206 research outputs found

    A Mountaineering Strategy to Excited States: Highly-Accurate Energies and Benchmarks for Bicyclic Systems

    Full text link
    Pursuing our efforts to define highly-accurate estimates of the relative energies of excited states in organic molecules, we investigate, with coupled-cluster methods including iterative triples (CC3 and CCSDT), the vertical excitation energies of 10 bicyclic molecules (azulene, benzoxadiazole, benzothiadiazole, diketopyrrolopyrrole, fuofuran, phthalazine, pyrrolopyrrole, quinoxaline, tetrathiafulvalene, and thienothiophene). In total, we provide \emph{aug}-cc-pVTZ reference vertical excitation energies for 91 excited states of these relatively large systems. We use these reference values to benchmark various wave function methods, i.e., CIS(D), EOM-MP2, CC2, CCSD, STEOM-CCSD, CCSD(T)(a)*, CCSDR(3), CCSDT-3, ADC(2), ADC(2.5), ADC(3), as well as some spin-scaled variants of both CC2 and ADC(2). These results are compared to those obtained previously on smaller molecules. It turns out that while the accuracy of some methods is almost unaffected by system size, e.g., CIS(D) and CC3, the performance of others can significantly deteriorate as the systems grow, e.g., EOM-MP2 and CCSD, whereas others, e.g., ADC(2) and CC2, become more accurate for larger derivatives.Comment: 19 pages, 2 figure

    Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies

    Full text link
    Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events, but also to provide reference values for vertical transition energies, hence allowing to benchmark lower-order models. In this category, both CASPT2 and NEVPT2 are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches the present work relies on highly-accurate (±0.03\pm 0.03 eV) \emph{aug}-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 nπn \to \pi^*, 119 ππ\pi \to \pi^*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially-contracted (PC) and strongly-contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.110.11 and 0.130.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focussed on single-reference wave function methods (\textit{J.~Chem. Theory Comput.} \textbf{14}, 4360 (2018); \emph{ibid.}, \textbf{16}, 1711 (2020)), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.Comment: 21 pages, 3 figure (supporting information available

    Excitation energies from diffusion Monte Carlo using selected Configuration Interaction nodes

    Full text link
    Quantum Monte Carlo (QMC) is a stochastic method which has been particularly successful for ground-state electronic structure calculations but mostly unexplored for the computation of excited-state energies. Here, we show that, within a Jastrow-free QMC protocol relying on a deterministic and systematic construction of nodal surfaces using selected configuration interaction (sCI) expansions, one is able to obtain accurate excitation energies at the fixed-node diffusion Monte Carlo (FN-DMC) level. This evidences that the fixed-node errors in the ground and excited states obtained with sCI wave functions cancel out to a large extent. Our procedure is tested on two small organic molecules (water and formaldehyde) for which we report all-electron FN-DMC calculations. For both the singlet and triplet manifolds, accurate vertical excitation energies are obtained with relatively compact multideterminant expansions built with small (typically double-ζ\zeta) basis sets.Comment: 8 pages, 3 figure

    Reference Vertical Excitation Energies for Transition Metal Compounds

    Full text link
    To enrich and enhance the diversity of the \textsc{quest} database of highly-accurate excitation energies [\href{https://doi.org/10.1002/wcms.1517}{V\'eril \textit{et al.}, \textit{WIREs Comput.~Mol.~Sci.}~\textbf{11}, e1517 (2021)}], we report vertical transition energies in transition metal compounds. Eleven diatomic molecules with singlet or doublet ground state containing a fourth-row transition metal (\ce{CuCl}, \ce{CuF}, \ce{CuH}, \ce{ScF}, \ce{ScH}, \ce{ScO}, \ce{ScS}, \ce{TiN}, \ce{ZnH}, \ce{ZnO}, and \ce{ZnS}) are considered and the corresponding excitation energies are computed using high-level coupled-cluster (CC) methods, namely CC3, CCSDT, CC4, and CCSDTQ, as well as multiconfigurational methods such as CASPT2 and NEVPT2. In some cases, to provide more comprehensive benchmark data, we also provide full configuration interaction estimates computed with the \textit{"Configuration Interaction using a Perturbative Selection made Iteratively"} (CIPSI) method. Based on these calculations, theoretical best estimates of the transition energies are established in both the aug-cc-pVDZ and aug-cc-pVTZ basis sets. This allows us to accurately assess the performance of CC and multiconfigurational methods for this specific set of challenging transitions. Furthermore, comparisons with experimental data and previous theoretical results are also reported.Comment: 17 pages, 3 figure

    Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality

    Full text link
    We report ground- and excited-state dipole moments and oscillator strengths (computed in different ``gauges'' or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CCSD to CCSDT or from CCSDT to CCSDTQ) reduces the average error with respect to the near-FCI reference values by approximately one order of magnitude.Comment: 14 pages, 8 figures (supporting information available

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose.

    Get PDF
    Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D
    corecore