125 research outputs found

    Disease-Related Changes in the Cerebrospinal Fluid Metabolome in Amyotrophic Lateral Sclerosis Detected by GC/TOFMS

    Get PDF
    The changes in the cerebrospinal fluid (CSF) metabolome associated with the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) are poorly understood and earlier smaller studies have shown conflicting results. The metabolomic methodology is suitable for screening large cohorts of samples. Global metabolomics can be used for detecting changes of metabolite concentrations in samples of fluids such as CSF.Using gas chromatography coupled to mass spectrometry (GC/TOFMS) and multivariate statistical modeling, we simultaneously studied the metabolome signature of ∼120 small metabolites in the CSF of patients with ALS, stratified according to hereditary disposition and clinical subtypes of ALS in relation to controls.The study is the first to report data validated over two sub-sets of ALS vs. control patients for a large set of metabolites analyzed by GC/TOFMS. We find that patients with sporadic amyotrophic lateral sclerosis (SALS) have a heterogeneous metabolite signature in the cerebrospinal fluid, in some patients being almost identical to controls. However, familial amyotrophic lateral sclerosis (FALS) without superoxide dismutase-1 gene (SOD1) mutation is less heterogeneous than SALS. The metabolome of the cerebrospinal fluid of 17 ALS patients with a SOD1 gene mutation was found to form a separate homogeneous group. Analysis of metabolites revealed that glutamate and glutamine were reduced, in particular in patients with a familial predisposition. There are significant differences in the metabolite profile and composition among patients with FALS, SALS and patients carrying a mutation in the SOD1 gene suggesting that the neurodegenerative process in different subtypes of ALS may be partially dissimilar.Patients with a genetic predisposition to amyotrophic lateral sclerosis have a more distinct and homogeneous signature than patients with a sporadic disease

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets

    Get PDF
    A fundamental problem in thermodynamics is the recovery of macroscopic equilibrated interaction energies from experimentally measured single-molecular interactions. The Jarzynski equality forms a theoretical basis in recovering the free energy difference between two states from exponentially averaged work performed to switch the states. In practice, the exponentially averaged work value is estimated as the mean of finite samples. Numerical simulations have shown that samples having thousands of measurements are not large enough for the mean to converge when the fluctuation of external work is above 4 kBT, which is easily observable in biomolecular interactions. We report the first example of a statistical gamma work distribution applied to single molecule pulling experiments. The Gibbs free energy of surface adsorption can be accurately evaluated even for a small sample size. The values obtained are comparable to those derived from multi-parametric surface plasmon resonance measurements and molecular dynamics simulations

    An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression

    Get PDF
    Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection

    Emergency logistics for wildfire suppression based on forecasted disaster evolution

    Get PDF
    This paper aims to develop a two-layer emergency logistics system with a single depot and multiple demand sites for wildfire suppression and disaster relief. For the first layer, a fire propagation model is first built using both the flame-igniting attributes of wildfires and the factors affecting wildfire propagation and patterns. Second, based on the forecasted propagation behavior, the emergency levels of fire sites in terms of demand on suppression resources are evaluated and prioritized. For the second layer, considering the prioritized fire sites, the corresponding resource allocation problem and vehicle routing problem (VRP) are investigated and addressed. The former is approached using a model that can minimize the total forest loss (from multiple sites) and suppression costs incurred accordingly. This model is constructed and solved using principles of calculus. To address the latter, a multi-objective VRP model is developed to minimize both the travel time and cost of the resource delivery vehicles. A heuristic algorithm is designed to provide the associated solutions of the VRP model. As a result, this paper provides useful insights into effective wildfire suppression by rationalizing resources regarding different fire propagation rates. The supporting models can also be generalized and tailored to tackle logistics resource optimization issues in dynamic operational environments, particularly those sharing the same feature of single supply and multiple demands in logistics planning and operations (e.g., allocation of ambulances and police forces). Β© 2017 The Author(s

    An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression.

    Get PDF
    Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection

    On the design of experiments for the study of relativistic nonlinear optics in the limit of single-cycle pulse duration and single-wavelength spot size

    Full text link
    We propose a set of experiments with the aim of studying for the first time relativistic nonlinear optics in the fundamental limits of single-cycle pulse duration and single-wavelength spot size. The laser system that makes this work possible is now operating at the Center for Ultrafast Optical Science at the University of Michigan. Its high repetition rate (1 kHz) will make it possible to perform a detailed investigation of relativistic effects in this novel regime. This study has the potential to make the field of relativistic optics accessible to a wider community and to open the door for real-world applications of relativistic optics, such as electron/ion acceleration and neutron and positron production.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45803/1/11452_2005_Article_253.pd

    Epigenetic regulation of prostate cancer

    Get PDF
    Prostate cancer is a commonly diagnosed cancer in men and a leading cause of cancer deaths. Whilst the underlying mechanisms leading to prostate cancer are still to be determined, it is evident that both genetic and epigenetic changes contribute to the development and progression of this disease. Epigenetic changes involving DNA hypo- and hypermethylation, altered histone modifications and more recently changes in microRNA expression have been detected at a range of genes associated with prostate cancer. Furthermore, there is evidence that particular epigenetic changes are associated with different stages of the disease. Whilst early detection can lead to effective treatment, and androgen deprivation therapy has a high response rate, many tumours develop towards hormone-refractory prostate cancer, for which there is no successful treatment. Reliable markers for early detection and more effective treatment strategies are, therefore, needed. Consequently, there is a considerable interest in the potential of epigenetic changes as markers or targets for therapy in prostate cancer. Epigenetic modifiers that demethylate DNA and inhibit histone deacetylases have recently been explored to reactivate silenced gene expression in cancer. However, further understanding of the mechanisms and the effects of chromatin modulation in prostate cancer are required. In this review, we examine the current literature on epigenetic changes associated with prostate cancer and discuss the potential use of epigenetic modifiers for treatment of this disease

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14Β·2 per cent (646 of 4544) and the 30-day mortality rate was 1Β·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7Β·61, 95 per cent c.i. 4Β·49 to 12Β·90; P < 0Β·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0Β·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
    • …
    corecore