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Multiple Solutions in Twisted Nematic Liquid Crystal
Layers

by N. J. Mottram* and S. J. Hogan
Department of Engineering Mathematics, University of Bristol,
Queens Building, University Walk, Bristol, BS8 1TR, England

Abstract

A twisted nematic layer is modelled using a continuum theory which
allows for the presence of phase changes and biaxiality within liquid
crystals. Under certain approximations analytical solutions are found
and used to validate numerical solutions of the full problem. Using a
numerical continuation package (AUTO) it is possible to find regions
where multiple solutions for the director configuration and hysterisis
can occur. Changes in temperature, amount of twist and gap width are
investigated in detail and subsequently the relevance of these results to

display technology is discussed.

* Author for correspondence
Running title: Theory of Twisted NLCs



1 Introduction

The widespread use of liquid crystal technology has led to significant in-
terest and research into all aspects of liquid crystals . Theoretical research
into this field only gained momentum, more than a hundred years after the
first liquid crystal was discovered, with the formulation of a continuum model
by Frank [10] and Oseen [15] which could predict the static behaviour of ne-
matic liquid crystals. Since then with the emergence of many different types
of liquid crystal such as chiral nematic, smectic and columnar, the volume of
research has increased dramatically. Nevertheless even the simplified equations
governing the static problem of a nematic display configuration are not fully
understood.

The nematic liquid crystalline state which exists in certain materials is a
mesomorphic state that occurs in a temperature range between the liquid and
the solid (crystalline) phases. In this intermediate state the molecules tend
to align along a preferred direction. It is the presence of this orientational
order in the material which leads to an optical and electromagnetic anisotropy
which may be exploited in the production of displays. The orientational order
inherent in the liquid crystalline state is described in terms of directors (Figure
1), representing the locally averaged direction of the molecules at a point in
the material, and certain variables measuring how aligned the molecules are
with these average direction vectors. A continuum theory for liquid crystals
can then be derived using these macroscopic quantities.

The continuum theory of Frank [10] and Oseen [15] describes the static
behaviour of nematic liquid crystals. While this theory has been successfully
used to investigate many types of defects it depends on the assumption that
the liquid crystal is uniaxial (i.e. there is only one director n so the ellipses of
Figure 1 are replaced by circular rods) and that if the order changes within the
nematic sample it changes between liquid crystalline and isotropic. It does not
allow a rigorous mathematical description of areas of high deformation such
as the region near to a defect where the energy is predicted to be infinite in
value.

The need to fully describe these regions in a continuum model has led to

the formulation by Ericksen of a new equilibrium theory [8]. He considers a
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Figure 1: Simplistic representation of biaxial nematic liquid crystal with direc-

tors n; and ny defined as the average directions of the major and minor axis

of flat, elliptical molecules [5].

uniaxial nematic (the single director n is defined as the average direction of
the major molecular axis) where the degree of order of the liquid crystal can
be represented by a scalar order parameter S, defined as a local orientational

order of the molecules,
1
S=§<(3(:os2zb—1)> (1.1)

where 1 is the angle between a molecule and the director and <> denotes
a thermal average (see for example de Gennes and Prost Section 2.1.1 [5]).
Therefore when S = 0 the molecules are oriented in a random fashion and the
material is isotropic and when S = 1 the molecules are perfectly ordered with
the director and the material is crystalline. When S = —1/2 the molecules are
all perpendicular to the director. In this paper we will only consider 0 < S < 1.
In Ericksen [8] S is allowed to vary spatially in the governing equations so that
there may be regions of different order within the sample. The free energy,

which is now a function of n and S, includes the free energy from the Frank-



Oseen theory multiplied by a function of S which vanishes at a defect, removing
the singularity in the free energy. This new theory can therefore describe
changes to the order S in a rigorous mathematical framework.

This approach had been anticipated by earlier authors such as de Gennes [4]
and Fan [9]. Other authors have used Landau-de Gennes theory to investigate
the core structure of disclination lines [11, 17, 13| and more recently Virga
and Biscari [16, 18, 2| have used these theories to study biaxial nematic liquid
crystals in various geometries.

We will use such a continuum theory to investigate the most common lig-
uid crystal display in use today, the twisted nematic liquid crystal display
(TNLCD).

Field off Field on

«——— Incident light —_—

O O Electric Field

Figure 2: The Twisted Nematic Liquid Crystal Display.

The TNLCD (Figure 2) is constructed so that without an applied electric
field, the liquid crystal molecules are forced (by treated glass plates) to form
a helical structure. The nature of this molecular configuration is such that
light passing through the upper polariser is guided to align with and hence
pass through the bottom polariser. When an electric field (greater than some
critical value E.) is applied to the layer, the molecules are forced to rotate to

align with the field. The twisted structure is therefore destroyed and hence



can not guide the light through the bottom polariser. The display transmits
light when no field is applied and blocks light when a field is applied. The
advantages of using such a display are that the threshold voltage is low, around
a few volts, and that there is a high contrast between the on (black) and off
(white) states. The disadvantages are that the display will only work well when
viewed straight on, the switching times between states are slow, the use of two
polarizers means that transmission is low and the display may appear patchy
since some regions twist clockwise and some twist anti-clockwise. However
it has been found that if the nematic is chiral (it has a natural twist in one
direction) a better performance is acheived.

Although it is thought that in normal situations a TNLCD can be described
satisfactorly with Frank-Oseen theory there will be occasions when twist will
cause changes in the orientational order S. One such occasion occurs when
the temperature of the TNLCD is close to the critical temperature where the
undistorted nematic liquid crystal undergoes a phase change to an isotropic
liquid. As will be seen later the region around the twist distortion has low
orientational order and the presence of this region can affect the phase change
in a similar way to recent work by the authors [13] where a disclination line
was seen to affect the critical temperature.

Another occasion is when the TNLCD contains regions of different amounts
of twist so that reverse twist and cholesteric unwinding may occur. If the
director is zero on the lower boundary and ¢, on the upper boundary, then
the director may twist from zero to ¢4 + nm, for any positive or negative
integer n, within the cell and still satisfy the boundary conditions. Reverse
twist occurs when n = —1 and cholesteric unwinding describes the transition
from the state n = ¢ ton = ¢—1. Frank-Oseen theory cannot model transitions
between these topologically different states but by introducing the possiblility
of a reduction in the orientational order it is possible to change from one twist
state to another. In this paper we attempt to model the necessary reduction
in orientational order and leave the transition process for future work.

There are other occasions where twist induced changes in the scalar order
parameters may be important such as the recently demonstrated In-Plane
switching device [14] or the Bistable Twisted Nematic device [1]. For their

future success as display devices it is necessary to understandig the importance



of changes of orientational order within the cell.

In all of these examples it is twist deformation that would induce any change
in the orientational order S. We will therefore use a continuum theory which
is able to describe such changes to consider the field off state of a nematic in
a TNLCD which contains all the essential features of these examples.

We obtain analytical solutions under certain restricting approximations and
then using the numerical continuation package AUTO [6] the full equations are
solved. It is then possible to follow the solution as the system parameters are
altered and it is found that for certain parameter regions mutiple director
configurations exist.

In Section 2 we introduce the governing equations used by Virga [18] in
detail and subsequently the equations and boundary conditions for a twist
layer are presented. In Sections 3 and 4 certain analytical solutions are found
and in Section 5 a numerical investigation of the full equations is presented
and it is found that in some parameter regions there exist multiple solutions.
It is possible to switch from one solution to another by altering certain critical
parameters and this process forms a hysterisis loop. In Section 6 these results

are discussed.



2 Governing Equations

In attempting to describe the behaviour of a liquid crystal material we
use a continuum theory based on a Landau-de Gennes expansion of the free
energy [4] or similarly the approach used by Ericksen [8]. These methods take
the free energy of the system F to be the sum of the energy due to the spatial
distortions of the liquid crystal and the energy due to the deviation from some
minimum energy state. In this paper we follow Biscari and Virga [2] where the
free energy is a function of the major axis director orientation angle ¢ (Fig.
3) the phase variable S and the degree of biaxiality . The variables S and «
represent the local orientational order of the liquid crystal about the director
n = (sin¢, cos¢, 0) and the direction perpendicular to n and the z-axis. We
have therefore used the assumption that both n; and n, from Figure 1 are in

the zy-plane.

Figure 3: The director n (in the zy-plane) and the director angle ¢

The equations governing the behaviour of the liquid crystal are then the
Euler-Lagrange equations obtained by minimising the free energy F for varia-
tions in ¢, S and «. These equations may be solved subject to certain appro-
priate boundary conditions in order to model a twist layer.

The free energy is the Is{um of distortional and potential energies,
F= / Fpdy = / 2 (Fuiss + Fyor)dv (2.2)
v v 2

where F'p is the free energy density and the potential energy Fj,: is assumed
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to be the sum of two functions of S and « modelling the effects on the free

energy of changes in phase and biaxiality respectively,
Foot = 0(Q) = £101(S) + ka03(v) (2.3)

where k1 and k9 are positive material constants. The first potential has been
studied by both de Gennes [4] and Doi [7] and can be written as,

01(S) = AS*+ BS*+ CS* + D (2.4)

where the coefficients A, B, C, and D are temperature dependent material
parameters. The quantity D contributes a constant term to the free energy and
can be neglected since it does not affect the minimisation of the free energy.

The suitably scaled potential may therefore be rewritten as,

3?2 S 5,8
71(S) = S (I—(SU+S(,)§+ 2”)

(2.5)

so that when there are two non-zero turning points they occur at S =5, >0
and S = S, > 0. This quartic potential models the ability of the material
to have a local minimum energy at two values of S, the first at S = 0 when
the material is isotropic and the second at S = S, when the material is liquid
crystalline. The effect of temperature changes on this potential can now be
described in terms of the parameters S, and S, or, if we use the nondimension-
alised variable S* = S/Sy, the parameter S». Then the turning points occur
at S =0,S5 and 1. If we fix S, the effect on the potential function o(S) is
shown in Figure 4 where it is assumed that S, = 0.7 as will be used throughout
this paper.

The second potential oy represents the capacity for the material to support
biaxial states. If it is assumed that the nematic is uniaxial in the temperature
range S; € (0, 1) then oy will have a minimum at o = 0. This form of the
o9 potential does not disallow biaxial states but any variance from a uniaxial
state will result in an increased free energy. It is therefore expected that regions
of biaxiality will only occur when their presence will reduce the distortional
energy term in equation (2.2) such as at the core of the disclination where
there is a high amount of distortion. Following Virga [2], the simplest form of

such a potential,

oa(a) = & (2.6)
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is used.

With the above potentials (2.5, 2.6) the free energy density becomes,

Fp = % (2(5 —a)}(Vo)? + ;(VS)Q +2(Va)?
+ k152 (S; — (Su + Sb)g + S“j”) + %oﬁ) (2.7)

The first term in this equation is simply the Frank free energy density mul-
tiplied by a function of S and a.. As discussed in the introduction, this function
will vanish when the Frank energy contains a singularity in order to ensure the
free energy of the system remains finite. The second and third terms in (2.7)
are the energy densities associated with changes in the scalar order param-
eters S and « and the last two terms are the internal potentials mentioned
above. Although the director distortions do not lead to a singularity in the
Frank free energy in the situation considered in this paper, the concentration
of this distortional free energy density into a small region of the cell will cause
a significant reduction in the function (S — «)? in order to minimise the free
energy of the system.

The Euler-Lagrange equations with respect to the dependent variables ¢,

« and S are,

3/'{1

0 = V2S—3(S—a)(Ve) — = 5(8 = 5,)(S — ) (2.8)
0 = V2a+(S—a)(Ve)?— %a (2.9)
0 = (S—a)V¢+2V(S—0a).(Vo) (2.10)

The twist layer of Figure 2 is formed when a nematic liquid crystal sample
is sandwiched between two treated surfaces which induce strong homogeneous
boundary conditions (i.e. the director is fixed parallel to the boundary). If
one of the surfaces is twisted the torque exerted by the surface will induce a
twist in the director field (Figure 5). When a field is applied to the cell it is
possible to induce a concentration of the twisting into a small region of the cell.
This high distortion region is a Helfrich wall [12]. It is a form of defect where

the director is defined at all points in the cell (unlike in a line disclination
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where the director is undefined along the line = 0) but the orientation of the
director is changed from one value to another across a very short distance. In
this paper a twist cell with no applied field is considered but the liquid crystal
scalar order parameters are allowed to vary. In this way Helfrich walls are
obtained without a field where the minimization of the energy is possible due

to melting around the wall.

04

Figure 5: Schematic of a twisted nematic layer

For the twist layer shown in Figure 5 it will be assumed that all dependent

variables depend only on the z coordinate and the free energy (2.7) becomes,

Fp = % @52 +2a2 4+ 2(S — a)*(4.)* + K101(S) + /‘0202(0‘)) (2.11)

where ¢ is the azimuthal or twist angle, that is the angle in the zy-plane from
the director to the x axis. The other two dependent variables are the uniaxial
scalar order parameter S and the degree of biaxiality «. The Euler-Lagrange

equations are then,

0 = 5.-3(S- a6 - 2 (2.12)
0 = au+(S—a)e,)?— %% (2.13)
0 = ((5—a)(.). (2.14)

which with the potentials (2.5, 2.6) become,

11



3/4)1

0 = S..—3(S—a)p. — = S5 = 5u)(5 = 5) (2.15)
0 =+ (S—a)p?— KZ—O‘ (2.16)
0 = ((8- a)%z)z (2.17)

Without loss of generality ¢ = 0 on z = 0 is assumed and the general form

of the homogeneous boundary conditions of ¢ is,

¢=0 on z2=0
p=¢4 on z=d (2.18)

We use Dirichlet boundary conditions for S and a the general form of which

are,

S=5S, on z=0
S=8; on z=d
a=qayp on z=0 (2.19)

a=og on z=d

In Section 4 where the twist angle is ¢, = 0, a solution is found for the
general boundary conditions. However in Section 5 it is assumed that Sy = Sy
and oy = 4. It is also assumed that the boundaries prescribe a scalar order
parameter Sy = S, greater than the liquid crystal bulk scalar order parameter

Sy and are uniaxial so that the boundary conditions are,

S() = Sd > Sb
ap = ag=0 (2.20)
(2.21)

The values S; = 0.8 and S, = 0.7 will therefore be taken throughout this

paper. More general boundary conditions may be used in numerically solving

12



the governing equations but the above simplification gives the essential features
of the defect structure within the layer. In the next section it is assumed that
there is constant twist in the bulk of the layer and in Section 4 it is assumed
that there is no twist. For these two cases analytic solutions to the governing
equations are presented. In Section 5 the full equations are solved numerically

using the continuation package AUTO.

3 Constant Twist

In this section, in order to understand our numerical results, we assume that
there is constant twist throughout the cell. In this case ¢, = A. Then the
equations (2.12, 2.13, 2.14) reduce to,

3/4,1 d0'1

ozzam+w—anﬁ—%%§ (3.23)
0 = ((S—a)’)) (3.24)

The third equation has solution,

S—a+ \/g (3.25)

where p is constant. Substituting this into equation (3.22) and (3.23) gives,

d
0 = S, 3\ g . %% (3.26)

0 = S i)ﬁ\/?_ K2 doy
ZZ A 4 da la=s+,/Z

If S,, is non-zero then for the two equations (3.26) and (3.27) to be con-

(3.27)

sistent,

D 3kidog Ko doy
0= j:4)\2\/j — - 22
)\+ 4 dS 4 do

3.28
e (3.28)

In general, for a non-constant solution S(z), this is not true for all z. The

only solution is therefore S and « are constant. Substituting the potentials,

13



S? S S.S
o1(S) = S <— — (Su+Sp) 2 + ”) (3.29)
4 3 2
2
oy(a) = % (3.30)
into (3.26, 3.27) gives,
SKLQ 2
= —_— 3.31
P A (4/\2 + Iiz) ( )
and S must satisfy the cubic equation,
4A2KZ2
_ q(q_ _ A K2 32
0=5(S—S,)(S Sb)+l~€1(4)\2+f€2) (3.32)
which, with A = ¢4/d has the solutions,
S =0 (3.33)

S = 058+ 058, + (261,05 + k157 kad”—

451, Spd2 — 261 Sy Spkad? + 21 S22 +

K1S2Kod? — 8kod3)/2k1 (405 + n2d2))1/2 (3.34)
S = 058+0.58, — ((2k15;6} + £15; Kad®~

4515, Sy @2 — 251 Sy Sykad® + 2k1 5297 +

F1S2had? — oY) /21 (407 + rad?)) (3.35)

Then « is calculated using (3.25) with (3.31) so that,

! S
o=
1+ (rad?) /495
The two solutions (3.34) and (3.35) are real when,

1 d\? 16 4
=) >— 3.37
X (aﬁd) (S =S (3.37)

If this condition is not met then the only solution is S = 0. It will be seen

(3.36)

in later sections that there are certain regions in the ¢,;-d parameter space
where the bulk of the liquid crystal has melted so that S = 0, regions where

the order parameter is close to S, and some regions where it is possible to

14
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Figure 6: Solutions for constant S in a constant twist cell with parameter
values S, = 0.7, S, = 0.2, k1 = ks = 1.

obtain both forms of solutions. The above solutions for S (3.33, 3.34, 3.35)
are shown in Figure 6.

When assessing the stability of these and any subsequent solutions we as-
sociate stable solutions with local minimisers of the free energy and unstable
solutions with local maximisers of the free energy. In the above analysis we
see that below A = 0.13 there are three solutions, one melted (S = 0) and one
liquid crystal (S > 0.45), both of which are stable and one unstable solution
(0 < S < 0.45) (due to the two minima and one maximum of the potential
function 0;(5)). In all following diagrams stable solutions will be indicated by
solid lines (and occasionally dotted lines when multiple solutions are plotted)

and unstable solutions will be indicated by dashed lines.

4 No Twist

We now assume that ¢, = 0 throughout the sample and take ¢y = ¢4 = 0.

Using the potentials discussed in Section 2 the governing equations reduce to,

15
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0 = 5.- 2SS 8.)(5 - S) (4.38)

with the boundary conditions,

S(0) = So
S(d) = S
a(0) = a (4.40)
ald) = aq

The solution to the second equation (4.39) subject to the boundary condi-
tions (4.40) is,

sinh (\/k12/2) sinh (/k1(z — d)/2) (4.41)

“sinh (\frid/2) 0 sinh (\/mid/2)

The first equation can be solved by multiplying the equation by S, and

integrating to obtain,

0=(S.)2 - %UI(S) + D (4.42)

where 01(5) is the potential discussed in Section 2 and D; is a constant.
It may be assumed, without loss of generality, that Sy > S;. There are then

three possibilities,

1. S(z) attains its maximum in the layer
2. S(z) attains its minimum in the layer

3. S(z) attains its minimum at z = d

Then (4.42) can be evaluated at the max/min point to obtain D,

16



3. Dy = 215,(8y) — ((S.)a)?

where Spaz, Smin are the maximum /minimum values of S and (S,)4 is the
value of S, at z = d. In all three cases the value of D; ensures that equation
(4.42) does not imply an imaginary value for S,.

Thus (4.42) has the solution,

So ds
= D 4.43
=) (B <) -

which leads to the implicit solution given in Byrd and Friedman [3],
S(z) = cos ' (en((z — Dy)/g, k)) (4.44)
where,

g=1/(AB)"? (4.45)

(A+ B)? — (2(Sy — Su))?
4AB

k* = (4.46)

where A? = (Sy — Re(c))? + (Im(c))?, B? = (25, — Sy — Re(c))? + (Im(c))? and
c and € are the complex roots of the polynomial, 24 (S) + D.

The two constants of integration, D; and Dy can then be found using the
boundary conditions S(0) = Sy and S(d) = S4. The solutions for S and « for

particular parameter values are shown in Figure 7.

5 Numerical Solutions

The full equations (2.15, 2.16 and 2.17) with the boundary conditions (2.18,
2.19) may be solved using the numerical package AUTO [6]. Using this package
it is also possible to investigate how the solution changes when parameters in
the governing equations and boundary conditions are altered.

Figure 9 shows the S, a and ¢ solutions when k1 = 1, kg = 1, d = 9,
So =85;=08,5 =075, =035 ap = ag = 0 and ¢4 = 1.6. This
solution may be compared to Figure 8 which is the analytic solution for no
twist with the same parameter values. For the twist cell biaxiality, «, is present

throughout the region and the scalar order parameter, S, is lower than the bulk

17
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Figure 7: Solutions for S and « in a no twist cell with parameter values
So=2038,5,=07 5 =06,5,=03,a, =0, a9 =0.1, kst = ke = 1 and
d=1.
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Figure 8: Solutions for S and « in a no twist cell with parameter values
So=0.8,5,=08,5=07,5,=035 ay=0, a3 =0, kK1 = ko = 1 and
d=09.
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Figure 9: Twisted layer S, o and ¢ solutions for Ky = 1, ke = 1, d = 9,
S() = Sd = 08, Sb = 07, Su = 035, Qg = Qg = 0 and ¢d =1.6

scalar order parameter from the potential (S, = 0.7) whereas in the no twist
cell there is no biaxiality and the scalar order parameter never falls below
Sy = 0.7.

The value of ¢, in Figure 9 shows that there is a larger amount of twist at
the centre of the cell than at the boundaries and the scalar order parameter,
S, reduces to compensate for the increased distortional energy. The other
important point is that even though the biaxiality potential favours o = 0 and
the boundary conditions are ag = g = 0 there s biaxiality present in the cell.
This is due to the second terms in (2.15) and (2.16). The relatively high twist
at the centre leads to a high value of ¢,. The corresponding high energy is
reduced by a decrease in S — « or alternatively a decrease in S and an increase
in a.

It is now possible using AUTO to investigate the changes to this solution
as the parameters vary. The main geometrical parameter is the gap width,
d. Figure 10 shows the free energy F of the solution as AUTO follows the
solution in Figure 9 whilst varying the gap width d with all other parameters
fixed. There are two limit points, /; and /5, in the solution branch at gap widths
8.4 and 29.7 between which there exists two stable solutions and one unstable

solution. The units for the gap width cannot be found without knowing the

19



order of the potential coefficients x; and k3. From an estimated value, for
nematics, of k; and ko found in de Gennes and Prost [5] multiple solutions
exist between gap widths of the order of 1-10 microns. The stable solutions
are shown in Figures 11, 12 and 13 in this region for a gap width d = 20
corresponding to 6.32um.

10

Energy

0 5 10 15 20 25 30 35 40 45 50

Figure 10: Fold in the energy as the gap width varies with the limit points [y

and [, and the two stable solutions 1 and 2.

Solution 1 has almost uniform twist with a relatively high scalar order
parameter S denoting a liquid crystalline state and a small amount of bi-
axiality. Solution 2 has a large twist gradient around the centre of the cell
(near z = d/2), a corresponding region where the scalar order parameter S
is low which indicates melting of the liquid crystal to an isotropic state and
a concentration of biaxiality in the same region around z = d/2. This high
energy distortion in solution 2 is compensated for by a decrease in the scalar
order parameter S (Figure 11) and interestingly, although there is a concen-
tration of the biaxiality around the centre of the cell, the maximum biaxiality
«a coefficient does not significantly increase (Figure 12).

The region where multiple solutions exist when other parameters are al-
tered can now be investigated. The most interesting changes occur when the

coefficient of the biaxial potential ks is varied. As ky is varied the package
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Figure 11: Multiple stable solutions of S in a twisted layer for d=20.
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Figure 12: Multiple stable solutions of « in a twisted layer for d=20.
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Figure 13: Multiple stable solutions of ¢ in a twisted layer for d=20.

AUTO finds the solutions to the equations and locates the two limit points
l; and Iy (in Figure 10). The region between these limit points is then where
multiple solutions occur. Figure 14 shows this region up to a gap width of
d = 30 where the numerical algorithm fails to converge to a solution. AUTO
can find a solution along this branch for larger gap widths but it is difficult to
follow the solution along this branch. By altering certain numerical parame-
ters within AUTO and solving the equations for specific gap widths it is found
that the locus of [; asymptotes to a straight line with gradient approximately
equal to 1.

An increase in k; makes biaxiality less favourable and when ko > 20 biaxi-
ality is energetically unfavourable and the liquid crystal is essentially uniaxial.
Figure 14 shows that when there is biaxiality present in the layer (k, < 20)
multiple solutions only occur within a small range of gap widths. In fact when
ke < 4.99 there is only one biaxial solution for any gap width.

To investigate the multiplicity of solutions in this system ky is fixed so
that the liquid crystal is essentially uniaxial (k > 1). We then take o = 0
so that variations of S and ¢ need only be considered and the Euler-Lagrange

equations are then,
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3/4)1

0 = 53542~ =7S(S ~5.)(S ~ ) (5.47)

S is nondimensionalised using S* = S/S,. Then the equations become,

3

0 = S — 35— fs*(s*—s:;)(s*—n (5.49)
0 = ((5°¢.). (5.50)

with boundary conditions,

$(0) = 0 (5.51)
¢(d) = ¢a>0 (5.52)
S*0) = S (5.53)
S*d) = S (5.54)

where k7 = k5%, Sf = S,/S,. The equation parameters are therefore

K1, Sy, ¢4, d, S5 and Sj. Of these parameters only S;, ¢4, d can be easily
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changed within a liquid crystal cell in a physical situation, they correspond to
temperature, the difference in twist between the two boundaries and gap width.
In the present system which allows multiple stable solutions one solution of
the equations exhibits a higher degree of melting than the other (Figures 11,
12, 13). The stability of these solutions is therefore expected to be affected by
changes in S; and will be investigated later in this section. The two parameters
¢4 and d relate to the amount of twist in the layer and the distance over
which the director must twist and it will be shown below that changes in these
parameters critically affect the stability of the different possible solutions.

Variations of the gap width d and the amount of twist ¢, are initially
considered. As before a solution is found for a specific set of parameters,
Sy =07,k =1,5; =0.5, g =16, d =09, Sy = 0.8. Figures 15 and 16 show
the starting solutions for the above parameters.

1
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Figure 15: Uniaxial scalar order parameter stable solutions for a twist layer
with parameters S, = 0.7, k1 =1, S; = 0.5, pg =1.6,d =9, Sp = 0.8

If the solutions are followed as ¢4 is continued through the range 0 to 7
the solution branches of the two solutions are linked by an unstable solution
branch (Figure 17) and as in the biaxial case there are only three solutions
in the range ¢4 € (1.36, 1.71) however there is no solution for angles past
¢4 = 1.81. After this point AUTO fails to converge on a solution and the L2

24



1.6 -

1.2 + -

08 - B

04 |- .

02 - 2 -

0 ! ! ! !
0 0.2 04 0.6 0.8 1

z/d

Figure 16: Uniaxial director angle stable solutions for a twist layer with pa-
rameters S, = 0.7, k1 =1, S; = 0.5, 94 =1.6,d =9, Sy = 0.8

norm which equals,

IS, Ol = [V/S2 + (5.2 + 6% + (6.)2 dz (5.55)

tends to infinity (Figure 18). This failure to converge is due to the fact

that the solution at this point in parameter space has extremely large values
of ¢, near z = d/2. Figures 19 and 20 show the S and ¢ solutions for ¢, values
before and after the fold.

There is a second possible configuration of the director for any point in
parameter space due to the symmetry of the director. The directions n and
—n are equivalent and therefore the director may twist in the opposite way
from ¢ = 0 on the lower boundary to ¢ = ¢4 + 7 on the upper boundary.
There is therefore a second solution branch which is a reflection of the first in
the line ¢4 = w/2 (Figure 21).

There are therefore two stable solutions when the twist parameter is in the
regions ¢4 € (0, 1.36) or ¢4 € (1.78, 7), there are three stable solutions and
one unstable solution when ¢4 € (1.36, 1.43) or ¢4 € (1.71, 1.78) and there
are four stable and two unstable solutions when ¢4 € (1.43, 1.71).

These regions, in which different numbers of solutions exist, can be inves-

tigated when another parameter is varied. Using AUTO the boundaries of
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Figure 17: Fold in the Energy versus ¢, diagram for d=9.

the regions, which in this case are the limit point values of ¢, of the folds in
Figure 20, may be followed as the gap width d is varied. Figure 22 shows the
loci of the limit points values in the d, ¢4 parameter space. For a cell with a
gap width less than 6.49 there is only one possible solution. Between d = 6.49
and d = 8.50 the two cusps do not overlap so that there is a region around
¢q = 7/2 where there is one solution and within the cusp region there are two
stable and one unstable solutions. After d = 8.5 the cusps overlap and there
is a region around ¢4 = /2 where there are four stable solutions and two
unstable solutions possible at one point in parameter space.

As discussed before the parameter S, has been set to be S,/2 (S = 0.5)
and hence the temperature is equal to the clearing point temperature 7T.. At
this point the two minima of the potential function are both global minimizers
of the energy functional and hence the system can support multiple solutions.
If the parameter S} is changed so that the temperature is increased (S} —
1) or decreased (S} — 0) the system would be expected to prefer the high
twist gradient, high melting solution or the uniform twist, low melting solution
respectively. Figure 23 shows the development of one of the cusps from Figure
22 as S (= S,/Sy) varies from 0 to 1.

Between the two cusps for S; = 0.5 and S;; = 0.55 the asymptotic behaviour
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Figure 18: Fold and singularity in the L? norm versus ¢, diagram.

of the cusp changes. Less than a critical value of S; the lower branch of the
cusp asymptotes to a fixed twist parameter. More than the critical parameter
and the branch asymptotes to a fixed gap width. If S} is high enough then
for any value of the twist parameter there is a solution that involves melting
and is the lowest energy solution. If S} is lower than the critical value and if
the twist parameter is low enough then the only solution is that with uniform

twist and no melting.

6 Discussion

We have considered wall defects within twisted nematic layers. Analytical
solutions are found for two cases. When only the bulk of the liquid crystal
layer is considered a solution is found for constant twist and for the whole
system (including the boundary effects) with no twist present in the layer the
governing equations uncouple and an analytic solution can be found. The full
equations with twist present have been solved using the numerical continuation
package AUTO. Once a solution is obtained we investigated the effect of various
changes to the parameters. In certain regions in parameter space there exist

more than one solution to the equations.
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Figure 19: S solutions before the fold (a) and after (b) the fold near the L?

norm singularity.

The symmetry of the system (reflection in the line ¢, = 7/2) leads to re-
gions where 4 stable and two unstable solutions exist, regions where two stable
and one unstable solution exist and regions where only one stable solution ex-
ists. Typically the stable solutions are of two kinds. The first solution involves
a uniform twist between the two boundaries and a small decrease in the scalar
order parameter compared to the no-twist case. The second solution is a wall
defect where the twisting necessary in the layer is concentrated around the
centre at z = d/2 and the scalar order parameter decreases to values close
to zero. The liquid crystal has therefore melted to an isotropic liquid in this
region.

Figure 22 shows that for a greater amount of twist in the layer (¢4 larger)
the wall defect solution will become the only stable solution and for less twist
in the layer (¢4 smaller) the uniform twist solution will become the only stable
solution and in the region in the middle both solutions are stable and the
system exhibits hysteresis. Changes in the gap width, d, then determine the
size of this region. As the gap width increases the director stress from the
twist distortion decreases and the non-melting/uniform twist solution is stable

over a larger range of twist angles ¢,.
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norm singularity

Figure 23 shows that as the temperature increases (.S, increases) the asymp-
totic nature of the cusps in Figure 22 change. For values of S, greater than a
critical value the wall defect solution is stable (for d greater than some critical
value) for any twist angle ¢4, even when there is no twist present. The critical
dependence on S, of the form of the cusp may be thought of as a phase transi-
tion. The system prefers the liquid crystal state below the critical S, and the
isotropic state above the critical value. This nematic-isotropic phase transition
occurs between S} € (0.5, 0.55) so that the nematic state is still stable above
the classical critical temperature T, but before the temperature T* when the
nematic state loses local stability and is similar to the phase transition seen in
a previous paper by the authors [13].

It is important to realise that in certain parameter regions there may form
a twist wall which will greatly affect the performance of the twist cell. The
display would essentially be useless as there would be a layer of isotropic liquid
within the cell and the incident light would not be guided by the director ori-
entation to emerge through the second polarizer (see Figure 2). These regions
in parameter space are present at all temperatures although for low temper-

atures multiple solutions are present only for cells containing large amounts
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line ¢4 = /2.

of twist. In most common TNLCD applications these regions are avoided but
for the examples listed in the Introduction the region of low order may be
crucial to its device usefulness. The estimated values of the parameter regions
where multiple solutions exist, which were calculated in Section 5, will give a
guideline as to how much twist is possible in these examples but for a more
detailed analysis each of the systems should be treated separately.

It is hoped that future work will investigate the effect of an aligning electric
field which has been shown to concentrate the twist deformation into small
regions and induce cholesteric unwinding [5]. It is therefore expected that
the presence of this field will encourage the formation of these regions of low

orientational order.
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