32 research outputs found

    PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer

    Get PDF
    Here we describe the expression and function of a HIF-1-regulated protein pyruvate dehydrogenase kinase-1 (PDK-1) in head and neck squamous cancer (HNSCC). Using RNAi to downregulate hypoxia-inducible PDK-1, we found that lactate and pyruvate excretion after 16–48 h of hypoxia was suppressed to normoxic levels. This indicates that PDK-1 plays an important role in maintaining glycolysis. Knockdown had no effect on proliferation or survival under hypoxia. The immunohistochemical expression of PDK-1 was assessed in 140 cases of HNSCC. PDK-1 expression was not expressed in normal tissues but was upregulated in HNSCC and found to be predominantly cytoplasmic with occasional strong focal nuclear expression. It was strongly related to poor outcome (P=0.005 split by median). These results indicate that HIF regulation of PDK-1 has a key role in maintaining lactate production in human cancer and that the investigation of PDK-1 inhibitors should be investigated for antitumour effects

    Identification of rare loss-of-function genetic variation regulating body fat distribution

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordData Availability: This research was conducted using the UK Biobank resource (application Nos. 44448 and 9905). Access to the UK Biobank genotype and phenotype data is open to all approved health researchers (http://www.ukbiobank.ac.uk/).CONTEXT: Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking predominantly non-coding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss-of-function (LoF) would be of most therapeutic benefit. OBJECTIVE, DESIGN AND SETTING: To identify genes/proteins involved in determining fat distribution, we combined the power of genome-wide analysis of array-based rare, non-synonymous variants in 450,562 individuals of UK Biobank with exome-sequence-based rare loss of function gene burden testing in 184,246 individuals. RESULTS: The data indicates that loss-of-function of four genes (PLIN1 [LoF variants, p=5.86×10 -7], INSR [LoF variants, p=6.21×10 -7], ACVR1C [LoF + Moderate impact variants, p=1.68×10 -7; Moderate impact variants, p=4.57×10 -7] and PDE3B [LoF variants, p=1.41×10 -6]) is associated with a beneficial impact on WHRadjBMI and increased gluteofemoral fat mass, whereas LoF of PLIN4 [LoF variants, p=5.86×10 -7] adversely affects these parameters. Phenotypic follow-up suggests that LoF of PLIN1, PDE3B and ACVR1C favourably affects metabolic phenotypes (e.g. triglyceride [TG] and HDL cholesterol concentrations) and reduces the risk of cardiovascular disease, whereas PLIN4 LoF has adverse health consequences. INSR LoF is associated with lower TG and HDL levels but may increase the risk of type 2 diabetes. CONCLUSION: This study robustly implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat counter-intuitive insight into the potential consequences of targeting these molecules therapeutically.Medical Research Council (MRC)National Institute for Health Research (NIHR)Wellcome TrustResearch Englan

    Association of genetically enhanced lipoprotein lipase–mediated lipolysis and low-density lipoprotein cholesterol–lowering alleles with risk of coronary disease and type 2 diabetes

    No full text
    Importance Pharmacological enhancers of lipoprotein lipase (LPL) are in preclinical or early clinical development for cardiovascular prevention. Studying whether these agents will reduce cardiovascular events or diabetes risk when added to existing lipid-lowering drugs would require large outcome trials. Human genetics studies can help prioritize or deprioritize these resource-demanding endeavors. Objective To investigate the independent and combined associations of genetically determined differences in LPL-mediated lipolysis and low-density lipoprotein cholesterol (LDL-C) metabolism with risk of coronary disease and diabetes. Design, Setting, and Participants In this genetic association study, individual-level genetic data from 392 220 participants from 2 population-based cohort studies and 1 case-cohort study conducted in Europe were included. Data were collected from January 1991 to July 2018, and data were analyzed from July 2014 to July 2018. Exposures Six conditionally independent triglyceride-lowering alleles in LPL, the p.Glu40Lys variant in ANGPTL4, rare loss-of-function variants in ANGPTL3, and LDL-C–lowering polymorphisms at 58 independent genomic regions, including HMGCR, NPC1L1, and PCSK9. Main Outcomes and Measures Odds ratio for coronary artery disease and type 2 diabetes. Results Of the 392 220 participants included, 211 915 (54.0%) were female, and the mean (SD) age was 57 (8) years. Triglyceride-lowering alleles in LPL were associated with protection from coronary disease (approximately 40% lower odds per SD of genetically lower triglycerides) and type 2 diabetes (approximately 30% lower odds) in people above or below the median of the population distribution of LDL-C–lowering alleles at 58 independent genomic regions, HMGCR, NPC1L1, or PCSK9. Associations with lower risk were consistent in quintiles of the distribution of LDL-C–lowering alleles and 2 × 2 factorial genetic analyses. The 40Lys variant in ANGPTL4 was associated with protection from coronary disease and type 2 diabetes in groups with genetically higher or lower LDL-C. For a genetic difference of 0.23 SDs in LDL-C, ANGPTL3 loss-of-function variants, which also have beneficial associations with LPL lipolysis, were associated with greater protection against coronary disease than other LDL-C–lowering genetic mechanisms (ANGPTL3 loss-of-function variants: odds ratio, 0.66; 95% CI, 0.52-0.83; 58 LDL-C–lowering variants: odds ratio, 0.90; 95% CI, 0.89-0.91; P for heterogeneity = .009). Conclusions and Relevance Triglyceride-lowering alleles in the LPL pathway are associated with lower risk of coronary disease and type 2 diabetes independently of LDL-C–lowering genetic mechanisms. These findings provide human genetics evidence to support the development of agents that enhance LPL-mediated lipolysis for further clinical benefit in addition to LDL-C–lowering therapy

    Association of genetically enhanced lipoprotein lipase-mediated lipolysis and low-density lipoprotein cholesterol-lowering alleles with risk of coronary disease and type 2 diabetes

    No full text
    Importance Pharmacological enhancers of lipoprotein lipase (LPL) are in preclinical or early clinical development for cardiovascular prevention. Studying whether these agents will reduce cardiovascular events or diabetes risk when added to existing lipid-lowering drugs would require large outcome trials. Human genetics studies can help prioritize or deprioritize these resource-demanding endeavors. Objective To investigate the independent and combined associations of genetically determined differences in LPL-mediated lipolysis and low-density lipoprotein cholesterol (LDL-C) metabolism with risk of coronary disease and diabetes. Design, Setting, and Participants In this genetic association study, individual-level genetic data from 392 220 participants from 2 population-based cohort studies and 1 case-cohort study conducted in Europe were included. Data were collected from January 1991 to July 2018, and data were analyzed from July 2014 to July 2018. Exposures Six conditionally independent triglyceride-lowering alleles in LPL, the p.Glu40Lys variant in ANGPTL4, rare loss-of-function variants in ANGPTL3, and LDL-C–lowering polymorphisms at 58 independent genomic regions, including HMGCR, NPC1L1, and PCSK9. Main Outcomes and Measures Odds ratio for coronary artery disease and type 2 diabetes. Results Of the 392 220 participants included, 211 915 (54.0%) were female, and the mean (SD) age was 57 (8) years. Triglyceride-lowering alleles in LPL were associated with protection from coronary disease (approximately 40% lower odds per SD of genetically lower triglycerides) and type 2 diabetes (approximately 30% lower odds) in people above or below the median of the population distribution of LDL-C–lowering alleles at 58 independent genomic regions, HMGCR, NPC1L1, or PCSK9. Associations with lower risk were consistent in quintiles of the distribution of LDL-C–lowering alleles and 2 × 2 factorial genetic analyses. The 40Lys variant in ANGPTL4 was associated with protection from coronary disease and type 2 diabetes in groups with genetically higher or lower LDL-C. For a genetic difference of 0.23 SDs in LDL-C, ANGPTL3 loss-of-function variants, which also have beneficial associations with LPL lipolysis, were associated with greater protection against coronary disease than other LDL-C–lowering genetic mechanisms (ANGPTL3 loss-of-function variants: odds ratio, 0.66; 95% CI, 0.52-0.83; 58 LDL-C–lowering variants: odds ratio, 0.90; 95% CI, 0.89-0.91; P for heterogeneity = .009). Conclusions and Relevance Triglyceride-lowering alleles in the LPL pathway are associated with lower risk of coronary disease and type 2 diabetes independently of LDL-C–lowering genetic mechanisms. These findings provide human genetics evidence to support the development of agents that enhance LPL-mediated lipolysis for further clinical benefit in addition to LDL-C–lowering therapy

    Association of genetically enhanced lipoprotein lipase-mediated lipolysis and low-density lipoprotein cholesterol-lowering alleles with risk of coronary disease and type 2 diabetes

    No full text
    Importance Pharmacological enhancers of lipoprotein lipase (LPL) are in preclinical or early clinical development for cardiovascular prevention. Studying whether these agents will reduce cardiovascular events or diabetes risk when added to existing lipid-lowering drugs would require large outcome trials. Human genetics studies can help prioritize or deprioritize these resource-demanding endeavors. Objective To investigate the independent and combined associations of genetically determined differences in LPL-mediated lipolysis and low-density lipoprotein cholesterol (LDL-C) metabolism with risk of coronary disease and diabetes. Design, Setting, and Participants In this genetic association study, individual-level genetic data from 392 220 participants from 2 population-based cohort studies and 1 case-cohort study conducted in Europe were included. Data were collected from January 1991 to July 2018, and data were analyzed from July 2014 to July 2018. Exposures Six conditionally independent triglyceride-lowering alleles in LPL, the p.Glu40Lys variant in ANGPTL4, rare loss-of-function variants in ANGPTL3, and LDL-C–lowering polymorphisms at 58 independent genomic regions, including HMGCR, NPC1L1, and PCSK9. Main Outcomes and Measures Odds ratio for coronary artery disease and type 2 diabetes. Results Of the 392 220 participants included, 211 915 (54.0%) were female, and the mean (SD) age was 57 (8) years. Triglyceride-lowering alleles in LPL were associated with protection from coronary disease (approximately 40% lower odds per SD of genetically lower triglycerides) and type 2 diabetes (approximately 30% lower odds) in people above or below the median of the population distribution of LDL-C–lowering alleles at 58 independent genomic regions, HMGCR, NPC1L1, or PCSK9. Associations with lower risk were consistent in quintiles of the distribution of LDL-C–lowering alleles and 2 × 2 factorial genetic analyses. The 40Lys variant in ANGPTL4 was associated with protection from coronary disease and type 2 diabetes in groups with genetically higher or lower LDL-C. For a genetic difference of 0.23 SDs in LDL-C, ANGPTL3 loss-of-function variants, which also have beneficial associations with LPL lipolysis, were associated with greater protection against coronary disease than other LDL-C–lowering genetic mechanisms (ANGPTL3 loss-of-function variants: odds ratio, 0.66; 95% CI, 0.52-0.83; 58 LDL-C–lowering variants: odds ratio, 0.90; 95% CI, 0.89-0.91; P for heterogeneity = .009). Conclusions and Relevance Triglyceride-lowering alleles in the LPL pathway are associated with lower risk of coronary disease and type 2 diabetes independently of LDL-C–lowering genetic mechanisms. These findings provide human genetics evidence to support the development of agents that enhance LPL-mediated lipolysis for further clinical benefit in addition to LDL-C–lowering therapy

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore