47 research outputs found

    Multiple solutions in twisted nematic liquid crystal layers

    Get PDF
    A twisted nematic layer is modelled using a continuum theory which allows for the presence of phase changes and biaxiality within liquid crystals. Under certain approximations analytical solutions are found and used to validate numerical solutions of the full problem. Using a numerical continuation package (AUTO) it is possible to find regions where multiple solutions for the director configuration and hysterisis can occur. Changes in temperature, amount of twist and gap width are investigated in d etail and subsequently the relevance of these results to display technology is discussed

    Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field

    Get PDF
    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate

    A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases

    Get PDF
    Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    Get PDF
    Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases

    Magnetic field-induced changes in molecular order in nematic liquid crystals

    No full text
    We theoretically examine the effects of magnetic field-induced changes in molecular order and director structure within a nematic liquid crystal cell. As well as the cell thickness d there are two inherent characteristic lengths, the nematic correlation length z and the magnetic coherence length x. As the magnetic field increases the magnetic coherence length decreases and the relative ordering of the three length scales determines the director and scalar order parameter configuration through the cell. We use asymptotic expansions in regions defined by these length scales to analytically determine the molecular configuration in terms of these variables. Specifically, we investigate the boundary layer between the cell substrate and the bulk nematic material when strong anchoring forces the nematic director in a different direction to that of the applied field. We find that at low field strengths the classical picture of liquid crystal/magnetic field interaction occurs, that is, the director orientation is governed by the surface alignment until a transition occurs as the magnetic coherence length becomes comparable to the cell thickness and the director changes orientation so as to align with the magnetic field. At high field strengths, we find that a field-induced reduction of the molecular order occurs in a region close to the cell boundary. We are able to analytically determine the director and scalar order parameter configurations for the majority of field strengths and where analytical solutions are not found a numerical solution is presented. It is hoped that further work will extend this basis of analytical solutions to include a solution for all field strengths and for different cell configurations

    Influence of flexoelectricity above the nematic Freedericksz transition

    No full text
    Continuum theory is used to demonstrate that the presence of flexoelectricity significantly alters the response to an applied voltage of a homogeneous nematic liquid crystal cell above the ac Fræ#169;edericksz threshold voltage. In such a system there is a fitting degeneracy: we obtain very good fits between theory and experimental permittivity data using any value of the sum of flexoelectric coefficients, e11 + e33, between 0.0 C/m and 1.5×10-11 C/m. The corresponding values of the nematic bend elastic constant show an inverse parabolic relationship with e11 + e33, with K33 being reduced down to 90% of its value when flexoelectricity is neglected
    corecore