57 research outputs found

    Thermal annealing of laser damage precursors on fused silica surfaces

    Get PDF
    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes

    Teoria do valor: bases para um método

    Full text link

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    High-intensity third-harmonic generation

    No full text
    The azimuthal dependence of third-order and cascaded second-order nonlinear coupling are used to measure the relative contributions of each to direct third-harmonic generation in ␤-barium borate. This enabled the measurement of the values of 10 (3) , 11 (3) , and 16 (3) relative to the known ij (2) . Finally, conversion efficiencies to 3 of up to 6% from a single crystal were achieved with a femtosecond chirped-pulse-amplification laser with 200 GW/cm 2 in collimated beams

    Size-selection initiation model extended to include shape and random factors

    No full text
    ABSTRACT The Feit-Rubenchik size-selection damage model has been extended in a number of ways. More realistic thermal deposition profiles have been added. Non-spherical shapes (rods and plates) have been considered, with allowance for their orientation dependence. Random variations have been taken into account. An explicit form for the change of absorptivity with precursor size has been added. A simulation tool called GIDGET has been built to allow adjustment of the many possible parameters in order to fit experimental data of initiation density as a function of fluence and pulse duration. The result is a set of constraints on the possible properties of initiation precursors

    Material Removal and Surface Figure During pad Polishing of Fused Silica

    No full text
    Abstract The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the applied loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: 1) a moment caused by a pivot point and interface friction forces; 2) viscoelastic relaxation of the polyurethane lap; and 3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then . The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner
    corecore