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The effect of melting on the electrostatic coherence length of

nematic liquid crystals
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Abstract

We examine the effects of electric field-induced changes in molecular order on
the director structure within a nematic liquid crystal cell. Specifically, we in-
vestigate the boundary layer between the cell substrate and the bulk nematic
material when strong anchoring forces the nematic director in a different di-
rection to that of an applied field. We find that at low field strengths the
classical picture of liquid crystal/electric field interaction occurs, that is, the
director orientation is governed by the surface alignment until a transition
occurs as the classic electrostatic coherence length ¢ becomes comparable to
the cell thickness and the director changes orientation so as to align with the
electric field. However, at high field strengths, we find that a field-induced
change of the molecular order close to the cell boundary causes a significant
reduction, to O(¢?), in the effective electrostatic coherence length, i.e. the

characteristic length of the director distortion.
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I. INTRODUCTION

The behaviour of liquid crystalline materials near to solid substrates is an important
factor in liquid crystal displays since it is the competition between the surface alignment
forces and the torque due to an applied electric field that governs the switching of such
a device. Of particular importance are the stability of the molecular anchoring at the
substrate, the temperature dependence of this anchoring and the behaviour of the liquid
crystal material in the region close to the surface when an electric field is applied. Much
research, both experimental and theoretical, has been conducted into the properties of many
different alignment techniques, particularly into weak and bistable anchoring [1-4]. However,
almost all previous theoretical work has employed the Oseen-Frank theory [5,6] when dealing
with static problems and the Leslie-Ericksen theory [7,8] when dealing with dynamic flow
problems. Whilst such theories have been extremely successful in modelling the behaviour of
nematic liquid crystal materials at a fixed temperature, well within the nematic phase, they
are unable to model the behaviour close to the isotropic-nematic transition point, where
external forces may cause a change in the molecular order. At such temperatures it is
necessary to describe a nematic material in terms of the average molecular direction at a
point, the director n, and a measure of how ordered the molecules are with respect to the
director.

The common measure for the amount of ordering in a uniaxial nematic liquid crystal
is the scalar order parameter S [9]. At a fixed temperature within the nematic phase S
can usually be assumed to be constant and therefore any theory of the phase needs only to
consider variations in the director orientation. However, near to the isotropic-nematic phase
transition the order parameter may vary considerably throughout the material and thus an
accurate theory of the system must allow for such variations. A more detailed explanation
of such a description of a nematic material will be given in the next section.

Changes in S can occur in the nematic phase when the material undergoes a high amount
of distortion. For instance, near to the core of defects, a region of high elastic stress, S can
be significantly reduced from its equilibrium value [10] in other words the liquid crystal
partially melts. Other work has shown that a change in S may occur close to surfaces which
induce an ordering different to the bulk nematic material [11,12].

The application of an electric field can cause either an increase or a decrease in the order
parameter. For a positive dielectric material (¢, > 0) the application of an electric field leads
to an induced molecular dipole and thus alignment of the major molecular axis with the
electric field direction. With the nematic director aligned in the field direction the enhanced
orientation of the molecules increases S. However, when the director is constrained to be in

a different direction to the field, a disordering effect may occur and thus reduce S [13]. This



field ordering/disordering effect has been previously demonstrated numerically [14] and, in
this paper, we intend to provide analytical solutions of the liquid crystal behaviour near to
the surfaces.

Such behaviour demonstrates one of the most fundamental processes used in liquid crystal
devices, that is the competition between an aligning surface and an applied electric field.
With no electric field, the surface alignment forces determine the configuration of the director
within a liquid crystal cell. When an electric field is applied, such that the field direction
is in a direction perpendicular to the surface alignment direction, a competition of forces
is produced. At high enough field strengths the electric field forces will dominate and the
director will align with the electric field. This phenomenon, first investigated by Freedericksz
and Zolina [15], enables nematic liquid crystal cells to be used as display devices. The
electrical control of the director orientation, and consequently the optical characteristics,
gives a method of switching from a dark state to a light state and vice-versa.

At sufficiently high field strengths the bulk of the liquid crystal is aligned with the applied
field and there exists narrow regions, next to the cell surfaces, where the director realigns
from the field direction to the surface alignment direction. Within these boundary layers
there may occur a high degree of elastic distortion and consequently a significant reduction
in the value of the order parameter. It is this phenomenon which we investigate in this
paper.

Using a uniaxial order parameter tensor and a Landau-Ginzburg formulation of the free
energy, the governing equations for the director orientation and the scalar order parame-
ter are found from the minimization of the free energy. We solve these equations using
matched asymptotic expansions in two situations, at low and high field strengths. At low
field strengths the classical picture [16] of liquid crystal/electric field interaction occurs, the
director angle varies over a length scale equal to the electrostatic coherence length (. When
the field strength is below the critical Freedericksz value this electrostatic coherence length
is larger than the cell thickness and the director is unchanged by the field. As the field
increases the electrostatic coherence length tends towards the cell thickness, the torques
due to the electric field and surface alignment become comparable and at a critical field
strength the director reorients to align with the field direction. At high field strengths the
high distortions of the director cause a significant reduction in the order parameter which
in turn causes a significant reduction in the characteristic length of the director distortion

to a length of order (2.



II. CONTINUUM THEORY

The uniaxial nematic liquid crystal is a mesomorphic state that occurs in a temperature
range between the liquid and the solid (crystalline) phases. In this intermediate state the
molecules tend to align along a preferred direction with a measure of order. Such a state
may be described by the second order tensor

Q:S(n@n—%I), (1)

where I is the identity matrix and the ;5" element of the product n ® n is n;n;.

The order parameter tensor Q describes the orientational order inherent in the liquid
crystalline state in terms of the director, n (Fig. 1), representing the locally averaged direc-
tion of the molecules at a point in the material. The order parameter S, which is a measure

of the molecular alignment with respect to this average direction vector, is defined as
1 2
S=§<(3cos Y —1) >, (2)

where v is the angle between a molecule and the director and <> denotes a thermal average
[9]. When S = 0 the molecules are oriented in a random fashion and the material is isotropic
and when S = 1 the molecules are perfectly ordered with the director and the material is
crystalline.

A more accurate description of the liquid crystalline state would be in terms of a biaxial
order tensor. For a biaxial nematic state there exists not only an ordering of the long axis of
the molecule (as in Fig. 1) but a secondary ordering of the short molecular axis. Although
such a biaxial state has never been found to exist in a bulk sample of a thermotropic liquid
crystalline material there are certain regions, such as in the core of a defect, within which
biaxial states exist over short length scales. However, within a defect core biaxiality is
present due to certain topological constraints whereas in the situation presented in this
paper there are no such constraints and biaxiality plays a minor réle in this phenomenon.
The biaxial nematic order parameter tensor is also more complicated than the uniaxial case
and includes an additional director (associated with the average direction of the molecular
short axis) as well as an additional scalar order parameter (associated with the ordering
of the short molecular axis about the secondary director). A corresponding biaxial theory
is therefore more complicated and for simplicity we neglect biaxiality and concentrate on
changes to the uniaxial order parameter and as a result we are able to obtain analytic
solutions to the equations.

A continuum theory for uniaxial nematic liquid crystals can be derived using the order

parameter tensor QQ by constructing a physically realistic free energy for which minimizing



solutions are sought. The free energy is approximated by an expansion in powers of Q and
VQ which satisfies the inherent symmetry of the nematic liquid crystal material and may
be written as [17]

7= /od Ltr(VQ)* +otrQ® + %ﬂtrq?’ + Q) — r(Q€) dz, (3)

where d is the cell thickness; L is a coefficient of elasticity associated with distortions of the
order parameter tensor; o, 3 and y are the first three coefficients in the Landau expansion
of the thermodynamic potential energy; and the electric field tensor £ is defined in terms of
the permitivity of free space, €y, the dielectric anisotropy of the material, ¢,, and the electric
field E as

€o€q

5_

g

E®E. (4)

Using this theory we will model in-plane switching of a nematic cell in which the director
remains in the plane of the surfaces when an electric field, applied in a direction contained
in the same plane, switches the director (Fig. 2). Such a switching mechanism was one of
the basic modes of switching proposed by Freedericksz and has recently been utilized in the
device developed by Hitachi [18] which benefits from the advantageous optical characteristics,
specifically an improved viewing angle, of such in-plane director configurations.

For this display we can assume that the director remains in-plane (in the zy-plane) and
is strongly anchored in the y direction at the surfaces, the director and order parameter
depend only on the coordinate through the cell (the z coordinate) and the electric field is
in the direction parallel to the cell surfaces but perpendicular to the director at the surfaces
(see Fig. 2). Therefore, we take n = (sinf,cos#,0), S = S(z), § = 6(z) and E = (Ey, 0, 0).
The director must therefore twist in order to orient itself with the applied electric field. With

these assumptions the free energy (3) becomes

F= /Od {L (g (dflf)>2 +2(S(2))” (dz(;)>2>
2

64076: S(z)E,? <C082 0(z) — §) (5)

F2aS(= + 08 + 5S(2)'} e

+

Minimization of this energy with respect to S(z) and 6(z) leads to the Euler-Lagrange

equations

0=1L (dQS(Z) —35(2) <M> 2) + 606aE12 (1 — §(:os2 0(2’))

dz? dz 8T 2



—aS(z) - 555 — 23S, (62)

0=2L <S(z) (d j;?) + 2d‘jl§) d?;?) + 64(’; EZsin(8(2)) cos(8(2)), (6b)

which govern the behaviour of the director and scalar order parameter within the cell. At
the cell surfaces we assume that an alignment layer not only strongly anchors the director
in a fixed direction, the y direction, but also fixes the scalar order parameter to a constant

value S,,. The boundary conditions may be written as

S(0) = Sy, (7a)
S(d) = Su, (7b)
0(0) = 0, (7c)
8(d) = 0. (7d)

Thus the wall is orienting the director along the y-axis whilst the field is attempting to
orient the director along the x-axis. When the field force is sufficiently strong the bulk of
the cell will orient along the field direction whilst close to the surfaces boundary layers will
form where the director reorients to satisfy the boundary conditions near to the wall. In
such a region of large director distortion a corresponding reduction in the order parameter
S is expected.

Reducing the number of parameters in Egs. (6a) and (6b) by with the nondimension-
alisation z = dZ, A = o/L, B = /L, C = v/L, ( = \/(47TL)/(606aE12) the governing

equations become,

d2S do\> [(d\° /1 3
0= <@> —3S (d—Z> + (Z) (5 — ZCOS20>

—P (AS + %BSQ + %CS**) , (8a)
0= 28 (%) +4 (3—2) (3—2) + <g>2sin(9) cos(6), (8b)

and the boundary conditions are

S(0) = Su, (9a)
S(1) = S,, (9b)
8(0) = 0, (9¢)
8(1) = 0. (9d)

The quantity ¢, which has the dimensions of length, is usually called the electrostatic coher-

ence length [9].



We will now solve the above equations in two distinct situations. In §III we solve for low
electric field values and show that the director distortion occurs over a length scale equal to
the electrostatic coherence length, ¢ which at low fields is larger than the cell thickness and
thus the surface orientation dominates. The scalar order parameter smoothly changes from
the bulk thermotropic equilibrium value S, to the surface value S,,.

In §IV we consider the system at high electric field values. We show that in this case
the order parameter and director orientation vary over different length scales. The director
orientation varies over a length scale which is significantly shorter than the electrostatic
coherence length. In fact the director reorients over a distance of order (2.

Using asymptotic expansions within different regions of the cell, specified by the order
of magnitude of the spatial dimension Z, we find solutions to Egs. (8a, 8b). By matching
the solutions asymptotically between these regions a full solution is found. In each of the
cases, low and high electric field strengths, solutions are found in the bulk of the cell where
Z = O(1) and close to the surface where Z = O(n?) where 7 is a small parameter and the
index ¢ is determined through a Principle of Least Degeneracy [19]. In fact we see in the
high field case that this method fails to produce an analytic asymptotic solution and an

alternative ordering is needed to investigate the behaviour close to the cell surface.

III. LOW FIELD STRENGTH SOLUTION

In the low field case we assume that the field strength F; is small enough such that
0 = (d/{)2 < 1, i.e. the coherence length is much larger than the cell thickness. The
parameters d2A, d*B and d*C will be assumed to be large (i.e. d?A = O(1/4) etc). These
parameters depend only on cell and material properties and not on the electric field strength
and so will be assumed to be fixed and of the same value in both this case and the high field
case. Denoting d?A = A/8, d*B = B/§ and d®C = C/5, where A = O(1), B = O(1) and
C = O(1), the governing equations (8a, 8b) are

d2S g\’ 1 3 1o 1a iy 24 .
d*0 sy [ do .
0=2S <@> +4 (d_Z> (d_Z> + dsinf cos 6. (10b)

A. Low field: Outer solution

We firstly consider the solution in the region where Z = O(1) or in dimensional variables

z = 0(d), i.e. in the bulk of the cell, and use the expansions
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S =S¢ + 557 + §°Sg" + O(6°), (11a)
0 = 0" + 607" + 5205 + O(6°), (11b)

so from Egs. (10a, 10b) the leading order equations are

~ 1 -~ 2 -
0= (Asg“t + S BSgt + gc7sgm3> , (12a)
d2 e(o)ut d S(()mt d@gut
0225<d22)+4<dz)(_dz . (12b)

Equation (12a) gives the solution S§* = S,, where S, is the thermodynamic equilibrium
value of the order parameter associated with the non-zero minimum value of the entropic
potential, atrQ?+23trQ?+37(trQ?)2. Therefore, in the bulk of the cell the order parameter
is constant and independent of the electric field value. Substituting this solution into the

second equation (12b) leads to

d200ut
0= 25, (d—Z"2> : (13)

Directly integrating this equation gives the solution 63 = a;Z + as where a; and ay are
constants. The symmetry of the cell about the midpoint [§(Z) = 6(d — Z)] ensures that
a; = 0 and thus 081” = ay. The value of a, will be calculated through a matching condition

with the inner solution.

B. Low field: Inner solution

Near to the cell surface at Z = 0, the order parameter will change from the bulk equilib-
rium value S, to the surface value S,, and the director angle changes from the bulk solution
65"" = ay to the boundary condition #(0) = 0.

By the Principle of Least Degeneracy described above, the relevant ordering near to the
surface is Z = O(v/9) or in dimensional terms z = O(d?/¢). We therefore set Z = Z;,\/6,

where Z;, = O(1), then use the expansions

S = Si" + 68" + 625 + O(6%), (14a)
0 =0 + 507" + 6205 + O(6°), (14b)

and from Egs. (10a, 10b) the leading order equations are

d2Sin o (donN\? o 1o o 2.
0= (dZPQ) — 350 ( o ) - (A53" + g353"2 + 3053"3) , (15a)
— 9gin 0 0 0 .
o-asi (1205 4 (450) (4) i
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We may again directly integrate the equation for 2" and, from knowing the asymptotic
behaviour of the system, show that the solution which satisfies the boundary condition at
Z =0is 6" = 0. Equation (15a) then becomes

d2Si O S

0= 0 _(Aszn+_Bszn +_csm)’ 16

(den2> 0 3 0 3 0 ( )

which may be solved analytically in terms of two unknown integration constants one of
which is determined by the boundary condition S{"(0) = S,,.

In order to determine the two remaining unknown constants, one in the solution for 65"

and one in the solution for S{", we must apply a condition which ensures that the inner and

outer solutions match asymptotically. This matching condition [19] is,

: in . out (r7.
Jim 5y"(2) = lim S5*(Zin) (17a)
Jim 6(2) = Jim 05"(Zin) (17b)

which leads to the solution 3% = 0 and specifies that S§* — S, as Z;, — co. Equation (16)
can now be solved explicitly and the solution for Si*, which varies from a bulk equilibrium

value to a fixed surface value, can now be conveniently written as,

4@4 exp (— %Zin + 0,5)

Sén = Seq — (18)

_ 2
day — (exp (=S Zip + a5) — a3>

where ag = (2B)/(30) 4 25, a4 = 3Se,> + (2S¢,B)/(3C) + 3A/C and from the boundary
condition Si*(0) = Sy,

as = —

In (2&4 + agg + 2\/%\/ 5'2 + CL3§ + CL4) /\/611_4’ (19)

where for simplicity we have written S = Sin — Seq- This solution is shown in Fig. 3 using
the parameters A = 0.14, B = —2.7, C = 1.5 (which have been chosen to give Seq = 0.7)
and S, = 0.6. Such an equation for the scalar order parameter (16) has previously been
considered numerically and, in a simplified form, analytically by Barberi & Durand [11] and
Barbero & Durand [12].

C. Low field: Electrostatic coherence length scale

Although the electrostatic coherence length is larger than the cell thickness it is useful

to consider such a length scale in order to relate this work to the classic model of the

9



Freedericksz transition [9]. On this length scale z = O(() or in nondimensional parameters,
Z =0(1/V6). Weset Z = Zec/\/g, where Z,. = O(1), then use the expansions

S = SE + 65% + 6252 + O(6%), (20a)
0 = 05 + 665 + 5265 + O(5°), (20b)

and from equations (10a, 10b) the leading order equations are

. 1~ 2 .

0= (ASSC +3BSg? + §CSSC3> , (21a)
oe d2gec dsee dose . oo oc

0 =25; (dZe(ZQ) +4 (le;) (dZi) + sin 65° cos 6;°. (21Db)

Equation (21a) gives the solution S§¢ = S,, and substituting this into the second equation
(21b) leads to
dQHec
0= 2S¢ | =25 | + sin 65 cos 6°. (22)
dZe.
This is exactly the equation presented in de Gennes & Prost [9] and we see that for the

first time the electric field term is present in the governing equations. Below a critical field

1 [87LS,
strength F; = E” Toeq (in the notation of this paper) the trivial solution §¢ = 0 is
€p€q

stable. However, above this critical field strength the director configuration distorts in order
to align with the field.

Thus director distortions occur on a length scale equal to the electrostatic coherence

length (. When the electrostatic coherence length approaches the cell thickness the electric
field force becomes comparable to the surface alignment force and the Freedericksz transition
occurs. The cell then switches from the low field strength solution # = 0 through a continuous
transition to a non-zero director orientation. At such intermediate field strengths d/{ =
O(1), the governing equations (8a, 8b) do not simplify and little analytic progress can be
made. This is not the case at sufficiently high field strengths.

IV. HIGH FIELD STRENGTH SOLUTION

In the high field strength situation we assume that the field strength E is large enough
to ensure that (d/¢)> > 1 and we will therefore take (¢/d)” = € as our small parameter
for subsequent solution expansions. We will assume that € is of the same order as § used
in the previous section and therefore, the parameters d’A, d?B and d?C will be assumed
to be large and of order 1/e. Using the scaled parameters d?A = A*/e, d>B = B*/¢ and

10



d’C = C* /e, where A* = O(1), B* = O(1) and C* = O(1), the governing equations (8a, 8b)

become

d2S \> /1 3 AR N S
d*0 s\ [ do :
0=2¢S (ﬁ) + 4e (d—Z) <d—Z> + sin# cos 6. (23b)

As in the low field case we will solve these equations in two different regions of the
cell. Within the bulk of the cell there will not be large gradients in the variables, # and
S, so we may take Z = O(1) and close to the cell surface Z = 0 the Principle of Least
Degeneracy specifies an ordering Z = O(+/€). However, the inner ordering does not simplify
the governing equations and no analytic solution is found. We find an alternative ordering,

closer to the cell surface, Z = O(e) where we find a non-asymptotic analytic solution.

A. High field: Outer solution

In the bulk of the liquid crystal cell Z = O(1) and since we have chosen (d/¢)? = 1/e > 1
the electric field energy term will dominate the elastic distortion term in equation (23a).
Therefore the field term will determine the director structure within the bulk whilst the
order parameter behaviour will be determined by the entropic energy term, modified by the

presence of the field. By assuming Z = O(1) and using the expansions

S = S + eSO + 259" + O(é€%), (24a)
0 = 05" + €09 + €205 + O(%). (24Db)

the O(1) equations, from (23a) and (23b), are then

1 1 2
0= (5 - gcos2 98“t> - (A*S{)’“t + gB*SSUtQ + gC*ng?’) ; (252)
0 = sin(63") cos(05*). (25b)

The relevant stable solution of Eq. (25b) is 65" = /2, i.e. the director is aligned with the
electric field, and Eq. (25a) then simplifies to

1 1 2
0= 5 o (A*Sgut + §B*Sgut2 + gc«*sgut3> , (26)
or in dimensional variables
€ GGE § ou 1 ou 2 ou
0=t _ (aSO o SBS + Lo Ss t?’) , (27)

11



€o€a Er?

8T
There are clearly three roots of this cubic equation. However, within the temperature range

so that Sgvt = V! where the polynomial V is V(S) = aS + $35% + 2753
in which the nematic phase is stable the relevant solution is the largest positive real stable
solution as indicated by the graphical solution in Fig. 4. This solution is the bulk equilibrium
value, S,,, modified by the non-zero electric field. As the field strength F; increases S§* will
increase (see Fig. 4). Therefore, as expected, in the bulk of the liquid crystal cell the director
orients with the electric field (in the z direction) and causes the molecules to increases their

alignment with the director and thus increases the order parameter.

B. High field: Inner Solution

Near to the cell surface the strong anchoring of the molecules in the y direction (i.e.
6 = 0) is now in competition with the bulk orientation (i.e. § = 7/2). There will therefore
be a region of reorientation close to the surface in which the director rotates from the z
direction to the y direction. Since we have taken (d/¢)” > 1, the field term is dominant
in most of the cell and this region of reorientation will be small. As mentioned above, the
Principle of Least Degeneracy leads to the ordering, Z = \/eZ;, where Z;, = O(1). With

the expansion

S =S+ €S + 55" + O(%). (28a)
0 =00 + eSi" + 2S5 + O(€%). (28Db)

The highest order equations from (23a, 23b) become

25 [ doin\? 1 3 . 1 ; 2 ;
= <_0> — 38 ( 0 ) + (— — = cos® 08") — (A*S(’)” + - B*S + —C*Sén3) , (292)

dZ;,2 dZ;n 2 4 3 3
. d20in dsin d(gi" ) in in
0= 25§ (dZign> +4<dZ(;n> (ﬁ) + sin 6" cos 0" (29Db)

The equations have clearly not been simplified with the use of the above expansion and no
analytic solutions to Egs. (29a) and (29b) are forthcoming. However, there is a length scale

for which we may solve the equations analytically as detailed in the following section.

C. High field: Boundary solution

At length scales smaller than the preceding section an expansion may be employed to
solve the equations and match the boundary condition at Z = 0. We concentrate on the

region Z = O(e) close to Z = 0. We set Z = eZ; where Z,; = O(1) and use the expansions

12



S = S+ €S¥ + €255 + O(e?),
0 = 0 + €02 + €05 + O(€).

From (23a) and (23b) the highest order equations are,
S S 2
0— d>St _ aghs dog
de52 0 des ’
d29bs dsbs dgbs
0= 28p v 42 0.
0 (de32> N (dzbs 17,
Equation (31b) may be directly integrated to give
doy\ ki
des B 5852’
where k; is an integration constant. Substituting in Eq. (31a) gives
d2Sbs k 2
0= (B 5k
des Sgs
and integrating this equation gives
sy 25
0=[-2" 3= — k2
<dzbs> i (5382 > )

where ko is an integration constant. The solution of (34) is

]f 2
S0% = 3ky2(Zys + k)2 + k—12
2

(30a)
(30b)

(31a)

(31b)

(33)

(35)

where kj is an integration constant. The boundary condition (9a) gives S,? = 3ky’ks” +
k1% /ky® which implies k3® = (Sy2kao” — k1%)/3ks*. We can therefore calculate the integration

constant ks in terms of k; and ks.
Substituting into the 65° Eq. (31b) leads to

oy’ ky
dZys ) 3ko*(Zys + ks)? + k12 /ky?’

the solution of which is

1 2
085 = ——tan™" (ﬁk?
k1

V3

where k4 is an integration constant. The boundary condition (9¢) gives

1 . [ V/3ksy?
ki = ———tan ! ks | .

(Zps + k3)> + ky,

13
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which gives the integration constant k4 in terms of k1 and ky (Since we know k3 in terms of
ki and ky).
Therefore, the leading order inner solutions S¢° and 65° only depend on the unknown

constants k; and ko,

Sis? = 3k, (st — 8.7k — k1) /3K ) + 5, (39)
2
1 3ky?
o = —— tan ! (*fk 2 Zs — \/ (Su2ks” — k1?) //ﬁ?) +
1

g tan” (\/ (Suky? — ki) /k12) . (39h)

It is possible to determine at least one of these unknown constants from the asymptotic
value of f. From the above solution (39b) we see that as Z,; — oo the director angle solution
asymptotes to a fixed value. This asymptotic value must be the bulk value # = 7/2 and
so ky = k1 S,/ sin(v/37/2). Thus the number of unknown constants is reduced to one. The
remaining constant must be determined by solving Eq. (29a) numerically.

Solutions for #5° and S are shown in Fig. 5 for which we have used the parameters
Sw = 0.6 and k; = 2.0. The crucial aspect of the scalar order parameter (39a) solution
is that Sps initially decreases from its boundary value S, to a minimum value S, =
sin(v/37/2)S,, ~ 0.409S5,, and then increases towards the bulk of the cell [Fig. 5(b)]. Thus
the high director distortion close to the boundary [as seen in Fig. 5(a)] has caused a partial
melting of the liquid crystal.

Even without the full asymptotic solution the behaviour of the boundary solution above
is interesting. We have shown that when the order parameter is allowed to vary, the director
angle # changes from the boundary value to the bulk value within a region of length scale € or
in dimensional terms (2. Thus the director distortion occurs not over a length scale equal to
the electrostatic coherence length but over a length scale equal to the electrostatic coherence
length squared. It is the reduction in S, i.e. a partial melting, near to the boundary that
more readily allows changes in director orientation. The scalar order parameter does not
asymptote to the bulk value within the region Z = O(e) but over a larger length scales.
It can be verified numerically that S varies over a length scale comparable to the classic

electrostatic coherence length (.

V. DISCUSSION

We have shown that, in the low field case, the equations for director angle and order

parameter effectively decouple. In the bulk the director angle is zero and the order parameter

14



remains constant at its equilibrium value whereas, in a region close to the cell surface, the
order parameter varies to satisfy the boundary condition. However, in the high field case
the bulk order parameter is increased from its equilibrium value due to the effect of the
orienting field. In a region close to the surface the high amount of director distortion causes
a significant reduction in the order parameter, to less than half of the value at the substrate,
since the elastic stress energy can be reduced by a certain amount of melting. We have
shown that this director distortion occurs in a region of length scale much smaller than the
electrostatic coherence length. In classical elastic theory such distortions are expected to
occur over lengths comparable to ( whereas, when the order parameter is allowed to vary,
director distortions to occur over a length scale of ¢2, a much smaller distance than ¢ since
( < 1, when the field strength is large. This effect could have a significant effect on the

optical characteristics of such a cell and should be experimentally observable.
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FIG. 1. The macroscopic variables describing the nematic state: The average direction vector
of the molecular long axis, the director n; The scalar order parameter defined by an average of the

angle of deviation of the molecular long axis from the director, S = < (3cos?¢ — 1) >.
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FIG. 2. The In-Plane Switching cell. The nematic director is anchored in the y direction at
the cell surfaces and, at sufficiently high field strengths, an electric field applied in the z direction

switches the bulk of the cell.
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FIG. 3. Scalar order parameter solution at low fields. The order parameter varies from the

fixed surface value S, to the bulk value Sq.
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FIG. 4. Graphical solution of Eq. (27): The intersection of the two functions y = ege, E1?/(87)
and y = az + %ﬁaﬂ + %’y:v3 (a, B and 7 have been chosen to give roots of the second equation
out

at £ = 0, 0.2 and 0.7 as in §III). As E; increases the bulk scalar order parameter solution, S§“*,

increases.
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FIG. 5. High field solutions for the director angle # and the scalar order parameter S. (a) The

director angle varies from the fixed surface value § = 0 to the bulk switched value § = 7/2. (b)

The scalar order parameter shows a decrease in the region of high director distortion.
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