range of 0.094 to 1.5 mg/mL for GS and 0.125 to 1.5 mg/mL for Cur, with a correlation coefficient > 0.999. The Intra and inter-day precision were 1.9 % for GS and 0.5 % for Cur, while accuracy was 96 and 102 % for GS and Cur, respectively. Stability studies showed that GS was highly sensitive to acid, alkali and oxidation and less sensitive to heat and UV. Cur was stable against acid, heat and oxidation but sensitive to alkali and UV.Conclusion: The developed and validated method was precise and accurate for both GS and Cur and can potentially be utilized for their identification and quantification at industrial, research and quality control laboratories

    Synthesis of Boron-Doped Zinc Oxide Nanosheets by Using Phyllanthus Emblica Leaf Extract: A Sustainable Environmental Applications

    Get PDF
    The use of Phyllanthus emblica (gooseberry) leaf extract to synthesize Boron-doped zinc oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the range of 20–80 nm. B-doped ZnO-NSs were tested against both gram-positive and gram-negative bacterial strains including Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli. Against gram-negative bacterium (K. pneumonia and E. coli), B-doped ZnO displays enhanced antibacterial activity with 26 and 24 mm of inhibition zone, respectively. The mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), mean free path (MFP), half-value layer (HVL), and tenth value layer (TVL) of B-doped ZnO were investigated as aspects linked to radiation shielding. These observations were carried out by using a PTW® electron detector and VARIAN® irradiation with 6 MeV electrons. The results of these experiments can be used to learn more about the radiation shielding properties of B-doped ZnO nanostructures

    Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    Get PDF
    Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Modulation of Wnt/β-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer

    Get PDF
    Using a screen for Wnt/β-catenin inhibitors, a family of 8-hydroxyquinolone derivatives with in vivo anti-cancer properties was identified. Analysis of microarray data for the lead compound N-((8-hydroxy-7-quinolinyl) (4-methylphenyl)methyl)benzamide (HQBA) using the Connectivity Map database suggested that it is an iron chelator that mimics the hypoxic response. HQBA chelates Fe2+ with a dissociation constant of ∼10−19 , with much weaker binding to Fe3+ and other transition metals. HQBA inhibited proliferation of multiple cell lines in culture, and blocked the progression of established spontaneous cancers in two distinct genetically engineered mouse models of mammary cancer, MMTV-Wnt1 and MMTV-PyMT mice, without overt toxicity. HQBA may inhibit an iron-dependent factor that regulates cell-type-specific β-catenin-driven transcription. It inhibits cancer cell proliferation independently of its effect on β-catenin signaling, as it works equally well in MMTV-PyMT tumors and diverse β-catenin-independent cell lines. HQBA is a promising specific intracellular Fe2+ chelator with activity against spontaneous mouse mammary cancers
    corecore