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RESEARCH ARTICLE Open Access

Genetic architecture of common bunt
resistance in winter wheat using genome-
wide association study
Amira M. I. Mourad1,2*, Ahmed Sallam1,3, Vikas Belamkar1, Ezzat Mahdy2, Bahy Bakheit2, Atif Abo El-Wafaa2

and P. Stephen Baenziger1

Abstract

Background: Common bunt (caused by Tilletia caries and T. foetida) has been considered as a major disease in wheat
(Triticum aestivum) following rust (Puccinia spp.) in the Near East and is economically important in the Great Plains,
USA. Despite the fact that it can be easily controlled using seed treatment with fungicides, fungicides often cannot or
may not be used in organic and low-input fields. Planting common bunt resistant genotypes is an alternative.

Results: To identify resistance genes for Nebraska common bunt race, the global set of differential lines were
inoculated. Nine differential lines carrying nine different genes had 0% infected heads and seemed to be resistant to
Nebraska race. To understand the genetic basis of the resistance in Nebraska winter wheat, a set of 330 genotypes
were inoculated and evaluated under field conditions in two locations. Out of the 330 genotypes, 62 genotypes had
different degrees of resistance. Moreover, plant height, chlorophyll content and days to heading were scored in both
locations. Using genome-wide association study, 123 SNPs located on fourteen chromosomes were identified to be
associated with the resistance. Different degrees of linkage disequilibrium was found among the significant SNPs and
they explained 1.00 to 9.00% of the phenotypic variance, indicating the presence of many minor QTLs controlling the
resistance.

Conclusion: Based on the chromosomal location of some of the known genes, some SNPs may be associated with
Bt1, Bt6, Bt11 and Bt12 resistance loci. The remaining significant SNPs may be novel alleles that were not reported
previously. Common bunt resistance seems to be an independent trait as no correlation was found between a number
of infected heads and chlorophyll content, days to heading or plant height.

Keywords: Triticum aestivum, Linkage disequilibrium, Marker-assisted selection, Correlation, Gene annotation

Background
Common bunt (CB) caused by Tilletia caries (D.C.) Tul.
(=T. tritici) and T. foetida (Wallr.) Liro (=T. laevis) can
cause huge losses in wheat grain yield. Infected plants
with common bunt usually produce low grain yield
with low quality compared with healthy plants. The
reduction in the yield and its quality in the infected
plants occurs due to the replacement of grains with
bunt balls spores [1, 2]. Furthermore, wheat millers

usually reject kernels infected by this pathogen as
very low infection rates can result in noticeable un-
desirable odors in flour. In the USA-Great Plains, an
area from central Texas through central Nebraska,
common bunt rarely causes large yield losses. How-
ever, it has been considered as an important factor
which reduces grain quality in this region [3]. Seed
treatments with fungicides could be used as an effect-
ive tool to manage common bunt. However, genetic
resistance is a better option for reducing exposure to
chemical seed treatments and could be applied in or-
ganic systems [4, 5].
Estimation of common bunt resistance is difficult as

the disease is scored at very late stages of plant
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development when bunt balls form during the grain filling
stage (Feekes 11.3 and 11.4). Moreover, occasionally the
formation of bunt balls can occur only in the last spike
formed on the plant and only in a few of the florets [1].
To overcome these limitations in the direct assessment of
common bunt resistance, marker-assisted selection (MAS)
could be used. One of the most effective marker systems
which have been used widely in plant breeding for
different traits is Genotyping-by-sequencing (GBS).
Genotyping-by-sequencing usually generates a lot of SNP
markers that cover large genomic regions in a
cost-effective manner [6, 7]. Those genome-wide SNPs
could be utilized in different genomics studies including
genome-wide association study (GWAS), genomic selec-
tion, and genetic diversity studies. Association mapping
(AM) is a robust tool to identify alleles of interest that
control the phenotypic variation among genotypes [8]. To
detect alleles associated with target traits using GWAS,
100–500 individuals and codominant markers (SSR or
SNP) are highly recommended for the analysis [9].
In order to apply MAS in breeding for common bunt

resistance, information on the genes reducing common
bunt infection is needed. Resistance to common bunt
was often recorded as a quantitative trait controlled by a
single gene which has a complete or incomplete domin-
ance effect [10, 11]. Sixteen race-specific resistance
genes for common bunt have been identified, from Bt1
to Bt15 and Btp [12, 13]. Some of these sixteen resist-
ance genes have been mapped [14]. Unfortunately, no
information has been published on the common bunt
race in Nebraska, hence there is no information on the
resistance genes against Nebraska common bunt race.
The objectives of this study are: 1) identify genes that

are resistant to the Nebraska race of common bunt
using 14 differential lines, 2) screen a set of 330 Neb-
raska winter wheat lines for resistance to common bunt

in multiple locations, 3) identify alleles/genomic regions
associated with common bunt resistance using GWAS,
and 4) study the correlation of common bunt resistance
and agronomic traits (such as chlorophyll content, days
to heading, and plant height) which could possibly be
used as a selection criterion.

Results
Evaluating the differential lines and susceptible checks
The common bunt differential lines, as well as the sus-
ceptible checks, were screened for their resistance to the
Nebraska common bunt race in the field and green-
house. The winter check “Heines VII” had very a low
percentage of infected heads with an average infected
head of 14.4% which could be interpreted as our inocu-
lation was unsuccessful. However, number of genotypes
were susceptible to highly susceptible (see below), so we
believe our test is valid. While, the spring check (Red
Bobs), evaluated in the greenhouse, had a high percent-
age of infected heads (73.5%) (Fig. 1). Out of the
twelve-winter wheat differential lines, seven lines (Bt6,
Bt9, Bt11, Bt12, Bt13, Bt15, and Btp) were very resistant
to Nebraska common bunt race with zero% infected
heads. In addition, two differential lines, Bt10 and Bt7,
were resistant and had 1.2% and 3.8%, infected heads.
The remaining five lines containing Bt1, Bt2, Bt3, Bt8,
and Bt14) had a percentage of infected heads ranging
from 10 to 33.3% hence were considered moderately
susceptible to susceptible.
To test the ANOVA of the common bunt resistant

data, the percentage data were transformed using arcsine
root square method. Compared with untransformed data
(means of infection percentages), the transformed data
were normally distributed (Additional file 1: Figure S1).
Shapiro-Wilk normality test had a non-significant value
(p-value 0.1024) for the transformed data, while, it was

Fig. 1 Percentage of infected heads in the common bunt differential lines set based on the average of Mead, Lincoln, and greenhouse. Black
columns represent the percentage of infected heads in the winter differential lines as well as a check at the field. Red charts represent the
percentage of infected heads in the spring differential lines as well as the check in the greenhouse
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highly significant for the original data (p-value = 1.688e− 05)
indicating the non-normal distribution for the original
common bunt scores.
The ANOVA for common bunt resistance revealed

highly significant differences among the entries, no signifi-
cant differences between the locations, and no significant
Location x Entry (LxE) interaction (Table 1). Highly signifi-
cant correlation between the two locations was found (r =
0.61, P < 0.01) (Additional file 2: Figure S2). The 330 tested
genotypes had different percentages of infected heads ran-
ging from 0 to 64.5% as an average of both locations. Based
on these results, all genotypes could be classified into six
groups namely; very resistant (four genotypes- 0%),
resistant (24 genotypes – 0.1-5.0%), moderately resistant
(34 genotypes – 5.1-10.00%), moderately susceptible (191
genotypes- 10.01-30.00%), susceptible (67 genotypes-
30.01-50.00%) and very susceptible (six genotypes –
50.01-100%) (Fig. 2). Broad-sense heritability was high
based on the average from both locations (H2

B = 0.78).
Highly significant differences were found among the

tested genotypes for the remaining traits except for
chlorophyll content. Broad-sense heritability of plant
height and days to heading was 0.40 and 0.51, respect-
ively. Both traits, plant height and days to heading, were
normally distributed (Additional file 3: Figure S3). No
correlation was found between the percentage of in-
fected heads and plant height. However, a small nega-
tive significant correlation (r = − 0.11, P < 0.05) was
found between the infected heads and days to heading
(Table 2).

Association mapping for common bunt resistance and
some agronomic traits under infection
Population structure
Population structure analysis (PS) was performed using
35,216 SNPs after filtering based on a minor allele fre-
quency (MAF > 0.05), missing SNPs < 20% and missing

genotypes < 20% [15]. For the association analysis, the
heterozygous loci were marked as missing values and
the SNP data was re-filtered with the same criteria. As a
result, a set of 318 genotypes and 23,053 SNPs were
used in our GWAS analysis.
The PS analysis was carried out on the 318 genotypes

(TRP2015 and DUP2014 nurseries) and four possible
subpopulations were found (Fig. 3a). To verify this re-
sult, the number of proposed k was plotted against the
calculated Δk. A sharp and clear peak was assigned to k = 4
(Fig. 3b). Therefore, four subpopulations was chosen to
define the genetic structure of the 318 genotypes.

Genome-wide association study (GWAS) for common bunt
resistance
Due to the absence of the LxE interaction for the com-
mon bunt resistance, transformed data of the average
from Lincoln and Mead were combined and two models
of MLM (K) and MLM (Q + K), due to the presence of
population structure, in TASSEL, were used. Association
analyses, performed by TASSEL 5.0, using both models
identified nine SNPs to be associated with common bunt
resistance based on FDR (α = 0.05) and only three SNPs
based on Bonferroni correction (α = 0.05). All the signifi-
cant SNPs were located on chromosome 1A (Additional
file 4: Table S1). To investigate if there are more genes
controlling the common bunt resistance in wheat, the
GWAS using SUPER method was done. The SUPER
analysis identified nine SNPs, located on three chromo-
somes, to be associated with common bunt resistance
based on a Bonferroni correction (α = 0.05) and a set of
123 significant SNPs located on fourteen chromosomes
based on FDR (α = 0.05). A summary of the association
results is presented in Fig. 4 and Table 3. Manhattan plot
for GWAS results indicated the chromosomal location
of the different significant SNPs based on TASSEL and
SUPER analysis (Fig. 5a and b).

Table 1 Analysis of variance, broad sense heritability and coefficient of variation (C.V.) of common bunt resistance, plant height,
heading date, and chlorophyll content

Source of variance Common bunt resistance Plant Height Heading date Chlorophyll content

d.f. Mean Squares d.f Mean Squares d.f Mean Squares d.f Mean Squares

Location 1 0.08 1 471.83* 1 41,923.56** – –

Replicate (Loc.) 2 0.00019 2 644.91** 2 16.87 1 18.05

Iblock (Rep.) 8 0.15 8 3290.16** 8 428.14** 8 208.50**

Pcol (iblock) 93 0.05 93 168.01** 93 41.67** 93 19.87

Prow 6 0.004 6 166.46 6 30.38* 6 13.01

Entry 328 0.49** 331 134.76** 331 28.77** 354 15.26

Location*Entry 328 0.08 331 62.64 331 11.22 – –

Broad-sense Heritability 0.78 0.40 0.51 0.06

C.V. (%) 48.00 12.00 1.72 9.77

*p < 0.05, **p < 0.01
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Based on the summarized results of the GWAS ana-
lysis, the phenotypic variation explained by marker (R2)
for all the significant SNPs ranged from 0.1 to 9.0%. The
number of significant SNPs located on the same
chromosome ranged from one SNP on chromosome 7D
to 31 SNPs on chromosome 1B (Table 3). The detailed
GWAS results for each significant marker including
p-value, R2, allele effect, target allele (resistant allele) and
LD between each pair of markers located on the same
chromosome are presented in Additional file 4: Table S1.
Obviously, only five SNPs out of the nine SNPs identi-
fied by TASSEL were identified using SUPER. Significant
and non-significant LD of different marker pairs were
found on the different chromosomes. For example, no
LD was found between the significant SNPs on chromo-
somes 3B, 5A, and 7B, while a complete LD among the
31 significant markers were found on chromosome 1B
(Additional file 4: Table S1).
Association analysis for plant height and days to

maturity under common bunt conditions was per-
formed. No significant SNPs were found for days to
heading using TASSEL, while eight SNPs were found
to be associated with plant height under the infection
based on a Bonferroni correction and FDR (α = 0.05)
(Table 4 and Additional file 5: Figure S4). These sig-
nificant SNPs located on chromosomes 1A (three
SNPs), 4B (two SNPs) and 5B (three SNPs). The
phenotypic variations of these significant SNPs ranged
from 7.67 to 10.04%.

Genes underlying candidate SNPs and their annotations
and expression
As there were no promising significant correlations be-
tween common bunt resistance and other agronomic
traits (plant height and days to heading), we focused on
identifying gene candidates for significant SNPs associ-
ated with common bunt resistance to further understand
this association. The annotation of genes containing
these SNPs was reviewed. There were no SNPs located
within gene models on chromosomes 1A, 2B, 3A, 4A,
5A, and 7D. However, many SNPs were found within
gene models on the remaining chromosomes (Table 5).
The functional annotation of these gene models was re-
trieved using IWGSC v1.0 GFF3 files. Some of these
gene models were found to be associated with disease
resistance. For example, the seven gene models on
chromosome 1B have been found to control disease re-
sistance and increase plant defense against disease and
pests (Table 5).
In order to provide more information about the resist-

ance genes in our tested materials, the expression of the
identified gene models was investigated and presented in
Fig. 6. Comparing among the expression of these genes
under control and diseased conditions at seedling and
reproductive stages, only nine gene models were found
to have higher expression under disease conditions. For
example, one gene model was found to have a higher ex-
pression at seedling stage and another one at the repro-
ductive stage on chromosome 1B. One gene model were
identified to have higher expression under disease condi-
tions on chromosomes 3B, 5B, 7A, and 7B. While both
gene models identified on chromosome 6A have a higher
expression under disease.

Discussion
The experiments in both locations were planted on Oc-
tober 14th, 2015. The soil temperature at 10 cm depth
was 18 °C and 17 °C in Lincoln and Mead, respectively.

Fig. 2 Number of genotypes showing different degrees of common bunt resistance based on the average of both locations (Mead and Lincoln)

Table 2 Correlation coefficients for days to heading, plant
height and percentage of infected heads in the tested 330
genotypes

Days to heading Plant height Infected heads %

Days to heading −0.15** −0.11*

Plant height 0.05

Infected heads %

*p < 0.05, **p < 0.01
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Cool soil temperature at the time of planting is favorable
for common bunt infection [1]. Beginning in mid of No-
vember, snow covered the plots until mid of January. A
long period of snow coverage is also important to cause
a high level of disease. The evaluation test of common
bunt resistance could be considered as a valid test only
when the mean percent of the infected spikes in the sus-
ceptible checks exceeded 50% [16]. While Heines VII had

a lower score, in our experiment, some genotypes had a
high degree of susceptibility to common bunt (six geno-
types based on the average) with the percent of infected
heads exceeded 50% (64.49%, Fig. 1). Based on these num-
bers of susceptible genotypes, we concluded the recent
field test was considered valid. The low value for Heines
VII may relate to its being very un-adapted to Nebraska.
The high percentage of infected heads in the spring check,
Red Bob 73.4%, indicated the highly effective greenhouse
inoculation. When the infection percentage of a genotype
was less than 10%, the resistance gene which it carries
could be considered as an effective gene [17].

Resistance genes to Nebraska common bunt race
The differential lines were very useful in this study be-
cause they shed light on the possible resistant genes
which could exist in Nebraska winter wheat genotypes.
Based on the results of the differential lines inoculation,
we found Bt6, Bt7, Bt9, Bt10, Bt11, Bt12, Bt13, Bt15, and
Btp are effective resistance genes for the Nebraska com-
mon bunt race which is mainly virulent on Bt1, Bt2, Bt3,
Bt8, and Bt14. The differential lines used in this study
were also used in earlier studies to identify the virulence
characteristics of wheat bunt isolates [18–21]. These
data on differential lines were also very important to tar-
get the possible genes that can be used to breed local
bunt-resistant cultivars. Two advantages of using these dif-
ferential lines are (1) they can be highly and

a

b

Fig. 3 Analysis of population structure using 35,216 SNP markers: (a) Estimated population structure of 318 winter wheat genotypes (k = 4). The
y-axis is the sub-population membership, and the x-axis is the genotypes. b delta-k for different numbers of sub-populations

Fig. 4 Summary of the significant SNPs associated with common bunt
resistance based on TASSEL and SUPER analysis for GWAS detected by
Bonferroni correction (BC 5%) and false discovery rate (FDR 5%)
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morphologically discriminated from each other which
leads to more accurate scoring [20] and (2) they are avail-
able to the international scientists via the United States
Department of Agriculture–Agricultural Research Service,
National Small Grains Collection (NSGC) in Aberdeen, ID.

Genetic variation in common bunt resistance and some
agronomic traits
The highly significant differences among the tested
genotypes for common bunt resistance indicate that high
levels of variation existed within the Nebraska breeding
pool. This high genetic variation is very useful for select-
ing the most resistant genotypes to be used as parents in
future Nebraska winter wheat breeding program especially

for low input or organic production where seed treat-
ments are not commonly used. In the eastern half of Neb-
raska, common bunt disease in wheat is found to be
frequently occurring but to a varying extent (https://crop
watch.unl.edu/common-bunt-wheat-unl-cropwatch-august
-28-2013). Therefore, breeding Nebraska winter wheat for
common bunt resistance is needed to avoid yield and qual-
ity (due to odors) losses, especially in organic production.
The high correlation for common bunt resistance between
Mead and Lincoln indicate that the response to common
bunt for most of the genotype was similar across the two
locations. Moreover, this high correlation is in agreement
with non-significant location x entry (LxE) interaction. The
high broad-sense heritability value for common bunt

Table 3 Summary of GWAS results using both TASSEL and SUPER methods indicating the presence of the 123 SNPs significantly
associated with common bunt resistance in wheat

Chro. No. of SNPs Position P-value R2 Allele effect

1A 8 42,100,559–499,864,432 0.0000962–0.0000566 1.0–9.0% (−0.26) – (− 2.70)

1B 31 137,128,882–163,096,159 0.00000471–0.000026 0.5–5.0% (− 0.06) – (− 0.29)

2B 2 787,820,195–785,905,982 0.000126–0.00026 1.7 2.9% (−0.10) – (− 0.12)

3A 10 51,290,068–742,470,499 0.0000366–0.000062 0.6–4.0% (−0.06) – (− 0.30)

3B 2 6,951,948–851,809 0.0000882–0.000070 0.6–1.0% (−0.090) – (− 0.097)

4A 8 632,236,000–738,778,127 0.000132015–0.0000744 0.9–5.0% (−0.07) – (− 0.28)

5A 3 568,046,700–613,546,850 0.000102–0.00021 0.02–2.0% (−0.02) – (− 0.11)

5B 6 550,732,248–701,156,196 0.0000485–0.000138288 0.7–8.0% (−0.06) – (− 0.22)

5D 5 544,283,538–545,103,958 0.0000188–0.00018284 2.3–2.9% (−0.135) – (− 0.143)

6A 5 431,921,921–611,857,844 0.000102731–0.0000121 0.1–5.0% (−0.01) – (− 0.22)

6B 28 461,408,979–708,256,236 0.0000348–0.000198768 0.1–3.0% (−0.05) – (− 0.32)

7A 12 298,990,918–722,414,973 0.000155936–0.0000268 1.0–4.0% (−0.06) – (− 0.13)

7B 2 18,097,824–703,152,031 0.0000718–0.0000972 1.0–4.0% (−0.17) – (− 0.29)

7D 1 595,913,707 0.000188716 3.1% −0.17

Fig. 5 Manhattan plot displaying SNP marker-trait association identified for common bunt resistance in GWAS using 318 winter wheat lines using
a) TASSEL and b) SUPER softwares. Redline is significance threshold of 5% Bonferroni correction while blue line is significant threshold of 5% false
discovery rate (FDR). Y axis is the chromosome number where, 1=1A, 2=1B, 3=1D, 4=2A, 5=2B, 6=2D, 7=3A, 8=3B, 9=3D, 10=4A, 11=4B, 12=4D,
13=5A, 14=5B, 15=5D, 16=6A, 17=6B, 18=6D, 19=7A, 20=7B, 21=7D, 22= unknown chromosome
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Table 4 Association analysis of plant height under common bunt infection using the mixed linear model (MLM) using TASSEL 5.2
software based on Bonferroni correction (α = 0.05) and false discover rate (α = 0.05)

SNP ID Chro. p-value Target allele (1) Allele effect (2) R2 (3)

(%)

S1A_39183276 1A 8.22E-06 C:T 4.04 7.67

S1A_40498783 1A 1.55E-05 G:T 3.82 7.83

S1A_40498796 1A 1.55E-05 G:A 3.82 7.83

S4B_28403490* 4B 1.45E-06 G:T 5.85 8.75

S4B_36090153 4B 1.44E-05 A:G 5.15 7.88

S5B_533748253* 5B 1.13E-06 A:T 8.36 8.25

S5B_533748257* 5B 1.13E-06 G:C 8.36 8.25

S5B_565504007* 5B 1.19E-06 C:T 8.87 10.04

*SNPs significantly associated with plant height based on Bonferroni correction (α = 0.05)
(1) The allele on the left increased the resistance
(2) The effect of left allele associated with increased resistance
(3) Phenotypic variation explained by marker

Table 5 Gene models underlying significant SNPs and their annotations from the International Wheat Genome Sequencing
Consortium reference genome assembly v1.0 of the variety Chinese spring

Chrom. SNP ID Gene model Gene annotation Probable function References

1B S1B_137,128,882 TraesCS1B01G116700.2 Serine/threonine-protein kinase Plant defense [49]

TraesCS1B01G116700.1

S1B_144926670 TraesCS1B01G121600.2 1,3-beta glucosidase Cell division and plant defense [50]

S1B_144929898 TraesCS1B01G121600.3

S1B_148891914 TraesCS1B01G123200.2 Kinesin-like protein Plant defense [51]

TraesCS1B01G123200.1

S1B_160486821 TraesCS1B01G130000.1 Cytochrome P450 Pest and disease resistance [52]

S1B_160486833

3B S3B_6,951,948 TraesCS3B01G016700.1 RNA polymerase II transcription subunit Regulation of pathways [53]

5B S5B_550,732,248 TraesCS5B01G372800.3 Rhomboid family protein Regulated protein

TraesCS5B01G372800.1

TraesCS5B01G372800.2

5D S5D_544799149 TraesCS5D01G527700.1 Lytic transglycolase

6A S6A_431,921,921 TraesCS6A01G229000.1 SPla/RYanodine receptor (SPRY) domain
protein

Increase plant immunity for
Nematoda

[54]

S6A_431921934

S6A_611,857,844 TraesCS6A01G406700.1 NAC domain protein Control biotic and abiotic stresses [55]

6B S6B_466695469 TraesCS6B01G258800.1 ORYGL Auxin response factor Regulate gene expression [56]

S6B_507468652 TraesCS6B01G281100.1 Protein of unknown function –

S6B_576206570 TraesCS6B01G326600 Protein of unknown function –

TraesCS6B01G326600.1

S6B_590912673 TraesCS6B01G335600.1 WHEAT Hexosyltransferase

S6B_590912695

7A S7A_714662345 TraesCS7A01G537200 – –

TraesCS7A01G537200.1

S7A_715781215 TraesCS7A01G538800.1 – –

7B S7B_18,097,824 TraesCS7B01G020500.1 – –
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resistance indicates that common bunt resistance is a
highly heritable trait and selection for a high common bunt
resistance will be successful.
The absence of significant differences among the

tested genotypes for chlorophyll content under com-
mon bunt infection indicates that the infection has a
little effect on the chlorophyll content. However, the
presence of highly significant differences among the ge-
notypes for plant height and days to flowering under
common bunt indicates that genetic variation existed
among genotypes under the infection conditions. No
significant correlation was found between common
bunt resistance and plant height. The correlation be-
tween common bunt resistance and agronomic traits
was previously tested in two different doubled haploid
population [22]. They did not find any correlation be-
tween plant height and number of days to heading in
one population consisting of 48 lines, while a low sig-
nificant correlation was found between the resistance
and days to heading (0.23*) and plant height (0.24**) in
the other population with 115 genotypes. Based on our
results and the results of [22] we can conclude that
common bunt resistance seems to be an independent
trait. The negative correlation between the percentage
of infected heads and days to heading indicated that
susceptible genotypes are usually heading earlier than
resistant genotypes. However, due to the low value of
the correlation between days to heading and infected
heads, days to heading should not be used as a selec-
tion criterion for common bunt resistance in wheat.

Association mapping for common bunt resistance and
some agronomic traits under infection
The number of significant SNPs was greatly increased
using SUPER compared with TASSEL. The SUPER has
been reported to be a powerful analysis for identifying
genes with a smaller effect in any sample size as it
extracts a small subset of SNPs and tests them in
FaST-LMM. This method increases the statistical power
and retains the computational advantages [23]. The low
matching of the results of TASSEL and SUPER (only five
SNPs) indicating that both methods used together could
be beneficial in identifying possible candidate SNPs asso-
ciated with the studied trait. Summarized results of both
GWAS methods identified a set of 123 SNPs signifi-
cantly associated with the resistance. Due to the low R2

of these SNPs (less than 10%), all of them were consid-
ered as minor QTLs for common bunt resistance. The
different degrees of LD between the significant SNPs on
the same chromosome indicates the presence of multiple
haplotype blocks on each chromosome, except for
chromosome 1B which had a complete LD among its 31
significant SNPs. Hence, chromosome 1B is expected to
be carrying a single haplotype block comprising 31 SNPs
for common bunt resistance. A set of four SNPs on
chromosome 2B and four on chromosome 7A signifi-
cantly associated with common bunt resistance were
identified by [24] using a set of 158 RILs Canadian
spring wheat genotyped by 19,639 polymorphic SNPs.
They found that the phenotypic variation explained by
these markers was 18.7% for the SNPs on chromosome

Fig. 6 The expression of the gene models harboring significant SNPs in transcripts per million (TPM). Blue and gray columns represent the gene
expression under controlled conditions at reproductive and seedling growth stages, respectively. While, orange and yellow columns represent the
gene expression under disease infection conditions at the same growth stages

Mourad et al. BMC Plant Biology          (2018) 18:280 Page 8 of 14



2B, while it ranged from 10.3 to 20.5% for the SNPs on
chromosome 7A. In addition, a set of two QTLs on
chromosome 2B and one QTL on chromosome 7A were
found to be associated with the resistance in a set of 250
genotypes genotyped by 1824 polymorphic DArT
markers in Denmark [25]. These results confirm our re-
sults of the presence of resistance genes on chromo-
somes 2B and 7A. In our study, the number of
genotypes (330) and SNPs (23,052) were higher than
those used in the previous studies and the SNPs were
better distributed across the genome, the resolution of
QTL detection was higher than the previous studies
(Additional file 6: Figure S5).
Little research has been done on the within chromosomal

location of the different common bunt resistance genes and
little is known on the location of these genes (Table 6 and
Fig. 7). Based on the results of association mapping, differ-
entials lines and gene annotations, we expected that the sig-
nificant SNPs located on chromosome 1B could be
associated with some genes such as; Bt1, Bt6, Bt12 or other
unknown genes [26, 27]. Bt4 could be located on this
chromosome due to the high linkage between it and Bt6
gene [26]. The significant SNPs on chromosomes 2B and
2D could be associated with Bt1 and Bt11 which have been
mapped to chromosomes 2B and 2D, respectively [4, 28].
Some QTLs were reported to have an association with
common bunt resistance on chromosome 1A [27, 29], but
no genes were mapped on this chromosome. The GWAS
was performed for other traits (plant height and days to
heading). The results indicated the absence of significant
QTLs for days to heading under common bunt. However,

for plant height, eight SNPs were found to be significantly
associated with common bunt infections. The chromo-
somal locations of these significant SNPs were in agreement
with the location of previously reported SNPs and QTLs
associated with plant height [30–32]. In addition, some
plant height genes were mapped on chromosome 4B such
as Rht1 and Rht3 [33, 34]. No plant height genes were
mapped on the remaining two chromosomes (1A and 5B).
By looking at the common markers between plant height
and common bunt resistant, the two traits did not have any
common markers. This result provides further support for
(1) low phenotypic correlations among the traits and (2)
common bunt resistant is controlled by an independent
genetic system.

Conclusion
In conclusion, the high genetic variation among the ge-
notypes is very useful for selection to common bunt re-
sistance in Nebraska wheat. Moreover, differential lines
shed the light on the possible genes that may exist in the
Nebraska wheat and the virulence of the strain of com-
mon bunt found in Nebraska. This result could be useful
for crossing the genotypes, as parents, carrying the high-
est number of resistant genes. The most resistant geno-
types identified in this study could be introduced to
organic farmers and used for breeding to improve resist-
ance to common bunt in winter wheat. The identified
123 SNPs associated with common bunt resistance in
wheat could be a reliable source for marker-assisted se-
lection (MAS) by converting them to Kompetitve
Allele-Specific PCR (KASP) markers. However, these

Table 6 Differential lines used in this study including their PI number, resistance gene, gene location and citation when available

Wheat lines Resistance Gene CI or PI number Chromosomal location of resistance gene References

Red Bobs None CI 6255 – –

Heines VII None PI 209794 – –

Sel 2092 Bt1 PI 554101 2B [28]

Sel 1102 Bt2 PI 554097 Unknown

Ridit Bt3 CI 6703 Unknown

Rio Bt6 CI 10061 1B [26]

Sel 50,077 Bt7 PI 554100 2D [14]

PI 173438/ Elgin Bt8 PI 554120 Unknown

Elgin/PI 178383 Bt9 PI 554099 6DL [48]

Elgin/PI 178383 Bt10 PI 554118 6D [14]

Elgin/PI 166910 Bt11 PI 554119 3B [4]

PI 119333 Bt12 PI 119333 1B [27]

Thule III Bt13 PI 181463 Unknown

Doubbi Bt14 CI 13711 Unknown

Carleton Bt15 CI 12064 Unknown

PI 173437 Btp PI 173437 Unknown
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SNPs should be validated in a different genetic back-
ground before using them for MAS.

Methods
Plant material
Three hundred and forty-four wheat genotypes were used
in the current study. These genotypes were classified into
two sets: differentials lines and tested genotypes.
The differential lines consisted of 14 common bunt

differential lines which were used to identify the viru-
lence of the Nebraska common bunt race (Table 6).
These lines are used world widely and were obtained
from the USDA-ARS. The differential lines contained
genes Bt1 through Bt13 and Btp are winter hexaploid
wheat, while, the differential lines for Bt14 and Bt15
genes are spring tetraploid (T. durum L.) wheat. In
addition, two susceptible lines Heines VII “winter wheat”
and Red Bobs “spring wheat” were included in this
experiment to determine the disease pressure in the field
and the greenhouse. The two susceptible lines are part
from the worldwide differential lines. The tested geno-
types consisted of two populations; 270 winter wheat ge-
notypes from the 2015 F3:6 nurseries (Nebraska
Duplicate Nursery- DUP2015, the preliminary yield
trial). These genotypes were derived from 800 to 1000
crosses. In addition, 60 genotypes from the 2015 F3:7
nurseries (Nebraska Triplicate Nursery-TRP2015, the ad-
vanced yield trial) which is derived from the selections
from the DUP2014 nursery based on the grain yield,
grain weight, resistance to disease, end-use quality, plant
height and maturity traits and do not overlap with the
DUP2015 [35]. The DUP2015 and TRP2015 were devel-
oped by the University of Nebraska where P.S. Baenziger
is the responsible wheat breeder. This germplasm is offi-
cially owned by the Board of Regents, University of Neb-
raska and is freely available for research purposes within

the University of Nebraska by its faculty, students, and
visiting scientists.

Common bunt inoculation
The seeds of all genotypes were inoculated using the
method of [16] by mixing the kernels with the telio-
spores, putting them in an envelope and shaking until
the kernels were fully covered with the spores. This
method was reported as an effective method to inocu-
late small amount of seeds, from five to twenty
grams.

Experimental layout
The spring differential lines and spring susceptible
check were planted in the greenhouse in five replica-
tions under controlled conditions using randomized
complete block design. The twelve winter differential
genotypes were evaluated in the greenhouse (along
with the spring differential lines) in three replications
and in the field experiments (along with winter wheat
genotypes) in two replications to make sure that none
of the genotypes escaped from infection under field
conditions. The greenhouse experiment included the
spring susceptible check “Red Bob” in order to con-
firm the success of the inoculation method. All the
tested genotypes were placed in the vernalizer for two
months at 4 °C with 12 h. of low light to provide op-
timal conditions for the fungal spores to infect the
seedlings and have a high level of infection. The inoc-
ulated plants were transferred to a warmer room at
16 °C [night] - 25 °C[day] and grown using an in-
creasing long day (from 12 to 16 h of supplemental
Light) to maturity at which time when they were har-
vested and scored [16].
The two tested nurseries (DUP2015 and TRP2015, had

a total of 330 genotypes) were tested in the field. The

Fig. 7 Histogram represents the number of significant SNPs associated with common bunt resistance located on the different chromosomes and
the possible genes located on these chromosomes
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experiments were conducted in season 2015/2016 at
two locations Mead and Lincoln, Nebraska, USA. The
experimental design was replicated augmented in-
complete block design with three replications and
five incomplete blocks each. Two checks ‘Goodstreak’
and ‘Freeman’ were included three times in each
block (15 times in each replication). The inoculated
seeds of each genotype were sown in a one-meter
long row at depth 5 cm. Each row was planted in a
group of four with 30 cm between rows. The plant-
ing date was October 14th, 2015 and the soil
temperature was 18 °C and 17 °C at 10 cm depth at
Lincoln and Mead, respectively (http://hprcc.unl.edu/). In
each experiment, a winter susceptible line (Heines VII)
were included to verify the effectiveness of the
inoculation.
The following traits were recorded on each geno-

type at Lincoln and Mead: days to heading (measured
by calculating the number of days after Jan. 1 to
when 50% of the tillers in each genotype were at
Feekes stage 10.1 and had heads fully emerged from
the boot), average chlorophyll content from five flag
leaves (Feekes stage 10.5, measuring using
SPAD-502 m (KONICA MINOLTA, New York, USA;
[36]), and plant height (measured during ripening
stage (Feekes stage 11) as the height of the plant
from the ground to the tip of the head, awns ex-
cluded). In addition, common bunt resistance was
measured on each genotype in each replication as
follows:

CB ¼ number of infected heads
total number of heads=genotype

� 100

The level of resistance was determined using the fol-
lowing scale: Percentage of infected heads 0.0% = very
resistant, 0.1–5.0% = resistant, 5.1–10.0% =moderately
resistant, 10.1–30.0% =moderately susceptible, 30.1–
50.0% = susceptible, 50.1–100.0% = very susceptible [37].
Data of the different traits were collected using field
book Android application [38]. In each location, all traits
were scored in three replications except common bunt
resistant which was scored in two replications due to a
labor involved with counting and scoring all the tillers of
a number of genotypes.

Statistical analysis of common bunt resistance and the
studied traits
To improve normality of the common bunt resistance
data, the data were transformed using arcsine root
square method using Excel 2013 as it was estimated as a
percentage. Shapiro-Wilk normality test was used to
confirm the improved normality of the transformed data
compared with the original data. For all the other

studied traits, data from Lincoln and Mead experiments
were combined and analyzed using SAS Version 9 [39].
The analysis of variance (ANOVA) model was:

Y ¼ Lþ R Lð Þ þ Iblock Rð Þ þ Pcol Iblockð Þ þ Prow
þ Eþ L x Eþ Error

Where Y is the observation of genotype, L is location,
R(L) is replication nested within locations, Iblock (R) is
Iblock nested within replication, Pcol (Iblock) is the
number of columns nested within Iblock, Prow is the
row number, E is Entry and LxE is location x Entry
interaction.
The graphical presentation of box plots for all studied

traits was created using R package ‘ggplot2’ [40] and the
histograms were created using Excel 2013. Correlation
between different traits was calculated using SAS JMP
software [41]. The broad sense heritability (H2) was cal-
culated across locations using the following formula:

H2 ¼ σ2G=
�
σ2G þ σ2LxE

L
þ σ2

e

LR

�

where σ2G; σ
2
LxE and σ2e are the variance of the lines and

the residuals, R is the number of replicates within the lo-
cation and L is the number of locations.

DNA extraction and genotyping-by-sequencing (GBS)
DNA was extracted from all the 330 tested genotypes
(270 and 60 genotypes in the DUP2015 and TRP2015,
respectively) using BioSprint 96 DNA Plant Kits (Qia-
gen, Hombrechtikon, Switzerland) from 2 to 3 leaves of
two-week-old seedlings. Two restriction enzymes, PstI
and MspI were used to digest the extracted DNA [7].
The sequencing of the pooled libraries was done using
Illumina, Inc. NGS platforms. SNP identification was
done using TASSEL 5.0 v2 [42]. The reference genome
was Chinese Spring genome from the International
Wheat Genome Sequencing Consortium (IWGSC) Ref-
erence Sequence v1.0 as it was extensively described in
[43]. The generated SNP markers were filtered using the
following criteria, minor allele frequency (MAF > 0.05),
maximum missing sites per SNP < 20% and maximum
missing sites per genotype < 20% [15]. The heterozygous
loci were marked as missing to avoid overestimation of
allele effects (Peter Bradbury, personal communication).
Then, the SNP markers were filtered again using the
aforementioned criteria. The differential lines were not
genotyped using GBS method. Therefore, the differential
lines were not used for population structure or
genome-wide association analyses.

Population structure
SNP markers data from both nurseries with a total num-
ber of 318 unique genotypes (without differential lines)
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were used to analyze population structure using the
Bayesian model-based software program STRUC-
TURE 3.4 [44]. The burn-in iteration and Markov chain
Monte Carlo (MCMC) replications were set to 100,000.
The admixture and allele frequencies correlated models
were including in structure analysis. The number of
impended iterations was five. The hypothetical number
of subpopulations (k) ranged from 1 to 10. The best k
was determined using STRUCTURE HARVESTER [45].

Genome-wide association study (GWAS) and linkage
disequilibrium (LD)
Genome-wide association analysis was performed to test
marker-trait association for all studied traits in the 318
genotypes (without differential lines). The transformed
data of the common bunt resistance was used in GWAS.
The GWAS between the SNP markers and all traits was
carried out using TASSEL 5.0 software [42]. Two
methods were used in GWAS analysis, mixed linear
model (MLM (K)) and mixed linear model + Q-matrix
(MLM (K +Q)): [46]). The marker-trait association was
tested against Bonferroni corrections and false discovery
rate (FDR) at a significance level of 5%. The effects of al-
lele of each marker were calculated to determine the
influence of the allele on the phenotype. For the com-
mon bunt resistance trait, negative allele indicates resist-
ance, while, positive allele indicates susceptible to
common bunt. For all other traits, positive allele effects
increase the trait values and negative values decrease the
trait values. The phenotypic variation explained by a
marker (R2) was calculated using TASSEL 5.0 [42]. The
results of GWAS were presented and visualized suing
Q-Q and Manhattan plots using ‘qqman’ R package [47].
For the SNPs located on the same chromosome, linkage
disequilibrium (r2) among the significant SNPs was cal-
culated by TASSEL 5.0 and illustrated using Excel 2013.
For common bunt resistance, an additional genome-wide

association study was done using Settlement of MLM
Under Progressively Exclusive Relationship (SUPER)
method by GAPIT-R package [23]. SUPER method con-
ducted GWAS by extracting a small subset of SNPs and
test them for their association with the target trait by using
Fast-LMM. Based on this technique, the SUPER method
enabled us to identify minor genes controlling common
bunt resistance in the tested nursery.

Candidate genes and gene annotation
Significant SNPs were inspected as to whether they are
in genes identified and annotated in the reference gen-
ome assembly (IWGSC Ref Seq v1.0) to further explain
the GWAS results. Functional annotation of the genes
having significant SNPs was retrieved from the genome
annotations provided by IWGSC and examined for their
association with disease resistance. For additional

understanding of the GWAS results, the gene expression
in the different developing stages of wheat was compared
based on the wheat expression database (http://
www.wheat-expression.com/).
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