80 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Genetic architecture of common bunt resistance in winter wheat using genome-wide association study

    Get PDF
    Background: Common bunt (caused by Tilletia caries and T. foetida) has been considered as a major disease in wheat (Triticum aestivum) following rust (Puccinia spp.) in the Near East and is economically important in the Great Plains, USA. Despite the fact that it can be easily controlled using seed treatment with fungicides, fungicides often cannot or may not be used in organic and low-input fields. Planting common bunt resistant genotypes is an alternative. Results: To identify resistance genes for Nebraska common bunt race, the global set of differential lines were inoculated. Nine differential lines carrying nine different genes had 0% infected heads and seemed to be resistant to Nebraska race. To understand the genetic basis of the resistance in Nebraska winter wheat, a set of 330 genotypes were inoculated and evaluated under field conditions in two locations. Out of the 330 genotypes, 62 genotypes had different degrees of resistance. Moreover, plant height, chlorophyll content and days to heading were scored in both locations. Using genome-wide association study, 123 SNPs located on fourteen chromosomes were identified to be associated with the resistance. Different degrees of linkage disequilibrium was found among the significant SNPs and they explained 1.00 to 9.00% of the phenotypic variance, indicating the presence of many minor QTLs controlling the resistance. Conclusion: Based on the chromosomal location of some of the known genes, some SNPs may be associated with Bt1, Bt6, Bt11 and Bt12 resistance loci. The remaining significant SNPs may be novel alleles that were not reported previously. Common bunt resistance seems to be an independent trait as no correlation was found between a number of infected heads and chlorophyll content, days to heading or plant height

    Neurodegenerative processes in Huntington's disease

    Get PDF
    Huntington's disease (HD) is a complex and severe disorder characterized by the gradual and the progressive loss of neurons, predominantly in the striatum, which leads to the typical motor and cognitive impairments associated with this pathology. HD is caused by a highly polymorphic CAG trinucleotide repeat expansion in the exon-1 of the gene encoding for huntingtin protein. Since the first discovery of the huntingtin gene, investigations with a consistent number of in-vitro and in-vivo models have provided insights into the toxic events related to the expression of the mutant protein. In this review, we will summarize the progress made in characterizing the signaling pathways that contribute to neuronal degeneration in HD. We will highlight the age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients. The most promising molecular targets for the development of pharmacological interventions will also be discussed

    Transcription, Epigenetics and Ameliorative Strategies in Huntington’s Disease: a Genome-Wide Perspective

    Get PDF
    ease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disrup-tion in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and non-coding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microar-ray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtain-ed from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders
    • …
    corecore