26 research outputs found

    A novel design methodology accounting for ramping and field inhomogeneities in dreMR imaging

    Get PDF
    Delta relaxation enhanced magnetic resonance (dreMR) is a field cycled magnetic resonance imaging method for quantitative molecular imaging. DreMR uses an insertable field cycling coil to exploit longitudinal dispersion of contrast agents producing signal proportional to their concentration. Assumptions in the development of dreMR included instantaneous ramping of the insert coil and perfectly homogeneous field shifts. Here we discard these assumptions and show that finite ramping and field inhomogeneities can impair proportionality to agent concentration and produce significant signal from background tissues. To mitigate these effects, a novel dreMR coil design method is developed employing a boundary element method designed layer to the system which corrects field inhomogeneities, maximizing the usable dreMR imaging region. While a dreMR coil has not yet been constructed for use on humans, with these improvements it is expected that human designs will be much more feasible allowing the extension of this method to clinical studies

    Redox Polymers Incorporating Pendant 6-Oxoverdazyl and Nitronyl Nitroxide Radicals

    Get PDF
    Polymers comprised of redox-active organic radicals have emerged as promising materials for use in a variety of organic electronics, including fast-charging batteries. Despite these advances, relatively little attention has been focused on the diversification of the families of radicals that are commonly incorporated into polymer frameworks, with most radical polymers being comprised of nitroxide radicals. Here, we report two new examples prepared via ring-opening methathesis polymerization containing 6-oxoverdazyl and nitronyl nitroxide radicals appended to their backbones. The polymerization reaction and optoelectronic properties were explored in detail, revealing high radical content and redox activity that may be advantageous for their use as semiconducting thin films. Initial studies revealed that current-voltage curves obtained from thin films of the title polymers exhibited memory effects making them excellent candidates for use in resistive memory applications

    Duke Surgery Patient Safety: an open-source application for anonymous reporting of adverse and near-miss surgical events

    Get PDF
    BACKGROUND: Studies have shown that 4% of hospitalized patients suffer from an adverse event caused by the medical treatment administered. Some institutions have created systems to encourage medical workers to report these adverse events. However, these systems often prove to be inadequate and/or ineffective for reviewing the data collected and improving the outcomes in patient safety. OBJECTIVE: To describe the Web-application Duke Surgery Patient Safety, designed for the anonymous reporting of adverse and near-miss events as well as scheduled reporting to surgeons and hospital administration. SOFTWARE ARCHITECTURE: DSPS was developed primarily using Java language running on a Tomcat server and with MySQL database as its backend. RESULTS: Formal and field usability tests were used to aid in development of DSPS. Extensive experience with DSPS at our institution indicate that DSPS is easy to learn and use, has good speed, provides needed functionality, and is well received by both adverse-event reporters and administrators. DISCUSSION: This is the first description of an open-source application for reporting patient safety, which allows the distribution of the application to other institutions in addition for its ability to adapt to the needs of different departments. DSPS provides a mechanism for anonymous reporting of adverse events and helps to administer Patient Safety initiatives. CONCLUSION: The modifiable framework of DSPS allows adherence to evolving national data standards. The open-source design of DSPS permits surgical departments with existing reporting mechanisms to integrate them with DSPS. The DSPS application is distributed under the GNU General Public License

    Molecular Characterization of NRXN1 Deletions from 19,263 Clinical Microarray Cases Identifies Exons Important for Neurodevelopmental Disease Expression

    Get PDF
    PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P \u3c 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3\u27 end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5\u27 NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5\u27 end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
    corecore