112 research outputs found

    Industrial IoT based condition monitoring for wind energy conversion system

    Get PDF
    Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower. Conversion and distribution of wind energy has brought technology revolution by developing the advanced wind energy conversion system (WECS) including multilevel inverters (MLIs). The conventional rectifier produces ripples in their output waveforms while the MLI suffers from voltage balancing issues across the DC-link capacitor. This paper proposes a simplified proportional integral (PI)-based space vector pulse width modulation (SVPWM) to minimize the output waveform ripples, resolve the voltage balancing issue and produce better-quality output waveforms. WECS experiences various types of faults particularly in the DC-link capacitor and switching devices of the power converter. These faults, if not detected and rectified at an early stage, may lead to catastrophic failures to the WECS and continuity of the power supply. This paper proposes a new algorithm embedded in the proposed PI-based SVPWM controller to identify the fault location in the power converter in real time. Since most wind power plants are located in remote areas or offshore, WECS condition monitoring needs to be developed over the internet of things (IoT) to ensure system reliability. In this paper, an industrial IoT algorithm with an associated hardware prototype is proposed to monitor the condition of WECS in the real-time environment. © 2015 CSEE

    An intelligent controlling method for battery lifetime increment using state of charge estimation in PV-battery hybrid system

    Get PDF
    In a photovoltaic (PV)-battery integrated system, the battery undergoes frequent charging and discharging cycles that reduces its operational life and affects its performance considerably. As such, an intelligent power control approach for a PV-battery standalone system is proposed in this paper to improve the reliability of the battery along its operational life. The proposed control strategy works in two regulatory modes: maximum power point tracking (MPPT) mode and battery management system (BMS) mode. The novel controller tracks and harvests the maximum available power from the solar cells under different atmospheric conditions via MPPT scheme. On the other hand, the state of charge (SOC) estimation technique is developed using backpropagation neural network (BPNN) algorithm under BMS mode to manage the operation of the battery storage during charging, discharging, and islanding approaches to prolong the battery lifetime. A case study is demonstrated to confirm the effectiveness of the proposed scheme which shows only 0.082% error for real-world applications. The study discloses that the projected BMS control strategy satisfies the battery-lifetime objective for off-grid PV-battery hybrid systems by avoiding the over-charging and deep-discharging disturbances significantly

    Late Effects in Survivors of Hodgkin and Non-Hodgkin Lymphoma Treated with Autologous Hematopoietic Cell Transplantation: A Report from the Bone Marrow Transplant Survivor Study

    Get PDF
    AbstractWe determined the prevalence of self-reported late-effects in survivors of autologous hematopoietic cell transplantation (HCT) for Hodgkin lymphoma (HL, n = 92) and non-Hodgkin lymphoma (NHL, n = 184) using a 255-item questionnaire and compared them to 319 sibling controls in the Bone Marrow Transplant Survivor Study. Median age at HCT was 39 years (range: 13-69) and median posttransplant follow-up was 6 years (range: 2-17). Median age at survey was 46 years (range: 21-73) for survivors and 44 years (range: 19-79) for siblings. Compared to siblings, HCT survivors reported a significantly higher frequency of cataracts, dry mouth, hypothyroidism, bone impairments (osteoporosis and avascular necrosis), congestive heart failure, exercise-induced shortness of breath, neurosensory impairments, inability to attend work or school, and poor overall health. Compared to those receiving no total-body irradiation (TBI), patients treated with TBI-based conditioning had higher risks of cataracts (odds-ratio [OR] 4.9, 95% confidence interval [CI] 1.5-15.5) and dry mouth (OR 3.4, 95% CI 1.1-10.4). Females had a greater likelihood of reporting osteoporosis (OR 8.7, 95% CI: 1.8-41.7), congestive heart failure (OR 4.3, 95% CI 1.1-17.2), and abnormal balance, tremor, or weakness (OR 2.4, 95% CI 1.0-5.5). HL and NHL survivors of autologous HCT have a high prevalence of long-term health-related complications and require continued monitoring for late effects of transplantation

    Cost-Effective Design of IoT-Based Smart Household Distribution System

    Get PDF
    The Internet of Things (IoT) plays an indispensable role in present-day household electricity management. Nevertheless, practical development of cost-effective intelligent condition monitoring, protection, and control techniques for household distribution systems is still a challenging task. This paper is taking one step forward into a practical implementation of such techniques by developing an IoT Smart Household Distribution Board (ISHDB) to monitor and control various household smart appliances. The main function of the developed ISHDB is collecting and storing voltage, current, and power data and presenting them in a user-friendly way. The performance of the developed system is investigated under various residential electrical loads of different energy consumption profiles. In this regard, an Arduino-based working prototype is employed to gather the collected data into the ThingSpeak cloud through a Wi-Fi medium. Blynk mobile application is also implemented to facilitate real-time monitoring by individual consumers. Microprocessor technology is adopted to automate the process, and reduce hardware size and cost. Experimental results show that the developed system can be used effectively for real-time home energy management. It can also be used to detect any abnormal performance of the electrical appliances in real-time through monitoring their individual current and voltage waveforms. A comparison of the developed system and other existing techniques reveals the superiority of the proposed method in terms of the implementation cost and execution time

    Activated avb3 Integrin Regulates avb5 Integrin-Mediated Phagocytosis in Trabecular Meshwork Cells

    Get PDF
    PURPOSE. To investigate the roles of avb3 and avb5 integrins in phagocytosis in human trabecular meshwork (HTM) cells. METHODS. Immunofluorescence microscopy and FACS analysis were used to determine levels of avb3 and avb5 integrins in TM tissue and cultures of normal and immortalized TM cells. Phagocytosis was measured using pHrodo-labeled S. aureus bioparticles followed by FACS analysis. The role of avb5 integrin in phagocytosis was evaluated by knocking down avb5 integrin expression with siRNA against the human b5 gene. Signaling from focal adhesion kinase (FAK) was blocked using FAK inhibitor 14. The role of avb3 integrins in phagocytosis was determined by treating HTM cells with dexamethasone (DEX) or ethanol (EtOH) and by generating stable cell lines that overexpressed either wild type (WT) or constitutively active (CA) b3 integrin subunit. RESULTS. Both TM tissue and cell lines expressed avb3 and avb5 integrins. Knockdown of avb5 integrin reduced phagocytosis by~60% and FAK inhibition significantly reduced phagocytosis up to 84%, in a dose-dependent manner. DEX treatment increased avb3 integrin expression in HTM cells but reduced phagocytosis by~50% compared with untreated and EtOH-treated cells. The CA b3 integrin-expressing cell line showed increased avb3 integrin levels and decreased phagocytosis by~50% compared with the control. CONCLUSIONS. The avb5 integrin-FAK-mediated pathway regulates phagocytosis in TM cells and this pathway is inhibited by activation of avb3 integrins. This suggests that changes in integrin expression and activity may be responsible for alterations in phagocytosis observed in steroid induced glaucoma

    An Intelligent Controlling Method for Battery Lifetime Increment Using State of Charge Estimation in PV-Battery Hybrid System

    Get PDF
    In a photovoltaic (PV)-battery integrated system, the battery undergoes frequent charging and discharging cycles that reduces its operational life and affects its performance considerably. As such, an intelligent power control approach for a PV-battery standalone system is proposed in this paper to improve the reliability of the battery along its operational life. The proposed control strategy works in two regulatory modes: maximum power point tracking (MPPT) mode and battery management system (BMS) mode. The novel controller tracks and harvests the maximum available power from the solar cells under different atmospheric conditions via MPPT scheme. On the other hand, the state of charge (SOC) estimation technique is developed using backpropagation neural network (BPNN) algorithm under BMS mode to manage the operation of the battery storage during charging, discharging, and islanding approaches to prolong the battery lifetime. A case study is demonstrated to confirm the effectiveness of the proposed scheme which shows only 0.082% error for real-world applications. The study discloses that the projected BMS control strategy satisfies the battery-lifetime objective for off-grid PV-battery hybrid systems by avoiding the over-charging and deep-discharging disturbances significantl

    Monitoring of renewable energy systems by IoT‐aided SCADA system

    Get PDF
    With the rapid increase of renewable energy generation worldwide, real‐time information has become essential to manage such assets, especially for systems installed offshore and in remote areas. To date, there is no cost‐effective condition monitoring technique that can assess the state of renewable energy sources in real‐time and provide suitable asset management decisions to optimize the utilization of such valuable assets and avoid any full or partial blackout due to unexpected faults. Based on the Internet of Things scheme, this paper represents a new application for the Supervisory Control and Data Acquisition (SCADA) system to monitor a hybrid system comprising photovoltaic, wind, and battery energy storage systems. Electrical parameters such as voltage, current, and power are monitored in real‐time via the ThingSpeak website. Network operators can control components of the hybrid power system remotely by the proposed SCADA system. The SCADA system is interfaced with the Matlab/Simulink software tool through KEPServerEX client. For cost‐effective design, low‐cost electronic components and Arduino Integrated Development Environment ATMega2560 remote terminal unit are employed to develop a hardware prototype for experimental analysis. Simulation and experimental results attest to the feasibility of the proposed system. Compared with other existing techniques, the developed system features advantages in terms of reliability and cost‐effectivenes

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Preventive Effects of Omega-3 and Omega-6 Fatty Acids on Peroxide Mediated Oxidative Stress Responses in Primary Human Trabecular Meshwork Cells

    Get PDF
    Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H2O2, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H2O2 further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H2O2 stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H2O2 mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H2O2 induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side effects of omega-6, omega-3 appears to be the more beneficial fatty acid in respect of prophylactic intake for prevention of a glaucomatous disease

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings
    corecore