337 research outputs found

    Identification of Myotropic Neuropeptides from the Brain and Corpus Cardiacum-Corpus Allatum Complex of the Beetle, Zophobas atratus

    Get PDF
    The neuropeptide profiles of the two major neuro-endocrinological organs, brain and retrocerebral complex corpus cardiacum-corpus allatum (CC/CA) of adult beetles, Zophobas atratus Fabricius (Coleoptera:Tenebrionidae) were analyzed by a combination of high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time of flight tandem mass spectrometry (MALDI TOF/TOF MS). The homological semi-isolated heart bioassay was used to screen HPLC fractions for myotropic activity in tissues, revealing several cardiostimulatory and cardioinhibitory factors from both the brain and CC/CA. Analysis of HPLC fractions by MALDI-TOF MS identified seven mass ions that could be assigned to other known peptides: leucomyosuppressin (LMS), Tribolium castaneum pyrokinin 2, sulfakinin 1, myoinhibitory peptide 4, a truncated NVP-like peptide, Tenebrio molitor AKH and crustacean cardioactive peptide. In addition, two novel peptides, myosuppressin (pEDVEHVFLRFa), which differs from LMS by one amino acid (E for D at position 4) and pyrokinin-like peptide (LPHYTPRLa) were also identified. To establish cardioactive properties of some of the identified peptides, chemical synthesis was carried out and their activities were tested using the heart bioassay

    Alterations of prolyl endopeptidase activity in the plasma of children with autistic spectrum disorders

    Get PDF
    BACKGROUND: Prolyl Endopeptidase (PEP, EC 3.4.21.26), a cytosolic endopeptidase, hydrolyses peptide bonds on the carboxyl side of proline residue in proteins with a relatively small molecular weight. It has been shown that altered PEP activity is associated with various psychological diseases such as schizophrenia, mania and depression. Autistic Spectrum Disorders (ASD) are neuropsychiatric and behavioural syndromes affecting social behaviours and communication development. They are classified as developmental disorders. The aim of this study was to examine the hypothesis that PEP activity is also associated with ASDs. METHODS: Fluorometric assay was used to measure PEP activity in EDTA plasma in children with ASD (n = 18) aged 4–12 years (mean ± SD: 7.9 ± 2.5). These results were then compared to PEP activity in a control group of non-ASD children (n = 15) aged 2–10 years (mean ± SD: 6.4 ± 2.2). RESULTS: An alteration in PEP activity was found in the children with ASD compared to the control group. There was much greater variation of PEP activity in the group of ASD children when compared to the controls (SD= 39.9 and SD 9.6, respectively). This variation was significant (p < 0.0005), although the mean level of PEP activity in the group of ASD children was slightly higher than in the control group (124.4 and 134.1, respectively). CONCLUSION: Our preliminary finding suggests a role for PEP enzyme in the pathophysiology of autism but further research should be conducted to establish its role in the aetiology of psychiatric and neurological disorders, including autism and related spectrum disorders

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page

    Sox9-Haploinsufficiency Causes Glucose Intolerance in Mice

    Get PDF
    The HMG box transcription factor Sox9 plays a critical role in progenitor cell expansion during pancreas organogenesis and is required for proper endocrine cell development in the embryo. Based on in vitro studies it has been suggested that Sox9 controls expression of a network of important developmental regulators, including Tcf2/MODY5, Hnf6, and Foxa2, in pancreatic progenitor cells. Here, we sought to: 1) determine whether Sox9 regulates this transcriptional network in vivo and 2) investigate whether reduced Sox9 gene dosage leads to impaired glucose homeostasis in adult mice. Employing two genetic models of temporally-controlled Sox9 inactivation in pancreatic progenitor cells, we demonstrate that contrary to in vitro findings, Sox9 is not required for Tcf2, Hnf6, or Foxa2 expression in vivo. Moreover, our analysis revealed a novel role for Sox9 in maintaining the expression of Pdx1/MODY4, which is an important transcriptional regulator of beta-cell development. We further show that reduced beta-cell mass in Sox9-haploinsufficient mice leads to glucose intolerance during adulthood. Sox9-haploinsufficient mice displayed 50% reduced beta-cell mass at birth, which recovered partially via a compensatory increase in beta-cell proliferation early postnatally. Endocrine islets from mice with reduced Sox9 gene dosage exhibited normal glucose stimulated insulin secretion. Our findings show Sox9 plays an important role in endocrine development by maintaining Ngn3 and Pdx1 expression. Glucose intolerance in Sox9-haploinsufficient mice suggests that mutations in Sox9 could play a role in diabetes in humans

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    Unravelling the evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor gene families in Bilaterians: insights from Anopheles Mosquitoes

    Get PDF
    Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anophelesmosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa(2+)-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.Foundation for Science and Technology, Portugal (FCT) [PTDC/BIA-BCM/114395/2009]; European Regional Development Fund (ERDF) COMPETE - Operational Competitiveness Programme; Portuguese funds through FCT Foundation for Science and Technology [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013, PEst-OE/SAU/LA0018/2013]; FCT [SFRH/BPD/89811/2012, SFRH/BPD/80447/2011, SFRH/BPD/66742/2009]; auxiliary research contract FCT Pluriannual funds [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Identification of Novel Targets of CSL-Dependent Notch Signaling in Hematopoiesis

    Get PDF
    Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which is consistent with our previous biological characterization

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue
    corecore